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1. Introduction and Preliminaries

The notion of convex sets and convex functions has numerous applications in the fields
of both pure and applied sciences. In addition, the theory of convexity has undergone rapid
advancements in recent years owing to its numerous applications and its close connection
with the theory of inequalities. Solutions to mathematical problems can be approximated
using the application of inequalities in cases where there is difficulty in finding the exact
values. There is a strong relation between convexity and the theory of inequalities, as
convex functions can be directly applied to derive many inequalities.

According to Dragomir and Pearce [1], the Hermite–Hadamard inequality is one of the
most renowned results in the class of classical convex functions. This inequality possesses
a clear intrinsic geometrical interpretation and finds numerous applications. Although
the result was initially identified by Hadamard (1865–1963), it was primarily attributed to
Hermite (1822–1901) [2,3]. The statement of this inequality is as follows:

Suppose that ℵ : I ⊆ R→ R is a convex mapping, and let τ1, τ2 ∈ I such that τ1 < τ2.
Then,

ℵ
(

τ1 + τ2

2

)
≤ 1

τ2 − τ1

τ2∫
τ1

ℵ(λ)dλ ≤ ℵ(τ1) + ℵ(τ2)

2
. (1)

The two sides of the Hermite–Hadamard inequality, namely the midpoint and trapezoidal-
type inequalities, are utilized for the estimation of error bounds for certain quadrature
rules. These inequalities were first derived in [4,5] and are defined as follows:
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Suppose that ℵ : [τ1, τ2] → R is a differentiable mapping on (τ1, τ2), with τ1 < τ2. If
|ℵ′| is convex on [τ1, τ2], then:∣∣∣∣∣∣ 1

τ2 − τ1

τ2∫
τ1

ℵ(λ)dλ− ℵ
(

τ1 + τ2

2

)∣∣∣∣∣∣ ≤ τ2 − τ1

8
[∣∣ℵ′(τ1)

∣∣+ ∣∣ℵ′(τ2)
∣∣].

Let ℵ : [τ1, τ2] → R be a differentiable mapping on (τ1, τ2), with τ1 < τ2. If |ℵ′| is
convex on [τ1, τ2], then:∣∣∣∣∣∣ℵ(τ1) + ℵ(τ2)

2
− 1

τ2 − τ1

τ2∫
τ1

ℵ(λ)dλ

∣∣∣∣∣∣ ≤ τ2 − τ1

8
[∣∣ℵ′(τ1)

∣∣+ ∣∣ℵ′(τ2)
∣∣].

Another significant inequality in the literature is known as Simpson’s integral inequal-
ity [6], which yields an error bound for the well-known Simpson’s rule and is defined as:

Let ℵ : [τ1, τ2]→ R be four times continuously differentiable mapping on (τ1, τ2) and
‖ℵ(4)‖∞ < ∞, then:∣∣∣∣∣∣13

[ℵ(τ1) + ℵ(τ2)

2
+ 2ℵ

(
τ1 + τ2

2

)]
− 1

τ2 − τ1

τ2∫
τ1

ℵ(λ)dλ

∣∣∣∣∣∣ ≤ 1
2880

‖ℵ(4)‖∞(τ2 − τ1)
4.

Awan et al. [7] obtained some new generalized variants of Simpson-type inequal-
ities based on differentiable, strongly (s,m)-convex mappings. Further generalizations,
extensions, and refinements of Simpson’s integral inequality can be found in [8–11].

Over time, researchers have extended the definition of convex functions to derive
different variants of the Hermite–Hadamard inequality. On the other hand, the concept
of s-convexity [12,13] is split into two notions, which are described below, with the basic
condition that 0 < s ≤ 1.

A function ℵ : [0, ∞)→ R is said to be an s-convex function in the first sense, denoted
by K1

s, if

ℵ(κ1τ1 +κ2τ2) ≤ κ1
sℵ(τ1) +κ2

sℵ(τ2), (2)

holds for all τ1, τ2 ∈ [0, ∞) and all κ1,κ2 ≥ 0 and κ1
s +κ2

s = 1.
A function ℵ : [0, ∞) → R is said to be an s-convex function in the second sense,

or s-Breckner convex, if the inequality (2) holds for all τ1, τ2 ∈ [0, ∞) and all κ1,κ2 ≥ 0
with κ1 +κ2 = 1. We denote this as K2

s. Of course, both s-convexities reduce to standard
convexity when s = 1.

The geometrical meaning of s-convexity (0 < s < 1) is that the graph of the function
lies below a curved chord L that is located between any two points.

Example 1. Let 0 < s < 1 and a, b, c ∈ R. By defining, for u ∈ [0, ∞),

ℵ(u) =
{

a i f u = 0,
bus + c i f u > 0,

we have the following:

1. If b ≥ 0 and c ≤ a, then ℵ ∈ K1
s.

2. If b ≥ 0 and c < a, then ℵ is non-decreasing on (0, ∞) but not on [0, ∞).
3. If b ≥ 0 and 0 ≤ c ≤ a, then ℵ ∈ K2

s.
4. If b > 0 and c < 0, then ℵ /∈ K2

s.

For s-convexity in the first and second senses, Dragomir and Fitzpatrick [14] described
the respective Hermite–Hadamard-type inequalities as follows:
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Suppose that ℵ : [0, ∞) → [0, ∞) is an s-convex mapping in the first sense, where
s ∈ (0, 1], and let τ1, τ2 ∈ [0, ∞) and τ1 < τ2. Then, the following inequalities hold:

ℵ
(

τ1 + τ2

2

)
≤ 1

τ2 − τ1

τ2∫
τ1

ℵ(λ)dλ ≤ ℵ(τ1) + sℵ(τ2)

s+ 1
. (3)

Suppose that ℵ : [0, ∞)→ [0, ∞) is an s-convex mapping in the second sense, where
s ∈ (0, 1], and let τ1, τ2 ∈ [0, ∞) and τ1 < τ2. Then, the following inequalities hold:

2s−1ℵ
(

τ1 + τ2

2

)
≤ 1

τ2 − τ1

τ2∫
τ1

ℵ(λ)dλ ≤ ℵ(τ1) + ℵ(τ2)

s+ 1
. (4)

Further generalizations and extensions of classical convex functions can be found
in [15–19].

The study of integrals and derivatives of arbitrary real order is known as fractional
calculus. The goal of fractional integrals is to address various problems involving special
functions of mathematical science, as well as their extensions and generalizations to one or
more variables. Additionally, fractional-order derivatives are much better at describing the
memory and hereditary properties of various processes compared to classical derivatives.
In fact, the latest advancements in fractional calculus have been driven by current appli-
cations in physics, differential and integral equations, signal processing, fluid mechanics,
mathematical biology, and electrochemistry. There is no doubt that various diverse prob-
lems in mathematics, engineering, and science can be addressed through the application of
fractional calculus [20–22]. A detailed history of fractional calculus can be found in [23].

Sarikaya and Ertuǧral [24] introduced the idea of generalized fractional integrals and
derived Hadamard-type inequalities. The generalized fractional integrals from both the
left and right sides of the interval [τ1, τ2] are defined as:

τ+1
Iϕℵ(y) =

∫ y

τ1

ϕ(y− λ)

y− λ
ℵ(λ)dλ, y > τ1, (5)

and

τ−2
Iϕℵ(y) =

∫ τ2

y

ϕ(λ− y)
λ− y

ℵ(λ)dλ, y < τ2, (6)

where ϕ : [0, ∞)→ [0, ∞) is the mapping satisfying the following condition:

1∫
0

ϕ(λ)

λ
dλ < ∞.

For some suitable choices of the mapping ϕ in (5) and (6), we can obtain Riemann–
Liouville fractional integrals, k-Riemann–Liouville fractional integrals, Katugampola frac-
tional integrals, conformable fractional integrals, and Hadamard fractional integrals as
special cases.

From (5) and (6), the following fractional integrals are obtained:

1. For ϕ(λ) = λ, the resulting integrals are Riemann integrals:

Iτ+1
ℵ(y) =

∫ y

τ1

ℵ(λ)dλ, y > τ1,

Iτ−2
ℵ(y) =

∫ τ2

y
ℵ(λ)dλ, y < τ2.
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2. By setting ϕ(λ) = λα

Γ(α) and α > 0, the resulting integrals are Riemann–Liouville
integrals:

Iα
τ+1
ℵ(y) = 1

Γ(α)

∫ y

τ1

(y− λ)α−1ℵ(λ)dλ, y > τ1,

Iα
τ−2
ℵ(y) = 1

Γ(α)

∫ τ2

y
(λ− y)α−1ℵ(λ)dλ, y < τ2,

where Γ is the gamma mapping.
3. By taking ϕ(λ) = 1

kΓk(α)
λ

α
k and α, k > 0, the resulting integrals are k-Riemann–

Liouville fractional integrals provided in [25] and defined as:

Iα
τ+1 ,kℵ(y) =

1
kΓk(α)

∫ y

τ1

(y− λ)
α
k−1ℵ(λ)dλ, y > τ1,

Iα
τ−2 ,kℵ(y) =

1
kΓk(α)

∫ τ2

y
(λ− y)

α
k−1ℵ(λ)dλ, y < τ2,

where

Γk(α) =

∞∫
0

λα−1e
−λk

k dλ, Re(α) > 0,

and

Γk(α) = k
α
k−1Γ

(α

k

)
, Γk(α + k) = αΓk(α), Re(α) > 0; k > 0.

Now, let us recall some special functions, which we will use in our calculations:
The Euler gamma mapping, or Euler integral of the second kind, is defined as:

Γ(α) =
∫ ∞

0
λα−1e−λdλ, Re(α) > 0.

The beta mapping, or Euler integral of the first kind with two variables, is defined as:

B(υ1, υ2) =

1∫
0

λυ1−1(1− λ)υ2−1dλ, Re(υ1) > 0, Re(υ2) > 0. (7)

In terms of gamma mapping, it is defined as:

B(υ1, υ2) =
Γ(υ1)Γ(υ2)

Γ(υ1 + υ2)
.

The incomplete beta mapping, which is a generalization of the beta mapping, is
defined in [26] as:

Bx(υ1, υ2) = B(x : υ1, υ2) =

x∫
0

λυ1−1(1− λ)υ2−1dλ, Re(υ1) > 0, Re(υ2) > 0. (8)

When x = 1 in (8), it coincides with the beta mapping.
The hypergeometric mapping is:

2F1(υ1, υ2; c; z) =
1

B(υ2, c− υ2)

1∫
0

λυ2−1(1− λ)c−υ2−1(1− zλ)−υ1 dλ, Re(c) > Re(υ2) > 0, |z| < 1. (9)
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This research article is organized as follows. In Section 2, we derive a new general
parameterized integral identity for differentiable mappings. We also present various
additional results that can be deduced from this new identity. In Section 3, we derive some
new parameterized inequalities involving generalized fractional integrals for differentiable
s-convex mappings of the second kind, utilizing the identity derived in Section 2. Some
detailed graphical visualizations of our main findings are presented in Section 4, which
shows the significance and validity of our results. In Section 5, some applications to special
means of real numbers and quadrature formulas are presented. As an application, we
also derive a new generalized numerical scheme. To the best of our knowledge, this is the
first study in the literature pertaining to applications of integral inequalities in numerical
analysis. We hope that the ideas and techniques presented in this paper will inspire
interested readers working in this field.

2. A Parameterized Integral Identity Involving Generalized Fractional Integrals

In this section, a parameterized identity involving generalized fractional integrals is
derived. Further, for some suitable choices of the given parameters, Simpson’s, midpoint,
and trapezoidal-type identities are also derived.

Lemma 1. For a differentiable mapping ℵ : [τ1, τ2] → R on (τ1, τ2) with continuous and inte-
grable derivative ℵ′ on [τ1, τ2], the following equality holds for ρ, σ ≥ 0 and n ∈ N:

(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ
(

nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+1

Iϕℵ
(

nτ1 + τ2

n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2

n + 1

)]

=
τ2 − τ1

n + 1
1

∆(1)

 1∫
0

(∆(λ)− ∆(1)ρ)ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

+

1∫
0

(∆(1)σ− ∆(λ))ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

, (10)

where ∆ : [0, 1]→ R is defined as

∆(λ) =
λ∫

0

ϕ
((

τ2−τ1
n+1

)
µ
)

µ
dµ.

Proof. Let

Y1 =

1∫
0

(∆(λ)− ∆(1)ρ)ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ.
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By applying integration by parts, we obtain

=
n + 1

τ2 − τ1
(∆(λ)− ∆(1)ρ)ℵ

(
1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)∣∣∣∣1
0

− n + 1
τ2 − τ1

1∫
0

ϕ
((

τ2−τ1
n+1

)
λ
)

λ
ℵ
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

=
n + 1

τ2 − τ1

[
∆(1)

(
(1− ρ)ℵ(τ2) + ρℵ

(
τ1 + nτ2

n + 1

))

−
τ2∫

τ1+nτ2
n+1

ℵ(µ)ϕ

(
µ− τ1 + nτ2

n + 1

)
1

µ− τ1+nτ2
n+1

dµ


=

n + 1
τ2 − τ1

[
∆(1)

(
(1− ρ)ℵ(τ2) + ρℵ

(
τ1 + nτ2

n + 1

))
−
(

τ−2
Iϕℵ
(

τ1 + nτ2

n + 1

))]
. (11)

and

Y2 =

1∫
0

(∆(1)σ− ∆(λ))ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

= − n + 1
τ2 − τ1

(∆(1)σ− ∆(λ))ℵ
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)∣∣∣∣1
0

+
n + 1

τ2 − τ1

1∫
0

ϕ
((

τ2−τ1
n+1

)
λ
)

λ
ℵ
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

=
n + 1

τ2 − τ1

[
∆(1)

(
(1− σ)ℵ(τ1) + σℵ

(
nτ1 + τ2

n + 1

))

−

nτ1+τ2
n+1∫
τ1

ℵ(µ)ϕ

(
nτ1 + τ2

n + 1
− µ

)
1

nτ1+τ2
n+1 − µ

dµ


=

n + 1
τ2 − τ1

[
∆(1)

(
(1− σ)ℵ(τ1) + σℵ

(
nτ1 + τ2

n + 1

))
−
(

τ+1
Iϕℵ
(

nτ1 + τ2

n + 1

))]
. (12)

Now, by adding (11) and (12) and multiplying by τ2−τ1
n+1

1
∆(1) , we obtain

=(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ
(

nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+1

Iϕℵ
(

nτ1 + τ2

n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2

n + 1

)]
.

The proof is completed.

Remark 1. From Lemma 1:

1. By setting ρ = σ = n+1
n+2 , the resulting identity is identical to Lemma 3 in [27] for n = 1

2. By setting ρ = σ = 0, the resulting identity is identical to Corollary 5.2 in [28] for n = 1.
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Corollary 1. By setting ϕ(λ) = λ in Lemma 1, the following equality for Riemann integrals
is obtained:

1
n + 1

[
(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ

(
nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)]
− 1

τ2 − τ1

τ2∫
τ1

ℵ(λ)dλ

=
τ2 − τ1

(n + 1)2

 1∫
0

(λ− ρ)ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

+

1∫
0

(σ− λ)ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

.

Remark 2. From Corollary 1:

1. By setting ρ = σ = n+1
n+2 , the resulting identity is identical to Lemma 1 in [10] for n = 1.

2. By setting ρ = σ = 0, the resulting identity is identical to Corollary 5.2 in [28] for n = 1.

Corollary 2. By setting ϕ(λ) = λα

Γ(α) , α > 0 in Lemma 1, the following equality is obtained for
Riemann–Liouville fractional integrals:

(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ
(

nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− (n + 1)αΓ(α + 1)

(τ2 − τ1)
α

[
Iα
τ+1
ℵ
(

nτ1 + τ2

n + 1

)
+ Iα

τ−2
ℵ
(

τ1 + nτ2

n + 1

)]

=
τ2 − τ1

n + 1

 1∫
0

(λα − ρ)ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

+

1∫
0

(σ− λα)ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

.

Remark 3. From Corollary 2:

1. By setting ρ = σ = n+1
n+2 , the resulting identity is identical to Lemma 2.1 in [29] for n = 1.

2. By setting ρ = σ = 0, the resulting identity is identical to Corollary 5.3 in [28] for n = 1.

Corollary 3. By setting ϕ(λ) = λ
α
k

kΓk(α)
for α, k > 0 in Lemma 1, the following equality is obtained

for k-Riemann–Liouville fractional integrals:

(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ
(

nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− (n + 1)

α
k Γk(α + k)

(τ2 − τ1)
α
k

[
Iα
τ+1 ,kℵ

(
nτ1 + τ2

n + 1

)
+ Iα

τ−2 ,kℵ
(

τ1 + nτ2

n + 1

)]

=
τ2 − τ1

n + 1

 1∫
0

(
λ

α
k − ρ

)
ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

+

1∫
0

(
σ− λ

α
k

)
ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

.

Remark 4. From Corollary 3:

1. By setting ρ = σ = n+1
n+2 , the resulting identity is identical to Corollary 1 in [27] for n = 1.

2. By setting ρ = σ = 0, the resulting identity is identical to Corollary 5.4 in [28] for n = 1.
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3. Some Parameterized Inequalities Involving Generalized Fractional Integrals

In this section, we establish some parameterized inequalities involving generalized
fractional integrals for differentiable s-convex mappings of the second kind.

Theorem 1. Let all the conditions of Lemma 1 be satisfied. If |ℵ′| is an s-convex mapping on
[τ1, τ2] for s ∈ (0, 1] and n ∈ N, then:∣∣∣∣(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ

(
nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+

1
Iϕℵ
(

nτ1 + τ2
n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2
n + 1

)]∣∣∣∣
≤ τ2 − τ1

(n + 1)s+1
1

∆(1)

[∣∣ℵ′(τ1)
∣∣(Πϕ

1 (ρ, s) + Πϕ
2 (σ, s, n)

)
+
∣∣ℵ′(τ2)

∣∣(Πϕ
2 (ρ, s, n) + Πϕ

1 (σ, s)
)]

, (13)

where

Πϕ
1 (δ, s) =

1∫
0

(1− λ)s|∆(λ)− ∆(1)δ|dλ

and

Πϕ
2 (δ, s, n) =

1∫
0

(n + λ)s|∆(λ)− ∆(1)δ|dλ.

Proof. By taking the modulus in Lemma 1 and applying the s-convexity of |ℵ′|, we obtain∣∣∣∣(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ
(

nτ1 + τ2
n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+

1
Iϕℵ
(

nτ1 + τ2
n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2
n + 1

)]∣∣∣∣
=

∣∣∣∣∣∣ τ2 − τ1
n + 1

1
∆(1)

 1∫
0

(∆(λ)− ∆(1)ρ)ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

+

1∫
0

(∆(1)σ− ∆(λ))ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

∣∣∣∣∣∣
≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|
∣∣∣∣ℵ′(1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)∣∣∣∣dλ

+

1∫
0

|∆(1)σ− ∆(λ)|
∣∣∣∣ℵ′(n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)∣∣∣∣dλ


≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|
[(

1− λ

n + 1

)s∣∣ℵ′(τ1)
∣∣+(n + λ

n + 1

)s∣∣ℵ′(τ2)
∣∣]dλ

+

1∫
0

|∆(1)σ− ∆(λ)|
[(

n + λ

n + 1

)s∣∣ℵ′(τ1)
∣∣+(1− λ

n + 1

)s∣∣ℵ′(τ2)
∣∣]dλ


≤ τ2 − τ1

(n + 1)s+1
1

∆(1)

∣∣ℵ′(τ1)
∣∣ 1∫

0

|∆(λ)− ∆(1)ρ|(1− λ)sdλ +

1∫
0

|∆(1)σ− ∆(λ)|(n + λ)sdλ


+
∣∣ℵ′(τ2)

∣∣ 1∫
0

|∆(λ)− ∆(1)ρ|(n + λ)sdλ +

1∫
0

|∆(1)σ− ∆(λ)|(1− λ)sdλ


≤ τ2 − τ1

(n + 1)s+1
1

∆(1)

[∣∣ℵ′(τ1)
∣∣(Πϕ

1 (ρ, s) + Πϕ
2 (σ, s, n)

)
+
∣∣ℵ′(τ2)

∣∣(Πϕ
2 (ρ, s, n) + Πϕ

1 (σ, s)
)]

.
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The proof is completed.

Theorem 2. Let all the conditions of Lemma 1 be satisfied. If |ℵ′|q is an s-convex mapping on
[τ1, τ2] for s ∈ (0, 1], n ∈ N and q > 1, then:∣∣∣∣(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ

(
nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+1

Iϕℵ
(

nτ1 + τ2

n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2

n + 1

)]∣∣∣∣
≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|
q

q−1 dλ


q−1

q

(
1

(s+ 1)(n + 1)s
∣∣ℵ′(τ1)

∣∣q + (n + 1)s+1 − ns+1

(s+ 1)(n + 1)s
∣∣ℵ′(τ2)

∣∣q) 1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|
q

q−1 dλ


q−1

q

(
(n + 1)s+1 − ns+1

(s+ 1)(n + 1)s
∣∣ℵ′(τ1)

∣∣q + 1
(s+ 1)(n + 1)s

∣∣ℵ′(τ2)
∣∣q) 1

q
. (14)

Proof. By using Lemma 1 and the Hölder integral inequality, we have∣∣∣∣(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ
(

nτ1 + τ2
n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+

1
Iϕℵ
(

nτ1 + τ2
n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2
n + 1

)]∣∣∣∣
=

∣∣∣∣∣∣ τ2 − τ1
n + 1

1
∆(1)

 1∫
0

(∆(λ)− ∆(1)ρ)ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

+

1∫
0

(∆(1)σ− ∆(λ))ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

∣∣∣∣∣∣
≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|
q

q−1 dλ


q−1

q
 1∫

0

∣∣∣∣ℵ′(1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)∣∣∣∣qdλ


1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|
q

q−1 dλ


q−1

q
 1∫

0

∣∣∣∣ℵ′(n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)∣∣∣∣qdλ


1
q
.

Since |ℵ′|q is s-convex, we obtain
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≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|
q

q−1 dλ


q−1

q

 1∫
0

[(
1− λ

n + 1

)s∣∣ℵ′(τ1)
∣∣q +(n + λ

n + 1

)s∣∣ℵ′(τ2)
∣∣q]dλ


1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|
q

q−1 dλ


q−1

q

 1∫
0

[(
n + λ

n + 1

)s∣∣ℵ′(τ1)
∣∣q +(1− λ

n + 1

)s∣∣ℵ′(τ2)
∣∣q]dλ


1
q


≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|
q

q−1 dλ


q−1

q

(
1

(s+ 1)(n + 1)s
∣∣ℵ′(τ1)

∣∣q + (n + 1)s+1 − ns+1

(s+ 1)(n + 1)s
∣∣ℵ′(τ2)

∣∣q) 1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|
q

q−1 dλ


q−1

q

(
(n + 1)s+1 − ns+1

(s+ 1)(n + 1)s
∣∣ℵ′(τ1)

∣∣q + 1
(s+ 1)(n + 1)s

∣∣ℵ′(τ2)
∣∣q) 1

q
.

The proof is completed.

Theorem 3. Let all the conditions of Lemma 1 be satisfied. If |ℵ′|q is an s-convex mapping on
[τ1, τ2] for s ∈ (0, 1], n ∈ N and q > 1, then:∣∣∣∣(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ

(
nτ1 + τ2

n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+

1
Iϕℵ
(

nτ1 + τ2
n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2
n + 1

)]∣∣∣∣
≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|dλ

 1− 1
q( |ℵ′(τ1)|qΠϕ

1 (ρ, s) + |ℵ′(τ2)|qΠϕ
2 (ρ, s, n)

(n + 1)s

) 1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|dλ

1− 1
q ( |ℵ′(τ1)|qΠϕ

2 (σ, s, n) + |ℵ′(τ2)|qΠϕ
1 (σ, s)

(n + 1)s

) 1
q
, (15)

where Πϕ
1 (δ, s) and Πϕ

2 (δ, s, n) are defined in Theorem 1.
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Proof. By using Lemma 1 and the power mean integral inequality, we deduce that∣∣∣∣(1− σ)ℵ(τ1) + (1− ρ)ℵ(τ2) + σℵ
(

nτ1 + τ2
n + 1

)
+ ρℵ

(
τ1 + nτ2

n + 1

)
− 1

∆(1)

[
τ+

1
Iϕℵ
(

nτ1 + τ2
n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2
n + 1

)]∣∣∣∣
=

∣∣∣∣∣∣ τ2 − τ1
n + 1

1
∆(1)

 1∫
0

(∆(λ)− ∆(1)ρ)ℵ′
(

1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)
dλ

+

1∫
0

(∆(1)σ− ∆(λ))ℵ′
(

n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)
dλ

∣∣∣∣∣∣
≤ τ2 − τ1

n + 1
1

∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|dλ

 1− 1
q
 1∫

0

|∆(λ)− ∆(1)ρ|
∣∣∣∣ℵ′(1− λ

n + 1
τ1 +

n + λ

n + 1
τ2

)∣∣∣∣qdλ


1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|dλ

1− 1
q
 1∫

0

|∆(1)σ− ∆(λ)|
∣∣∣∣ℵ′(n + λ

n + 1
τ1 +

1− λ

n + 1
τ2

)∣∣∣∣qdλ


1
q
.

Since |ℵ′|q is s-convex, we obtain

≤ τ2 − τ1
n + 1

1
∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|dλ

 1− 1
q

∣∣ℵ′(τ1)
∣∣q 1∫

0

|∆(λ)− ∆(1)ρ|
(

1− λ

n + 1

)s

dλ +
∣∣ℵ′(τ2)

∣∣q 1∫
0

|∆(λ)− ∆(1)ρ|
(

n + λ

n + 1

)s

dλ


1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|dλ

1− 1
q

∣∣ℵ′(τ1)
∣∣q 1∫

0

|∆(1)σ− ∆(λ)|
(

n + λ

n + 1

)s

dλ +
∣∣ℵ′(τ2)

∣∣q 1∫
0

|∆(1)σ− ∆(λ)|
(

1− λ

n + 1

)s

dλ


1
q


≤ τ2 − τ1
n + 1

1
∆(1)

 1∫
0

|∆(λ)− ∆(1)ρ|dλ

 1− 1
q( |ℵ′(τ1)|qΠϕ

1 (ρ, s) + |ℵ′(τ2)|qΠϕ
2 (ρ, s, n)

(n + 1)s

) 1
q

+

 1∫
0

|∆(1)σ− ∆(λ)|dλ

1− 1
q ( |ℵ′(τ1)|qΠϕ

2 (σ, s, n) + |ℵ′(τ2)|qΠϕ
1 (σ, s)

(n + 1)s

) 1
q
.

The proof is completed.

Remark 5. From Theorems 1, 2, and 3:

1. By setting ϕ(λ) = λ, the inequalities for Riemann integrals are obtained.
2. By setting ϕ(λ) = λα

Γ(α) , α > 0, the inequalities for Riemann–Liouville fractional integrals
are obtained.

3. By setting ϕ(λ) = λ
α
k

kΓk(α)
, α, k > 0, the inequalities for k-Riemann–Liouville fractional

integrals are obtained.
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4. Examples and Graphical Analysis

In this section, we validate the main results of Section 3 through various simulations
and numerical examples. It is important to note that by specifying the values for ϕ(λ)
in Theorems 1–3, we recover several new and novel fractional versions of inequalities,
including those involving Riemann integrals, Riemann–Liouville fractional integrals, and
k-Riemann–Liouville fractional integrals. Further, by choosing several values for the
parameters ρ and σ, we provide graphical visualizations of Simpson’s, midpoint, and
trapezoidal-type inequalities in Figures 1–3. In addition, from these simulations, one can
visualize the comparison between error bounds involving different fractional operators
and generalized convexity. The following assumptions are utilized in all the graphs:

ℵ(λ) = λs,

where s ∈ (0, 1], [τ1, τ2] = [1, 3], n = 1, α ∈ (0, 1], k = 2, and q = 2
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Figure 1. Visual analysis of left(Blue) and right(Red) sides of: (a),(d),(g) Simpson’s inequalities
(b),(e),(h) Mid point inequalities (c),(f),(i) Trapezoid type inequalities. Discussion: In figures (a),(d)
and (g), Simpson’s inequalities are obtained by setting ϕ(λ) = λ, ϕ(λ) = λα

Γ(α) , α > 0 and ϕ(λ) =

λ
α
k

kΓk(α)
, α, k > 0, respectively for Remark 5(1) for the choices of the parameters σ = ρ = 2

3 . Similar
cases hold for the mid point inequalities in figures (b),(e) and (h) and trapezoid type inequalities in
figures (c),(f),(i) for the parametric values σ = ρ = 1 and σ = ρ = 0 respectively.

Figure 1. Visual analysis of left (red) and right (blue) sides of (a,d,g) Simpson’s inequalities, (b,e,h)
midpoint inequalities, (c,f,i) trapezoidal-type inequalities. In figures (a,d,g), the Simpson’s inequalities

are derived by setting ϕ(λ) = λ, ϕ(λ) = λα

Γ(α) , α > 0 and ϕ(λ) = λ
α
k

kΓk(α)
, α, k > 0, respectively, for

Remark 5(1) for the choices of the parameters σ = ρ = 2
3 . Similar cases hold for the midpoint

inequalities in figures (b,e,h) and trapezoidal-type inequalities in figures (c,f,i) for the parametric
values σ = ρ = 1 and σ = ρ = 0, respectively.
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Figure 2. Visual analysis of left(Green) and right(Purple) sides of: (a),(d),(g) Simpson’s inequalities
(b),(e),(h) Mid point inequalities (c),(f),(i) Trapezoid type inequalities. Discussion: In figures (a),(d)
and (g), Simpson’s inequalities are obtained by setting ϕ(λ) = λ, ϕ(λ) = λα

Γ(α) , α > 0 and ϕ(λ) =

λ
α
k

kΓk(α)
, α, k > 0, respectively for Remark 5(2) for the choices of the parameters σ = ρ = 2

3 . Similar
cases hold for the mid point inequalities in figures (b),(e) and (h) and trapezoid type inequalities in
figures (c),(f) and (i) for the parametric values σ = ρ = 1 and σ = ρ = 0 respectively.

Figure 2. Cont.
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Figure 2. Visual analysis of left(Green) and right(Purple) sides of: (a),(d),(g) Simpson’s inequalities
(b),(e),(h) Mid point inequalities (c),(f),(i) Trapezoid type inequalities. Discussion: In figures (a),(d)
and (g), Simpson’s inequalities are obtained by setting ϕ(λ) = λ, ϕ(λ) = λα

Γ(α) , α > 0 and ϕ(λ) =

λ
α
k

kΓk(α)
, α, k > 0, respectively for Remark 5(2) for the choices of the parameters σ = ρ = 2

3 . Similar
cases hold for the mid point inequalities in figures (b),(e) and (h) and trapezoid type inequalities in
figures (c),(f) and (i) for the parametric values σ = ρ = 1 and σ = ρ = 0 respectively.

Figure 2. Visual analysis of left (green) and right (purple) sides of (a,d,g) Simpson’s in-
equalities, (b,e,h) midpoint inequalities, (c,f,i) trapezoidal-type inequalities. In figures (a,d,g),
the Simpson’s inequalities are derived by setting ϕ(λ) = λ, ϕ(λ) = λα

Γ(α) , α > 0 and

ϕ(λ) = λ
α
k

kΓk(α)
, α, k > 0, respectively, for Remark 5(2) for the choices of the parameters σ = ρ = 2

3 .
Similar cases hold for the midpoint inequalities in figures (b,e,h) and trapezoidal-type inequalities in
figures (c,f,i) for the parametric values σ = ρ = 1 and σ = ρ = 0, respectively.
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Figure 3. Visual analysis of left(Yellow) and right(Pink) sides of: (a),(d),(g) Simpson’s inequalities
(b),(e),(h) Mid point inequalities (c),(f),(i) Trapezoid type inequalities. Discussion: In figures (a),(d)
and (g), Simpson’s inequalities are obtained by setting ϕ(λ) = λ, ϕ(λ) = λα

Γ(α) , α > 0 and ϕ(λ) =

λ
α
k

kΓk(α)
, α, k > 0, respectively for Remark 5(3) for the choices of the parameters σ = ρ = 2

3 . Similar
cases hold for the mid point inequalities in figures (b),(e) and (h) and trapezoid type inequalities in
figures (c),(f) and (i) for the parametric values σ = ρ = 1 and σ = ρ = 0 respectively.

5. Applications

In this section, some interesting applications to special means, quadrature formulas
and in numerical analysis to solve non-linear equations are discussed, that highlight the
significance and the validation of our main findings.

5.1. Special means

Before we present applications to means, let us recall some classical concepts. For
details, see [31].
Let ζ : I → I1 ⊆ [0, ∞) be a non-negative convex mapping on I . Then ζs is s-convex on I ,
0 < s < 1.
For positive real numbers τ1, τ2, τ1 6= τ2, the following means are well known in the
literature:

1. The arithmetic mean

A(τ1, τ2) =
τ1 + τ2

2
, τ1, τ2 ∈ R.

2. The harmonic mean

H(τ1, τ2) =
2τ1τ2

τ1 + τ2
, τ1, τ2 ∈ R \ {0}.

Figure 3. Visual analysis of left (yellow) and right (orange) sides of (a,d,g) Simpson’s inequalities,
(b,e,h) midpoint inequalities, (c,f,i) trapezoidal-type inequalities. In figures (a,d,g), the Simpson’s

inequalities are derived by setting ϕ(λ) = λ, ϕ(λ) = λα

Γ(α) , α > 0 and ϕ(λ) = λ
α
k

kΓk(α)
, α, k > 0,

respectively, for Remark 5(3) for the choices of the parameters σ = ρ = 2
3 . Similar cases hold for

the midpoint inequalities in figures (b,e,h) and trapezoidal-type inequalities in figures (c,f,i) for the
parametric values σ = ρ = 1 and σ = ρ = 0, respectively.
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5. Applications

In this section, some interesting applications to special means, quadrature formulas,
and in numerical analysis for solving non-linear equations are discussed, which highlight
the significance and validation of our main findings.

5.1. Special Means

Before we present applications to special means, let us recall some classical concepts.
For further details, see [30].

Let ζ : I → I1 ⊆ [0, ∞) be a non-negative convex mapping on I . Then, ζs is s-convex
on I , 0 < s < 1.

For positive real numbers τ1, τ2, τ1 6= τ2, the following means are well known in
the literature:

1. The arithmetic mean

A(τ1, τ2) =
τ1 + τ2

2
, τ1, τ2 ∈ R.

2. The harmonic mean

H(τ1, τ2) =
2τ1τ2

τ1 + τ2
, τ1, τ2 ∈ R \ {0}.

3. The generalized log mean

Lm(τ1, τ2) =

(
τ2

m+1 − τ1
m+1

(m+ 1)(τ2 − τ1)

) 1
m

, m ∈ R \ {−1, 0}, τ1, τ2 > 0.

Now, we will derive some inequalities for special means by utilizing the results from
Section 3 for the following assumptions:

Consider ℵ : [τ1, τ2] → R, τ1 < τ2 such that ℵ(λ) = λs for s ∈ (0, 1], ϕ(λ) = λ and
n = 1. Then, from Theorem 1:

1. For ρ = σ = 2
3 , we obtain∣∣∣∣13 A(τs

1 , τs
2 ) +

2
3

As(τ1, τ2)− Ls
s(τ1, τ2)

∣∣∣∣
≤ (τ2 − τ1)|s|

2s

(
1− 22+s31+s − 32+s + 52+s + 2s31+ss

)
32+s(1 + s)(2 + s)

A
(
|τs−1

1 |, |τs−1
2 |

)
. (16)

2. For ρ = σ = 1, we obtain

|Ls
s(τ1, τ2)− As(τ1, τ2)| ≤

(τ2 − τ1)|s|
2s+1

(
−1 + 21+s

)
(1 + s)(2 + s)

A
(
|τs−1

1 |, |τs−1
2 |

)
. (17)

3. For ρ = σ = 1, we obtain

|A(τs
1 , τs

2 )− Ls
s(τ1, τ2)| ≤

(τ2 − τ1)|s|
2s+1

(1 + 2ss)
2 + 3s+ s2 A

(
|τs−1

1 |, |τs−1
2 |

)
. (18)

Similarly, from Theorem 2:
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1. For ρ = σ = 2
3 , we obtain∣∣∣∣13 A(τs

1 , τs
2 ) +

2
3

As(τ1, τ2)− Ls
s(τ1, τ2)

∣∣∣∣
≤ (τ2 − τ1)|s|

2

4(q− 1)(3)
1−2q
q−1 (2)

1
q−1

2q− 1


q−1

q (
1

(s+ 1)2s

) 1
q

[
1 +

(
2s+1 − 1

) 1
q
]

A
(
|τs−1

1 |, |τs−1
2 |

)
. (19)

2. For ρ = σ = 1, we obtain

|Ls
s(τ1, τ2)− As(τ1, τ2)|

≤ (τ2 − τ1)|s|
2

(
1− q
1− 2q

) q−1
q
(

1
(s+ 1)2s

) 1
q
[

1 +
(

2s+1 − 1
) 1

q
]

A
(
|τs−1

1 |, |τs−1
2 |

)
. (20)

3. For ρ = σ = 0, we obtain

|A(τs
1 , τs

2 )− Ls
s(τ1, τ2)|

≤ (τ2 − τ1)|s|
2

(
q− 1

2q− 1

) q−1
q
(

1
(s+ 1)2s

) 1
q
[

1 +
(

2s+1 − 1
) 1

q
]

A
(
|τs−1

1 |, |τs−1
2 |

)
. (21)

Similarly, from Theorem 3:

1. For ρ = σ = 2
3 , we obtain∣∣∣∣13 A(τs

1 , τs
2 ) +

2
3

As(τ1, τ2)− Ls
s(τ1, τ2)

∣∣∣∣
≤
(

5
18

)1− 1
q (τ2 − τ1)|s|

2
2× 5s×9−1−s

(
50× 3s − 7× 31+2s×5−s − 23+s31+2s5−s − 2× 31+2s5−ss+ 21+s31+2s5−ss

)
(1 + s)(2 + s)


1
q

+

3−2−s
(

2 + 31+s + 2× 31+ss
)

2 + 3s+ s2


1
q

A
(
|τs−1

1 |, |τs−1
2 |

)
. (22)

2. For ρ = σ = 1, we obtain

|Ls
s(τ1, τ2)− As(τ1, τ2)|

≤ (τ2 − τ1)|s|
2

(
1

1 + p

)1− 1
q

(−3 + 22+s − s

2 + 3s+ s2

) 1
q

+

(
1

2 + s

) 1
q

A
(
|τs−1

1 |, |τs−1
2 |

)
. (23)

3. For ρ = σ = 0, we obtain

|A(τs
1 , τs

2 )− Ls
s(τ1, τ2)|

≤ (τ2 − τ1)|s|
2

(
1
2

)1− 1
q
(

1
2 + 3s+ s2

) 1
q
[(

1 + 21+ss
) 1

q
+ 1
]

A
(
|τs−1

1 |, |τs−1
2 |

)
. (24)
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For τ1, τ2 ∈ R \ {0}, τ1 < τ2, τ1
−1 > τ2

−1 and by substituting τ1 → (τ2)
−1 and

τ2 → (τ1)
−1 in (16), we obtain∣∣∣∣13 H−1(τs

2 , τs
1 ) +

2
3

H−s(τ1, τ2)− Ls
s

(
τ2
−1, τ1

−1
)∣∣∣∣

≤
(
τ1
−1 − τ2

−1)|s|
2s

(
1− 22+s31+s − 32+s + 52+s + 2s31+ss

)
32+s(1 + s)(2 + s)

H−1
(
|τs−1

1 |, |τs−1
2 |

)
. (25)

Remark 6. By setting the same assumptions as those followed in inequality (25), we can also obtain
the inequalities involving harmonic means for (17)–(24).

5.2. Quadrature Formulas

In this section, for different choices of the parameters ρ and σ, we provide a range of
Simpson’s, midpoint, and trapezoidal-type inequalities. These inequalities provide error
bounds for several quadrature formulas.

Remark 7. From Theorem 1, the following inequalities are obtained:

1. By setting ρ = σ = n+1
n+2 , we have the Simpson’s inequality for generalized fractional integrals:∣∣∣∣ 1

(n + 1)(n + 2)
[ℵ(τ1) + ℵ(τ2)] +

1
n + 2

[
ℵ
(

nτ1 + τ2

n + 1

)
+ ℵ

(
τ1 + nτ2

n + 1

)]
− 1

∆(1)(n + 1)

[
τ+1

Iϕℵ
(

nτ1 + τ2

n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2

n + 1

)]∣∣∣∣
≤ τ2 − τ1

(n + 1)s+2
1

∆(1)

[(
Πϕ

1

(
n + 1
n + 2

, s
)
+ Πϕ

2

(
n + 1
n + 2

, s
))(∣∣ℵ′(τ1)

∣∣+ ∣∣ℵ′(τ2)
∣∣)], (26)

where

Πϕ
1

(
n + 1
n + 2

, s
)
=

1∫
0

(1− λ)s
∣∣∣∣∆(λ)− ∆(1)

n + 1
n + 2

∣∣∣∣dλ,

and

Πϕ
2

(
n + 1
n + 2

, s
)
=

1∫
0

(n + λ)s
∣∣∣∣∆(λ)− ∆(1)

n + 1
n + 2

∣∣∣∣dλ,

and the inequality (26) is identical to Theorem 4 in [27] by taking n = 1 and s = 1.
2. By setting ρ = σ = n, we have the midpoint inequality for generalized fractional integrals:∣∣∣∣ n

n + 1

[
ℵ
(

nτ1 + τ2

n + 1

)
+ ℵ

(
τ1 + nτ2

n + 1

)]
− n− 1

n + 1
[ℵ(τ1) + ℵ(τ2)]

− 1
∆(1)(n + 1)

[
τ+1

Iϕℵ
(

nτ1 + τ2

n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2

n + 1

)]∣∣∣∣
≤ τ2 − τ1

(n + 1)s+2
1

∆(1)

[(
Πϕ

1 (n, s) + Πϕ
2 (n, s)

)(∣∣ℵ′(τ1)
∣∣+ ∣∣ℵ′(τ2)

∣∣)], (27)

where

Πϕ
1 (n, s) =

1∫
0

(1− λ)s|∆(λ)− ∆(1)n|dλ,
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and

Πϕ
2 (n, s) =

1∫
0

(n + λ)s|∆(λ)− ∆(1)n|dλ.

3. By setting ρ = σ = 0, we have the trapezoidal-type inequality for generalized fractional integrals:∣∣∣∣ℵ(τ1) + ℵ(τ2)

n + 1
− 1

∆(1)(n + 1)

[
τ+1

Iϕℵ
(

nτ1 + τ2

n + 1

)
+τ−2

Iϕℵ
(

τ1 + nτ2

n + 1

)]∣∣∣∣
≤ τ2 − τ1

(n + 1)s+2
1

∆(1)

[(
Πϕ

1 (s) + Πϕ
2 (n, s)

)(∣∣ℵ′(τ1)
∣∣+ ∣∣ℵ′(τ2)

∣∣)], (28)

where

Πϕ
1 (s) =

1∫
0

(1− λ)s|∆(λ)|dλ,

and

Πϕ
2 (n, s) =

1∫
0

(n + λ)s|∆(λ)|dλ,

and inequality (28) is identical to Theorem 5.5 in [28] by taking n = 1 and s = 1.

Remark 8. The inequalities that we derived in Remark 7 can also be established for
Theorems 2 and 3 and for all the inequalities that can be derived for different choices of the function
φ(λ), which are discussed in Remark 5.

5.3. A Family of Numerical Schemes to Solve Non-Linear Equations

The aim of this section is to present a new iterative scheme as an application of our
main results.

Consider a non-linear equation

ℵ(ω) = 0. (29)

One of the most significant problems in applied mathematics is finding the solutions
to equations of the form (29). There are several methods known in the literature that can be
used to find the solutions to equations of the form (29). For further details, see [31–34]. In
this section, as an application of our main outcomes, we present a new generalized form of
an iterative scheme that can be used to find the solution to (29).

In [35], Weerakoon and Fernando proposed the idea of obtaining quadrature rules
through an iterative method. Indeed, they used Newton’s method in the integral form
given in [36]. The integral representation of Newton’s method is

ℵ(ω) = ℵ(ωm) +

ω∫
ωm

ℵ′(λ)dλ. (30)

We now present a new generalized iterative scheme by applying the technique of
Weerakoon and Fernando in [35] as follows Algorithm 1:



Fractal Fract. 2023, 7, 797 18 of 24

Algorithm 1: Generalized Iterative Scheme
Let σ, ρ ≥ 0 and a non-linear function ℵ(ω) = 0. Then, we have

ωm+1 = ωm −
2ℵ(ωm)

(1− σ)ℵ′(ωm) + (1− ρ)ℵ′(υm) + (ρ + σ)ℵ′
(

ωm+υm
2

) . (31)

Proof. Substituting ϕ(λ) = λ, n = 1 and s = 1 in Theorem 1, using (29) and (30), we deduce

ω = ωm −
2ℵ(ωm)

(1− σ)ℵ′(ωm) + (1− ρ)ℵ′(ω) + (ρ + σ)ℵ′
(

ωm+ω
2
) . (32)

Now, (32) allows us to suggest the following generic iterative scheme for finding the
solution to equations of the form (29).

ωm+1 = ωm −
2ℵ(ωm)

(1− σ)ℵ′(ωm) + (1− ρ)ℵ′(υm) + (ρ + σ)ℵ′
(

ωm+υm
2

) , (33)

where υm is some explicit method. This completes the proof.

Remark 9. For different values of ρ and σ in (31), we derive different classical numerical schemes:

1. By setting ρ = 0 and σ = 0, the trapezoidal Newton method is derived and is given in [35].
2. By setting ρ = 1 and σ = 1, the midpoint Newton method is derived and is given in [37].
3. By setting ρ = 1

2 and σ = 1
2 , the average trapezoidal midpoint Newton method is derived and

is given in [38].
4. By setting ρ = 2

3 and σ = 2
3 , the Simpson-Newton method is derived and is given in [39].

We now discuss the convergence analysis of Algorithm 1.

Theorem 4. Let r be a simple zero of a sufficiently differentiable function ℵ : I ⊆ R→ R, where
r ∈ I , provided that ω0 is in close proximity to r. Then, the generalized iterative scheme given by
Algorithm 1 exhibits a quadratic order of convergence, satisfying the following error equation:

em+1 = −1
2

c2(σ− ρ)e2
m +

(
1
2

c3 −
9
8

σc3 − ρc2
2 + c2

2 +
3
8

ρc3 + σc2
2 −

1
4

σ2c2
2 +

1
2

σρc2
2 −

1
4

ρ2c2
2

)
e3
m + O(e4

m),

where ck =
1
k!
ℵk(r)
ℵ′(r) , k = 1, 2, 3, . . . and em = ωm − r.

Proof. From Algorithm 1, we have

ωm+1 = ωm −
2ℵ(ωm)

(1− σ)ℵ′(ωm) + (1− ρ)ℵ′(υm) + (ρ + σ)ℵ′
(

ωm+υm
2

) , (34)

where υm is some explicit method, so we take the Newton–Raphson method.

υm = ωm −
ℵ(ωm)

ℵ′(ωm)
. (35)

Since r is a simple zero of ℵ, which is sufficiently differentiable, using a Taylor-series
expansion of ℵ(ωm) and Dqℵ(ωm) about r, we obtain

ℵ(ωm) = ℵ′(r)[em + c2e2
m + c3e3

m + c4e4
m + O(e5

m)], (36)
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ℵ′(ωm) = ℵ′(r)[1 + 2c2em + 3c3e2
m + 4c4e3

m + O(e4
m)]. (37)

By utilizing (36) and (37), we obtain

υm = c2e2
m + (−2c2

2 + 2c3)e3
m + O(e4

m). (38)

Now, using (38), we deduce that

ℵ(υm) = c1 + 2c1c2
2e2

m − 4c1(c2
2 − c3)c2e3

m + O(e4
m). (39)

Also, we have

ℵ
(

ωm + υm
2

)
= c1 + c1c2em +

1
4

c1(4c2
2 + 3c3)e2

m −
1
2

c1(4c3
2 − 7c2c3 − c4)e3

m + O(e4
m). (40)

Using (36)–(40), we obtain

em+1 = −1
2

c2(σ− ρ)e2
m +

(
1
2

c3 −
9
8

σc3 − ρc2
2 + c2

2 +
3
8

ρc3 + σc2
2 −

1
4

σ2c2
2 +

1
2

σρc2
2 −

1
4

ρ2c2
2

)
e3
m + O(e4

m).

This completes the proof.

Now, we consider the following numerical scheme (Algorithm 2).

Algorithm 2: A new iterative scheme of order 3
For a given x0, compute the approximate solution xn+1 using the following
two-step iterative scheme:

υm = xn −
ℵ(ωm)

ℵ′(ωm)
,

ωm+1 = ωm −
3ℵ(ωm)

ℵ′(ωm) + ℵ′(υm) + ℵ′
(

ωm+υm
2

) . (41)

Note that Algorithm 2 can be deduced using our generic iterative Algorithm 1 by
taking ρ = 1

3 = σ. We would like to mention here that to the best of our knowledge, this
iterative scheme is new in the literature.

The convergence analysis of Algorithm 2 can easily be checked from the convergence
analysis of Algorithm 1 by taking ρ = 1

3 = σ. It can be seen that it satisfies the following
error equation:

em+1 =

(
c2

2 +
1
4

c3

)
e3
m + O(e4

m).

This shows that the iterative scheme provided by (41) exhibits a cubic order of convergence.

5.3.1. Comparison Analysis

In this section, we present some examples that demonstrate the effectiveness of our
suggested approach. We compare our proposed method (Algorithm 1) with well-known
techniques, including the Newton method (NM) [32], Abbasbandy method (AM) [40],
Halley method (HM) [32], and Chun method (CM) [33]. To determine the approximate
root, we employed a tolerance of ε = 10−15. The following termination conditions were
utilized for the computer algorithms:

1. |ωm+1 −ωm| < ε;
2. |ℵ(ωm+1)| < ε.
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The numerical tests were conducted on an Intel(R) Core(TM) i5 processor with
1.60 GHz and 16 GB RAM. Maple 2020 was used for coding, while the graphical anal-
ysis was carried out using Matlab 2021. For the comparison analysis, we consider the
following four types of examples.

1. ℵ(ω) = ω3 + 4ω2 − 15;
2. ℵ(ω) = ω exp(ω2)− sin2 ω + 3 cos ω + 5;
3. ℵ(ω) = 10ω exp(−ω2)− 1;
4. ℵ(ω) = exp(−ω) + cos ω.

After carrying out the numerical tests with the software, we prepared tables and visual
illustrations of Algorithm 1 for the above-mentioned examples, which are presented below
(Tables 1–4).

Table 1. Comparison results for ℵ(ω) = ω3 + 4ω2 − 15.

Methods ω0 IT ωm ℵ(ωm) δ

NM 2 6 1.6319808055660635175 0 0
AM 2 4 1.6319808055660635175 0 0
HM 2 4 1.6319808055660635175 0 0
CM 2 4 1.6319808055660635175 0 0
ALG 2 4 1.6319808055660635175 0 0

Table 2. Comparison results for ℵ(ω) = ω exp(ω2)− sin2 ω + 3 cos ω + 5.

Methods ω0 IT ωm ℵ(ωm) δ

NM −1 6 −1.2076478271309189270 4.0× 10−19 7.58× 10−17

AM −1 5 −1.2076478271309189270 4.0× 10−19 0
HM −1 5 −1.2076478271309189270 0 0
CM −1 6 −1.2076478271309189270 4.0× 10−19 0
ALG −1 5 −1.2076478271309189270 4.0× 10−19 0

Table 3. Comparison results for ℵ(ω) = 10ω exp(−ω2)− 1.

Methods ω0 IT ωm ℵ(ωm) δ

NM 1.8 5 1.6796306104284499407 −9× 10−20 4.7395× 10−15

AM 1.8 4 1.6796306104284499407 −9× 10−20 1.0× 10−19

HM 1.8 4 1.6796306104284499407 −9× 10−20 0
CM 1.8 4 1.6796306104284499407 2.0× 10−19 0
ALG 1.8 4 1.6796306104284499407 −9× 10−20 0

Table 4. Comparison results for ℵ(ω) = exp(−ω) + cos ω.

Methods ω0 IT ωm ℵ(ωm) δ

NM 2 5 1.7461395304080124177 6.0× 10−20 1.0× 10−19

AM 2 4 1.7461395304080124177 −6× 10−20 1.0× 10−19

HM 2 4 1.7461395304080124177 6.0× 10−20 1.0× 10−19

CM 2 3 1.7461395304080124177 −6× 10−20 4.63× 10−17

ALG 2 4 1.7461395304080124177 −6× 10−20 1.0× 10−19
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5.3.2. Basins of Attraction

In this section, we discuss the basins of attraction for Algorithm 1. We apply our
proposed method to R×R = [−2, 2]× [−2, 2] with a grid of 500× 500 points, employing a
tolerance of |ℵ(ωm)| < 1× 10−10 and a maximum of 20 iterations. Additionally, we present
graphical representations of the CPU time consumed to generate the basins of attraction
per iteration. For this analysis, we consider a famous problem involving finding the roots
of ℵ(ω) = ωm − 1. We consider m = 2, 3, 4. Figures 4–6 gives the visual analysis of basins
of attraction for ℵ(ω) = ω2 − 1, ℵ(ω) = ω3 − 1 and ℵ(ω) = ω4 − 1 and also CPU time
consumed to generate the basins of attraction per iteration respectively.
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Figure 4. (Left) Basins of attraction for ℵ(ω) = ω2 − 1. (Right) CPU time consumed to generate the
basins of attraction per iteration.
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Figure 5. (Left) Basins of attraction ℵ(ω) = ω3 − 1. (Right) CPU time consumed to generate the
basins of attraction per iteration.
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Figure 6. (Left) Basins of attraction ℵ(ω) = ω4 − 1. (Right) CPU time consumed to generate the
basins of attraction per iteration.

6. Conclusions

In conclusion, this research paper presents a novel extension of a parameterized
identity. By utilizing this identity, some parametric inequalities for differentiable s-convex
mappings through the use of generalized fractional integral operators are obtained. The
derived Simpson’s, midpoint, and trapezoidal-type inequalities, incorporating different
integral operators and parameters, serve as additional contributions to the existing literature
on this topic. We also discuss the applicability of the main results to means of real numbers
and in numerical analysis for solving non-linear equations. The graphical analysis provided
in this paper further supports the importance and practical relevance of our findings.
The results of this research paper could potentially have applications in various areas of
mathematics, physics, and engineering. The extension of the proposed iterative method to
systems of equations could be an interesting future research problem.
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