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Abstract: The present investigation aims to establish the existence and uniqueness of solutions for a
system containing sequential fractional differential equations. Furthermore, boundary conditions
that include the Riemann-Liouville fractional integral are taken into consideration. The existence
of unknown functions, fractional derivatives, and fractional integrals at lower orders are necessary
for the nonlinearity to exist. In order to provide proofs for the results presented in this study, the
Leray-Schauder alternative and the Banach fixed-point theorem are utilised. Finally, examples are
used to support the main results.
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1. Introduction

In this article, we examine the system of sequential derivative-containing nonlinear
Liouville-Caputo fractional integrodifferential equations (LCFIE):

(‘D + 4 D9 7NG(T) = 91 (7, G(7), T (7), DT (1), I (7)), T € (0,1), 1)
(‘D2 + 1D )T (1) = ¢1(1,G(7), T (7),“DP2G (1), I2G(1)), T € (0,1),
and it is enhanced by coupled Riemann-Liouville integral (RLI) boundary conditions:
G(0) =0, '()—0 g'(1) = 1
5
g(l) = f F(U) g dU+f0 71-(3 j(U)dU, (2)
g =0, J'0)=0, J'M)=0,
v)°® )i
J(1) = f” ”F<g) dv+f0 Tj(v)dv.

Here, g1, 62 € (3,4], A1, x1 > 0,91, 92,91, 92 > 0, “D¥ represents the Liouville-Caputo
fractional derivative (LCFD) of order x (for x = gl, 62,62 — 1,61 — 1,p1,p2),
@1,¢1: [0,1] x R — R, are continuous functions, and Z!, denotes the fractional RLI
of order v (for v = qy, q2, v, 3). Given certain assumptions on the functions ¢ and ¢1, we
aim to establish the existence of at least one solution for Problems (1) and (2).

In the subsequent section, we will provide an overview of some scholarly articles
that are relevant to the issue at hand. The concept of SFD D¢, where « is a positive
integer, is introduced in the monograph authored by Miller and Ross [1] on page 209. The
publications [2,3] provide an explanation of the connection between sequential fractional
derivatives (SFDs) and non-Riemann-Liouville SFDs. The authors in Reference [2] studied
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the existence of minimal, maximal, and unique solutions to an initial value problem (IVP)

involving the RLSFDs D(z]i, ¢ € (0,1], where an is a value within the interval (0, 1]. The
researchers employed the upper and lower solutions approach in conjunction with the
accompanying monotone iterative method. In their study, the authors in Reference [3]
investigated the existence of a solution for a periodic boundary value problem (BVP).
Specifically, they examined a problem involving an RLSFD Dgi, ¢ € (0,1]. To analyse this
problem, the writers employed the upper and lower solutions approach along with the
fixed-point theorem of Schauder’s.

In Reference [4], the author demonstrated the existence of solutions for a nonlinear
impulsive fractional differential equation (FDE) with RLSFD. These solutions were subject
to periodic boundary conditions and were obtained using the monotone iterative method.
The nonexistence of solutions in the function space £7((1, ), R.) for an IVP that includes
linear sequential fractional differential equations (SFDEs) with a Riemann-Liouville deriva-
tive and a classical first-order derivative is examined in Reference [5]. In Reference [6],
Klimek demonstrated the existence and uniqueness of the solution for a certain category of
nonlinear Hadamard SFDEs. This was achieved through the application of the contraction
principle, with the inclusion of a set of beginning conditions that incorporate fractional
derivatives. In our study, the term “sequential” refers to the property of the operator
(DS + ADS™1), being expressible as a composition of the operators DS~ 1(D + ), where
D represents the ordinary derivative.

Ahmad and Nieto [7] introduced this particular operator in their study on the existence
and uniqueness of solutions for the Caputo SFDE. In Reference [8], the authors demon-
strated the existence of solutions for the sequential integrodifferential problem through
the application of methods derived from fixed-point theory. The authors in Reference [9]
conducted a study on the presence of solutions for the sequential Caputo FDE, incorporat-
ing boundary conditions that encompass a fractional integral of Riemann-Liouville nature.
In their study, the authors of Reference [10] demonstrated the existence of solutions for a
sequential fractional differential inclusion of the Caputo type. The boundary conditions of
this inclusion encompass a fractional RLI. The authors of Reference [11] derived multiple
results pertaining to the existence and uniqueness of the SFDE of the Caputo type. The
authors of Reference [12] demonstrated the existence of solutions for SFDEs with nonlocal
boundary conditions. The authors of Reference [13] derived existence results for solutions
of the Caputo fractional sequential integrodifferential equation and inclusion. The existence
of coupled systems of FDEs is prevalent in various practical applications, particularly in
the field of biosciences (see [14] and its associated literature). In the following discussion,
we will outline several fractional systems that are relevant to the topic at hand, denoted
as (1) and (2). The authors of [14] employed the Banach contraction mapping concept and
the Leray-Schauder alternative to establish the existence and uniqueness of solutions for
the nonlinear system of Caputo-type SFDEs. The authors of Reference [15] presented a
study where they established the existence of solutions for a system of nonlinear coupled
differential equations and inclusions. These equations involve Caputo-type sequential
derivatives of fractional order. The authors employed techniques developed from fixed-
point theory to achieve this result. The work done by the authors of Reference [16] focused
on investigating the presence and stability of a tripled system of SFDEs while considering
multipoint boundary conditions. The authors of Reference [17] presented a study whereby
they established the presence and durability of solutions for three nonlinear SFDEs with
nonlocal boundary conditions. The authors of the cited Reference [18] obtained conclusions
regarding the existence of solutions for a coupled system of nonlinear differential equations
and inclusions that incorporate SFD.
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The authors of the aforementioned study [14] successfully derived existence results
for the solutions of a system consisting of Caputo FDEs,

(D1 + A DG () = f(T,6(T), T (7)), T € [0,1],
(‘D2 + 11D ) J (1) = 9(7,G(x), T (7)), T € [0,1],
G(0) =G'(0) =0,G(¢) = aZPG(y),
J0)=7(0)=0,7(z) = bZ" T (),

®)

where ¢1,62 € (2,3], A, x1 > 0,87 >0,0<8<z<1,and0 <y < { < 1. Itcanbe
observed that Boundary Conditions (3) indicate that the value of G at the point ( is alone
determined by the function J, while the value of J at the point z is only determined by
the function G. The dependence of G(1) and J (1) on the functions G and 7 is evident in
our Boundary Conditions (2). Furthermore, inside our System (1), the nonlinearities ¢4
and ¢, exhibit a dependency on certain differential and integral terms, but in (3), no such
dependency is found.

The authors of Reference [19] established the existence and uniqueness of solutions
for a system of Hadamard-type SFDEs, including nonlocal coupled strip conditions

(HD + L HD NG (1) = (1, G(x), T (v), HD" 7 (1)), T € [0,1],
(HD? 4 1D 7 (1) = (7, G(1), HDPG(x), T (1)), T € [0,1],
G(1) =0,G(e) = "T7G(y),

J(1)=0,T(e) = HIF T (1),

4)

where A1, x1 > 0,61,62 € (1,2], p1,p2 € (0,1), v > 0,7, € (1,e), and B > 0. It is clear
from the Boundary Conditions (4) that the function [ alone determines the value of G
at the point ¢, whereas the function G solely determines the value of J at the point e.
The dependence of G(1) and (1) on the functions G and J is evident in our Boundary
Conditions (2). Furthermore, inside our System (1), the nonlinearities ¢; and ¢, exhibit a
dependency on certain differential and integral terms, but in (4), only differential terms
are found. Moreover, within our computational Systems (1) and (2), we employ LCFDs
and RLIs. However, in the context of Problem (4), Hadamard fractional derivatives and
integrals are employed.

Subramanian et al. [20] conducted an analysis on the existence results for a system
of coupled higher-order fractional integro-differential equations. These equations were
subject to nonlocal integral and multi-point boundary conditions, which were dependent
on lower-order fractional derivatives and integrals:

‘DG (1) = (1, G(7), I (1), DM T (1), I7 T (7)), T € [0, T],
‘D27 (1) = 8(1,G(7),“ DG (7), I%G(7), J(T)) T€[0,T],
G(0) =¢i(J), Q'(0)=el 0" T (0)d6, G"(0) =0, -+, G"2(0) =0,
G(T) =\ fo deﬂllzf T (9), ®
J(0) = ¢2(G), T (0) = e [32G'(6 >d6, J"(0)=0,---, J"2(0) =0,
J(T) = g(o )d9+V22f w;G(9;)-

The nonlinearity is dependent on both the unknown functions and their fractional
derivatives and integrals at a lower level. The consequence of existence is derived by the
use of the Leray—Schauder alternative, whilst the result of uniqueness is established by
employing the concept of a Banach contraction mapping.



Fractal Fract. 2023, 7, 800

4 of 25

The authors conducted a study [21] to examine the system of sequential Caputo
fractional integrodifferential equations

(D + 1D NG (T) = §(T, G(1), T (1), I1G(7), TP T (1)), T € (0,1),
(‘D9 + 1D ) J (1) = 9(7, g( ), I (T )I‘W( )I‘*ZJ( ), T€(0,1),
G(0)=¢'(0)=0,6'(1)=0,6(1 fo s)dH1(s) + [y T (s)dHa(s),
J0)=70)=0,7(1)=0,7(01 fo $)dK1 (s +f0 (s)dKa(s),

(6)

where ¢1, 62 € (3,4], A1, x1 > 0, and p1, p2, q1, g2 > 0. In the last conditions of (6), they have
the Riemann-Stieltjes integrals (RSIs) with bounded variation functions H1, K1, Hp, K.
Additionally, the nonlinearities ¢ and ¢, in our System (1) depend on certain differential
and integral terms, but in (6), there are only integral terms. Moreover, within our com-
putational Systems (1) and (2), we employ LCFDs and RLIs. However, in the context of
Problem (6), CFDs and RSIs are employed. Another important difference between these
two problems is given by the following conditions: the value of unknown functions with
the right end point 1 is proportional to the sum of RLIs of unknown functions with different
strip lengths (0,7), (0,) in (2), but in (6), the value of unknown functions with the right
end point 1 is proportional to the sum of RSIs of unknown functions with the same strip
lengths (0,1).

The structure of the paper is organised in the following manner. In the second section,
we analyse a linear fractional BVP that is connected to our Problems (1) and (2). Section 3
focuses on our primary results regarding Equations (1) and (2), while Section 4 provides
two illustrative instances that demonstrate the results of our research. At last, the results of
our research are presented in Section 5 of this study.

2. Preliminaries

First, we outline some basic concepts of fractional calculus.

Definition 1 ([22]). The fractional order of RLI ¢ € R.(¢ > 0) for a locally integrable, real-valued
function X on oo < a < b+ oo, denoted by Ts(s), is defined by

T6x () = [ ! (5}(2);12«5)@,

and the Gamma function is represented here by I'(-).

Definition 2 ([23]). The fractional order of the Caputo-type ¢ for an (r — 1)- times absolutely
continuous function X : [a,00) — R, is defined as

5G9 Ly
cPDS — M 77 x\r _ —
Dex(s) = | o X s r 1< < =41

where the integral portion of the real number ¢ is denoted by [¢].

3. Auxiliary Results

This section focuses on the investigation of linear FDEs.

{(cm + DG (1) = by (1), T € (0,1), -

(°Ds2 +X16Dg2_1)j(T) =bha(1), T€(0,1),

which are supplemented with boundary condition (2), with hy,h, € [0,1]. We denote
these by
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Ql 1 (1 _ e—)\l) 02 — i(Z)\l _ 2_|_e—/\1)
/\1 7 /\% 7
D= S (1—e M), Oy = —5 (2 —24¢1),
X1 x1?
_ 1 (g —v)°t -
- _ Ay U—v) _ Ao
s A%[(Al 14eM) /O IR BY L]
1 — (g —v)°t A
Qg = —[(A2— 27, +2—2eM f/ V= Y)7 " (A202 2010 4 2 — 26MY)du],
0 = e )]
1 ((—v)t -
0 :7/ v—14e %) dy, ®)
A S TG )
e -vpt 5, -
0O L V- —2x10 + 2 — 21 dy,
8 — X] F(j) (Xl X1 )
_ 1 (11 v)n ! 7/\117
09 — /\%/ W()\lv_l_Fe )dv,
1T (p—v)?t 5, A
0O :—/ (A7 —2A0 + 2 — 21V,
1 _ 1 (5 (g—v)pt -
On=— —1—|—e"—— 2 (x1v — 1+ e MY)dy,
=z )~ %2 G W )
1 1 S (g—vpt 5, -
O = —2x1+2—2¢ %) — — -~ v- —2x10 4+ 2 —2e”X1%)dy,
12 = oK (Xl X1 ") x1® Jo rG) (x1 X1 )

B 1 A () v (v —3)91‘2 B 1 (1— U)g1—2
T =M /0 e /0 Tl -1 bl(e)ds)dv ./0 7F(g1 Y h1(v)do,

€

_/Ol M) (/Ov(lli(;e)_gl_)zhl(e)ds)dv, ©
St (e () eyt )
/ —Xm,(/o vge_@lz (@ ) o,

A1 =(0205 — 0106) (11 — Q3Q2) — (29 — Q1 04p) (7 — Q30),

A =004,

Lemma 1. If A # 0, then the solution (G, J) € (C*[0,1])? of the BVP

{(C'Dgl + /\1C'D9171)g(7) =b1(7), T€(0,1), (10)

(°Ds2 —I—)(chgz_l)j(T) =bhy(1), T€(0,1),
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supplemented with the boundary conditions
G(0)=0, G'(0)=0, G'(1) =
G(1) = Ji UG w)dv + ff @;”;j’lﬂv)du, o
11
J( )—O J'(0)=0, J'(1)=
n 1 —v -1
fo n) )dv+f0 gr(;; J (v)dv,
is given by
4 T v (v—g)1?
Gg(t)=)Y @,(1)I; + eM(T”)< by (e ds)dv
(0= %+ | | Fe »
T v (p—g)s2—2
_v4 ) : —x1(t—v) 7@ £)
(1) = T4 ¥i(0T + /0 e ( /O S bz(s)d£> dv,
where
Di(1) = 3 (A)(MT—1+e M) + %(@ Y(A2T2 20T +2 - 2e7M7), i=1,2,3,4.
! 1
(13)
(1) = L (@) 0T~ 14007+ %(Yi)(;&# oyT42—2eMT), i=1,2,3,4
1
Proof. The system denoted as (10) can be expressed in the following manner
(‘D + M DEHG(T) = bi(7), T € (01), 1)
(°DS2 + x1°D2 1) J (1) = ha(1), T € (0,1).

The general solutions of system (14) are

G(T) =cpe ™7 + /c\—l(l —eMT) 4 - (/\11 —14+e M)+ %(A% 2 20T +2 - 2e7MT)
1

AL

+/ e~ M(T—v (/O (Ili(;lg)_gll)z hl(e)d€>dv

T (T) =0pe M7 %(1 —e )+ 22 (T — 14 e ) 4 ;3
1 1

X ?()ﬁzrz —2x1T+2 —2e7117)
T v (p—g)s2—2
+/O e~ Xl )</o (F(Qz)—l) hz(s)dez)dv

Using the BCs G(0) = G'(0) = 0,J(0) =
¢g = ¢ = 0and 0¢g = 07 = 0. Hence, we infer

G(1) = BT—1+eM) + (A
1

o[l ([ (“(:)_“1)2m<e>ds> v

J(@) = B(ur—1+ew7)+

— 2T 42— 2e7MT)

()(1 T2 = 21T +2 — 27 17)

+/0Te*7‘1(f*“) </0 (Ili(;;)_gzlfhz(s)%)dl’

The following is determined by differentiating system (15):

J'(0) = 0 from (11), we derive that

(15)
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g,(T) = %(Al — )\16’_/\11—) + %(2}\%1’ —2A + 28_/\1T)
T
1

— )12
T—v) h1(v)do,

—Ay Jfemmlr=o) ([0 LoD Dy (o) d
o€ (5 e U+/ T(-1) (16)

J'(t) = *22 (x1— x1e707) + 7%13 (2x1%T — 2x1 + 2x167117)
T v _ 2)\62—2 _ (;2 -2
- Sl A Gl i / L
X1/O e (/O T(ca—1) ha(e dS)dU—l— Tlc—1) ho (v)dv.

We acquire the following expressions by demanding the constraints, namely

G'(1)=J'(1)=0,as

U (p_ )61-2
;\21 (1—e*A1)+%(zA§—2+2eW) = M /01 e~M(1-0) (/O (I‘f(glg)fll)hl(s)ds>du
1
1(1—-v)a1—2
Y B S A dv,
/0 T —1) b1(v)dv )
1 v _ ¢)62—2
B0+ Bop -2+ 2ne ) = g [ entoo ( [TEZI 2 e
1(r—v)s22
_/0 71,(&_1) ha(v)dv.
Now, using the last bounda ditions from (2 \ ! M d
, using ry conditions from (2), nameyg( ) = (U) G(v)dv
U
+f0 Fa (v)dv and J(1) = /0 (m—v)"" (n dv—i—/ (v)do,

we deduce

_ v—1
[Az[()\l—ue 1)—/07](;71,(?)()“1)—14-6_)‘1”)110}]

1.2 N 1(p—v)"t Ao
+¢3 A?[(Al_ZAl +2—2e )_/0 W()\l —2A 0 42 — 2eMY)dv]
3—1
{12 4 F(l;)) (x1v— 1+e"““)dv}
3—1
{ e Fl;)) (x1*v* —2x1v +2 —26_"1“)111}],

— )¢ 2
/ p—M(1-v ( O ;gg—ll )ds)du,

L1 (g—v)*! A
Q[)‘?/O M (Mo =1+ e M)dv

.\
o [13 /0’7%(/\10 —2/\1v+2—262‘1“)dv] (18)
1
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+0 [1(;1 —14e ") — 1 /1()(10 —1+eX1%dv
xi? x1% Jo
RN YRS S LN (k) LN WO p—
+ 03 [X13 (x1°—2x1+2—2¢7#) b G) (x17v° —2x1v+2—2e Ydu|,
_ [ (77 — U)D_l /U —A1(v—e) € (8 — m)gl—Z
—/0 To) A e ./0 e —1) h1(m)dm |de |dv
(e ([l
—|—/ = / e v 8)</ —_— mdm)da)du
o e\ ) Fe-1 2™
1 ) o 92—2
Y / (V=) )d _ 19
[ emto ([ L e o (19)
Therefore, by (8), (9), (17), and (18), we find the system in the unknowns ¢y, ¢3, 0,
and 03:
Qe+ ey =14,
0307 + Q403 = 1, (20)

Qs + Ogez — Q700 — Oges = I,
—Qgcr — Mgez + Q1102 + Qqoe3 = 1y

By solving the first two equations of (20), we find ¢z = % and 03 = %,
2 2

(2, Q4 > 0). Plugging these values of ¢3 and 03 into the last two equations of (20), we

arrive at the system that is given below, including the unknown parameters ¢, and 9:

{t204(0205 — 0106) — 0202(0407 — O3Q08) = 0O T3 — V06T + 0T, 1)

=204 (09 — 01 0yg) + 020 (1 — D3Qp) = WO Ty + V04T — O Do
The determinant of system (21) is denoted as A = (2()4A1, with A; being determined

by (9). According to the assumption made in Lemma 1, A1 # 0, thus resulting in A = 0.
Consequently, the solution to system (21) is as follows:

Q

© ZXZ{Il [— 0406 (04011 — Q3012) + QOp(Qs Q7 — Q30))]
+ o[ Q8(04011 — O3Q12) + D012 (407 — Q30))]
+ L3004 (04011 — Q3O012) + Tu0n 0 (4 Q7 — 030) },
= NI+ Ny + ATz + Ayy,

O

[ Zf{zl [—4010(2205 — 0106) — 0 (QO9 — Q010p)]
+ L[~ 012 (005 — O1Q%) + 008 (09 — O Qyp)]
+ 3004 (0209 — 010yg) + 240004 (005 — Q) },
= E170 + Ep75 + B3T3 + By Ty,

Hence, we can determine the values of the constants ¢3 and 03 as

1
Q3 :@{110204[(0205 = M0106) (401 — 012) — (D209 — O10) (4 Q7 — O30s))]
— T D [ 406 (4011 — 03012) + Q3010 (Q4 Q7 — O303))]
— DO D [ 08(04 011 — 0302) + D15 (Q4Q7 — 0303)]
— T30 Q304 (011 — Q3Q1) + Zi0 Q3015 (QQ7 — 0303)
=0171 + Oy, + O313 + O41y,
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Ti(G, T)(7)

1
03 =m{—f10304[ﬂ4010(0295 - 01Q6) — Q406 (D209 — Q1 Q)]
— D00 [(005 — 010%6) (O — N3012) — (D209 — Q101p) (7 — O30)]
— O304 [ 0012 (0205 — Q2106) + D Qg0 — 01 (Qyp)]
— T30,0503(M 09 — O Q1g) + Z400505(0205 — 0104},
=Y171 + YoZy + Y33+ Y414,

1
N = A [— Q6 (011 — 03012) + Q10(QQ7 — Q30)],
o 0 O
Ny = Kf(Qgﬂll - 0), A3 = Kf(04911 - M0n), Ay= ff(0407 — 00s),
- _Q = 1
B = TT(QSQm —06), Ep = E[*Qu(QzQS — Q%) + Qs(2 — Qo).
Bs = ff(0209 —MOy), By = ﬁ(0205 — M), (22)
1
01 = 3-[~05(Q4011 — 0301) + Q940 — %0)],
M

Q Q
E(*QSQH +0705),03 = ?;(03012 —00q1), 04 = ?11(0308 - 0,07),

(@] 1
Y, = ﬁ(0699 —050qp), Yo = Afl[Qu(QzQs — 0106) + O7(00Q9 — 01 0q)],

Qs Qs

Y3 = = (0110 — MWOy), Y4 =-"(D1Q6 — 00s5),
Ay By

where A1, 5;,0;,Y;,i =1,---,4 are given by (22). Upon substituting the aforementioned constants

¢, 02, ¢3, and 03 into System (15), we can determine the solution to Problems (2)-(7). Conversely, the

reverse of this result can be obtained through straightforward computations. O

Next, we introduce the Leray—Schauder alternative, which will be employed in the
proof of the existence of solutions for Problems (1) and (2).

Theorem 1. Let £ be a Banach space and ¥ : £ — £ be a completely continuous operator. Let
p1={le & 1=v¥(l) for some 0 < v < 1}. Then, either the set ¢y is unbounded or ¥ has at
least one fixed point.

4. Main Results

We consider the space U = {G € C(C[0,1],°DP2G € C(C[0,1]} and
Q = {J € C[0,1],°D"J € (CJ[0,1]} to be equipped, respectively, with the norms
1G]l = 1|GI] + [[°DP2G|| and || T [|g = [|T|| + [[*DP1T||, where [[ - || is the sup norm;
that s, ||w]| = SUPc(o1 |w(7)| for o € C[0,1]. The spaces (U, || - ||y7) and (Q, || - || o) both
constitute Banach spaces, and when we consider the product space U x Q equipped with
the norm [[(G, J)|luxo = |9lu + 11T || g, it also forms a Banach space.

Implementing Lemma (1), we introduce the operator 7 : U x Q — U x Q defined by
TG, JT)=(T(G,T),T2(G,T)) for (G, TJ) € U x Q, where the operators 71 : U x Q — U
and 7; : U x Q — Q are given by

—on(an [0 ([ Lo g (60,9 (0, D7 (0,79 7 () e

I'(gi—1)

1 (1- U)g172 cpp
- [ (1,60, (0, D7 T (2, 20T () )|

+an(o) i [ et ([ L=92 %, 6(r), 7 (1) “DPG(x), %G () (e)de ) o

I'(c2—1)

1 (1 — U)g272 c 2 2
- [ 2 000, 5 (0, D76(0), TG (o) o
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}7(77_0)071 v 1(v—e S(S_m)g172
+q>3(r)M o) (/OeM ></0 ey

X ¢1(1,G(7), J (1), "D I (1), 27 T (1)) (m)dm> ds) "

¢ (670)3_1 vo_ 1(v—¢ ¢ (gfm)g2_2 c 2 2
+./O 0 (/0 Pl >(/O o o) (© (0.9 (1), PRG(x), 7° Q(T))(m)dm)ds)dv

: v (v —g)e12
- [ ([P C e w0, 52, D g (), 7 J(r))(s)de)dv}

1 (77 _0)071 Vo 1(v—e ¢ (s_m)g]72
+¢4<T>M m—a (/OeM ></0 o

x ¢1(7,G(7), I (1), DI (1), I% J(T))(m)dm) de) dv

+ [ & ‘F(?)"”l ( [ et ( I %@(ng(rw(r),CDPZQ(r)JW(r))(m)dm) de) dv

~ [emo (f Lo (w6, 7(2), DY), TG(x)) (e)de dv]

I'(c2—1)

# [l ([ 060,50, PRI (@, 70 T () e v,

T2(G,T)(7)
=@ [0 ([ B g 60,50, DM T (0,7 T () e)de ) ao

1(1-v)—2 .
7/0 F(Ql _ 1) ng(T, g(T)/ j(T), ’Dp]j(’[),zq]j(‘[))(v)dv}

v (v—eg)s22
w0 [ et ([T QO S (5,60, 7(0), D700, 126 (0) (@) ) o

1(1—p)e22 cmp
(60,9 (0, D76 (2), TG (1) ()|

1 (77 — U)071 v 1(v—¢ ¢ (s_m)@*Z
+w3<f)[/0 = (/Oew ></O o

x ¢1(7,G(7), I (1), DI (1), I% J(T))(m)dm) de) dv

+ [ & ‘F(?)"”l ( [ et ( I %@(ng(rw(r),CDPZQ(r)JW(r))(m)dm) de) dv

v (v—eg)12
- [lemom( ) (r(gl)fl)qn(r,g(r),J(r)f@mJ(r»quj(f))(e)ds)dv}

U (77 71))0_1 vo_ 1(v—e € (Sfm)gl_z
e <./o . )</o e —1)

x ¢1(7,G(7), I (1), D J (1), 1% T (7)) (m)dm) ds) dv

R ([ e ([ 2wt 0t 205

B /01 e—xi(1-v) (/OU (v—g)5272 1(7,G(7), j(T)’CDng(T),qug(T))(S)d£> dv]

+ ¥y (7)

I'(ga—1)

T v (p—g)62—2
+ /0 e_X‘(T_”)( /0 %(])l(r,Q(T),J(T),”D"ZQ(T),IqZQ(T))(s)de>dv.

(23)
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The pair (G, J) constitutes a solution to Problems (1) and (2) when it serves as a fixed
point of the operator 7. Let us now outline the assumptions that have been employed in
this section.

1. [H1] The functions @1, ¢, defined on the domain [0,1] X R, X Re X R, X R, — R,
are continuous. Additionally, there exist real a;, b; > 0,i =1,2,3,4and ap > 0,by9 > 0
such that

lo1(T, 11, 2, 13, 4)| < ag + aq|li| + az2|l2] + a3l3| + aa|l],
|p1(7, 1, 1, 13, 1) | < b+ bq|l1| + b2|lp| + b3|l3] + by|ly],
forallt € [0,1]and I; € R,,i=1,2,3,4.

2. [Hp] The functions ¢1,¢1 : [0,1] X R, X Re X R, X Re — R, are continuous and
non-negative constants 20y > 0, £ > 0 such that

lp1(T, 11, 12,13, la) — @1(T, 01, np,m3,14) | < Wo(|lh —ng| + [ —no| + |3 —ng| + [lg — nyl),
|p1(T, 10, 1, I3, 1) — 1 (T, mp,m3,14) | < Kol —ng| + [ — o] + |3 — ng| + Iy — ng)),

forallT € [0,1] and [;,n; € R,, i=1,2,3,4.

Q1) = L(A)(1—Are™™) + %(@0(2)\1 —242eM), i=1,2,3,4.
1

N 1 (24)
Yi(r) = %%(51‘)(1 —x1e M) + /Ti,(Yi)(zXl —2+4271), i=1,234
We &; = sup, (o 1) |®i(T)|, ¥i = sup o [¥i(T)| fori =1,2,3,4.
Uy :61(21:(;;1) +d; [(il}e(gj;) + A%f(;;;(n) (A +e M1 — 1)1
+ &, (2\%7,?;;;@(/\177 e Ml — 1)) + m,
e +5-1
+& [(;11“6((;3) " lelfzg;f(é) (g -+ et - 1)}'
A :\Fl(zf_(:';)h) ts (;;Fe(:;) * A;(;;;(n) (A +e7h - 1)]
+¥, (%(Am +e M — 1)),
Az —‘?2(2;(22;1) +¥; <2612€;2(Z)11"(3)(X1€ +e M6 1))
e -1 .
+@4[(1(1T€(€S) " Xlzglfz(zz)F(é) fag e - 1)} " (;1;(@;1),
e e
U _@,,z(zr—(;ﬂ) &3 (%mme—m - 1)) (25)
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(1 —e 1) goata—l B }
+d + +e Mt —1)],
4{ Nl | xRl MeTe )
o (2—eM) (1—eM) per+o—l -
A* :11;/ ( + A + M _ 1
T T ) MEe) R M :
¢1+o—1
cay (T e ),
4(A%r<g1>r<n>< K )>
* 3/ (2 _ e_m) i/ < CQZ—H’ ! )
Ay =¥+ ¥ (e M 1
2= gy T\ erere )
(1 —e A1) geats—1 B } (2 —e 1)
+¥ + fe Ml —1)| 42
4[ xil(c2)  x1%I(62)T(3) g e ) I'(g2)
ur A
N =U + A+ 1 __ 4 1,
T T2 =) T T2 )
Uus A3
No=Up + Ay + =2 2,
2T TR T2 —py) T T(2-p)
N3 = agN7 + bg N,
b3
N4 = a1N1 + (b] + [12 + F(q-Fl))NZI
N5 = (Clz +az + w)./\ﬂ + bg Ny,
I 1
R S R (S
Theorem 2. Assume that H, holds. If
max{Ny, N5} <1, (26)

then the BV Ps (1) and (2) have at least one solution (G(7), J (7)), T € [0,1].

Proof. We begin by establishing that the operator 7 : i x Q — U x Q is a completely
continuous (c.c.) operator. The continuity of the functions ¢; and ¢; allows us to in-
fer that the operators 7; and 7, are continuous as well. Consequently, 7 emerges as a
continuous operator.

We proceed to demonstrate that 7 is uniformly bounded. Suppose we have a bounded
set I1 C U x Q. In this case, there exist positive constants £ and £, such that

l91(7,G(7), T (1), D J (1), I T (1))| < Ly,
91(7,G(7), T (1), “DP2G(1), 112G (1))| < L.

forall (G,J) € ITand T € [0,1].
Then, for any (G, J) € ITand 7 € [0, 1], we obtain

1 71(G, T)(7)]

b [[emeo ([ e 606,900,077 (0, 20 7 ) e o

—11(7) e

(1—U)51 -2 cTyP1 1
[ 10 (0,60, T 0), D T ), T T () o]

s oa()l [ [ om0 ([T U0 6,600, 76, DG e), TG0 e )

[ 0,600, 9 0), D60, 796 0) ]
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_ ,\v—-1 v € —m)s1—
—|-|CI)3(T)| [/017 (77 1"(1;)> </0 e_)\1(v—s)</0 (?(gl )_gl

)
X |p1(m, G(m), T (m), D1 T (m), 29T (m)) |dm> de
(

2
dv

—105 7)g2—2 “DP2G(m 2G(m m
x ( ﬁwl(mg m), 7 (m), “DP2G (m), TG (m)) d )de)dv

(A
( / v—c¢) |(P1EQ()j(s),CDplj(S),ImJ(s))|d£> dv]
(n—

el

|1 (m, G(m), J(m),CD’“lJ(m),IW(m))Wm) d£> v

+/0€ @}(?;1 (/Ovem(”) </0 («;(gz‘t) . |1 (m, G(m )j(m),cDPZQ(m),Iqlg(m))|dm>d£>dv

# [lenoco ([0 e gte), J(e)wng@)zng(e))ds)dv]

21

I'(g2— )
[ ([0 06060, 510, DM (0, T T @) e,

1)
—e A .
gﬁl{@@ew &,

(1 _ ef’\l) N Ug1+nfl
I'(¢1) MI(g1)  A2I(g1)I(v)

(i) ;7§1+U*1 (/\ 7/\117 1)
+ &y G (M e M —
A\ R2r(e)r(e)

(a4 M7 — 1)]

L (2—eTX) ( ggzﬂrl il )
4 Lpdyi ) e _(i+e b1
2{ > Tle) ’ Xlzf(gz)F(é)(X1§ ‘ )
. [(1—e 1) ge2ts-l ol ]}
+ @ + +e Mo —1 27
4{ xil(c2) — x1*I'(c2)I'(3) bt +-¢ ) 7
0
+ T it Rt
Then, ||T1(G, T)|| < L1l + Lolhy, for all (G, T) € T1.
By examining the definition of 77(G, J ), we can observe that
177(G,T)(7)]
1 _
“fof(ol|[a [0 ([ g0 6(e), 76, DM 6, 20 e)ae o

of) (;(gf)gl )2|<o1<v G(0), 7 (0), DT (0), 70 7 () o

+[@5 ()| x

it < 0 Ili_s |4’1 &,G(e), J(S)/CDFZQ(S),IqZQs)IdE>du

.\ /01<1—>€2)2|¢1<u 6(0), () DG ), %G 0)lao]

F(Gz
(1 —v)*"! /ﬂlw /e m)e1 2
I'(v) 0 0o I'(gi—1)

+|@5(t )
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|p1(m, G(m), J(m),CDplj(m),Iqu(m)ﬂdm) de) dv

[ —l;"’ 1( [ et ( /Osmmw G(m )J(m)f@ng(m)/fng(m))|dm>d€>dU

o [feman( [ ez )m(e g(>J<e>,cz>w<e>,quj<e>>|de)dv] 28)

/ 7 (g —v)°! L ¢ (g —m)s12
+|<1>4<r>|[/0 W(/O . ></Om
|p1(m, G(m), J(m),CDplj(m),Iqu(m))Mm) ds) dv

s [FETE (enteo ([ g ), 7 (), DG ), 202G ) ) e o

+ / e r(-e ( I le(s g(e), j(s)f@mg(e»zng(e))ds)dv]

s [l ([ LI g 0,6(6), T (6), DM 0, 70 e)de ) o,

(g1 —1)
<£1{ (21“—(61_)A1)+<1> (L—e™h)  porto

MI(¢1)  A3T(g1)I(v)

]7§1+U 1 7/\117
-1
(AZF ()l My te )

2-—en) & geatsl o
{ <X12F(g2)F(3) fag+emme - 1))

(A e~ 1)]

{ (1—e A1) geets-1 (0l . 1)]}
+d +e Mv—
X1T 92 X12F(€2)F(3) u

1-—
4 51( ) = LaU] + Lol .

MF( 1)

By considering the definition of the Caputo fractional derivative of order p, € (0,1),
we can infer that

T (T _ v)*Pz

dv,
I'(l1—ypo)

DTG, (0 < [T TG, Dl < (s + 224 |

(e + La1t)
- I(2-p)

from which we obtain

, VTelo,1],

(Ll + Loly)

IPRTG, DO < —F 53—

, Vtelo1].

Hence, we conclude

TG, Dllu =T (G, D + 1P TG, T,
(LU + Lolhy)

<Lyl + Lolhy +
<Lilh 2l T2—p)

(29)
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In the same way, we obtain

2—e™M) (1—e™M) n perte-t
I'(61) MI(g1)  A3T(g1)I(v)

¥, ¥,
1+U 1
App e M7 —1)

2—em) BESD A geats—1
3(7(121“((;2)1“(3)
(1—e X1) geats—l .
[ xiT(62) XlzT(GZ) (3 )(7(1§+e ' DH
(1—e M)
xiT(g2)

122(G, ) (7)] <A {

(Ayrg + M — 1)]

(g +e 0t -1))

+ Ay = L1A1 + Lo A,

/ o (2— e_Al) (1-— e_)\l) ng1+n—1
RG] <A1{Tl I(¢1) MI(¢1) * AT (1) (v)

\AIJ/ 17€1+U—1 ()\ )\177 1)
+¥ | e (M e M —
N\ X2r(e)r(o)

g (2—e M) 4, geatal -
+A2{1F2 I'(g2) +‘P3(X12F(€2)F(5) ngte 1)>

o [(1—e 1) geats—l

¥ [ x1I'(c2) - x1°T(¢2)T (5
(1—e M)
x1l'(¢2)

(Aurp+ e M — 1)]

) (1g+e M8 — 1)} }

+ A, = [:1./4; + ACzA;,
(L1A] + L2 AS)

PTG, T) O < —Fo )

, YTe[0,1].
Therefore, we conclude

1T2(G, Dl =lIT2(G, DI + [P TG, T,
(L1 A7 + L AF)
r2—-p)

Based on Inequalities (29) and (30), it can be concluded that both 77 and 7, are
uniformly bounded. This, in turn, signifies that the operator 7 is uniformly bounded.

Next, we will demonstrate that 7 is equi-continuous. Suppose we have 11, 7» € [0,1], with
Ty < T». In this case, we can establish

<L1 A+ Ly Ay + (30)

T2(9, T)(72) = Ta(9, T) (1)

[m /Olefmu) </0 (U(:)gl)zqvl( (¢), T (2),“DP T (¢), I T (e mds)

(1—v)s1~ -2 cyP1 1
s [ e 010,60, ), DM (0T T ()|

+[®@2(12) — D2(1)|

<[®1(12) — P1(1)|

["1 ./c;l et (/o (Ig(gg)gz;”’l (eG(e) T <€>fD’°29(e),quge)ld€) a

I'(g2—1)

_ \u-1 v ¢ (g —m)s1—2
+CI>3(T2)—CI>3(T1)|H/0U%</O e_/\l(v—€)</0 (;(gl)_:)

[ 10,600, 9 0), DG (0, 76 0) ]
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X |p1(m,G(m), J (m), D" J (m), 21T (m)) |dm> d£> v

" /OC@;(?;”( /Ovemus)( /Omem G(m), J<m>,cz>mg<m>,zng(m>>|dm>ds>dv
+ /0 L ehl1-v) (_/O mwl(e G(e), J<e>,CDMJ(s),quJ(s)nde) dv]

—v v—1 v € (g — 1—2
+ | P4(12) — Pa(T)| H /017 (UF(U)) </0 e (/0 (f(glm)_gn

X p1(m,G(m), J (m), D" J (m), 21T (m)) |dm> d£> v

n / e—x1(v—e) MM, (m, G(m), T (m), “DP2G(m), TG (m))|dm | de | dv
5 0 I(cp—1) ™ ' '

" —W(O”;is #1(0,6(6), 7 (0 DT (6), 77 e)) e ) o),

| [t e u>< (0= 2|4> (e,G(e), T (¢), “DPG e) qug<e>>|de>dv
o I'(g ! ’ ’

<Ly Alfl(gl) ((1 —eMT) (1 — g M(mm ))) + L 1( _ e M(n-m))

¢1+v-1
4 (1)2 — Dy(1) (Az’}(mr()(mﬂ-m _1)>}
a2 ()~ (mfz;;(;,)(?ﬁ? )

) s [A—em)  getl
+04(n) — CD4(T1)[ xiI'(¢2) * x12I(62)T(3)

This is because

(mg+eni-p)f.

1 1
=B (Arm =1+ M%) + (@) (5 — 20 +2- 20717
1 1

1
2
/\1

1
(0 (A2TE — 2017y +2 — 2~ M)

. i=1,2,3,4.
)Ll

(Ai)()‘lTl -1+ e_/\lTl) +

(o — 1) —eMT 4 eM™

1
<
_/\1

(- ) 2™ — e M) — Mi(m —m)| >0,
asm —T1,1=1,2,3,4.

Clearly, |71(G, J) () — T1(G, T )(t1)| — 0, as » — 73. Additionally, we obtain

FDPTLG,T)() ~ DTG, ) ()| <y [ L R 76, ) o)
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Fi g [ @ o) TG ) )

(2 T2_T1 1 Pz_Tl P2+Tl)1 pz) -0,
2 131

as m — 1.
In a similar manner, we have

172(G, T)(w2) — T1(G, T)(m1)| — 0and
°DP2T1(G, T) (1) — “DP*Ti(G, T) ()] = 0, as & — 1.

Consequently, both the operators 71 and 72 exhibit equi-continuous aspects, imply-
ing that 7 itself is equi-continuous.

Utilising the Ascoli-Arzela theorem, we can deduce that 7 is compact. Therefore, we
can conclude that 7 is a completely continuous operator.

Now, let us establish that theset ¢1 = {(G, J) e U x Q, (U, Q) =vT (G, T),0<v <1}

is bounded. Consider an arbitrary pair {(G, J) € ¢1, which implies that {(G, )
vT(G,J) forsomev € [0,1]. Then, forany T € [0,1], wehave G(7) = vT1(G, J)(1), T (T)

vT2(G, T)(1).
From these relations, it follows that |G (7)| < |T1(G, J)(7)| and | T (7)| < |72(G, T )(7)
vV Telo,1].
Then, by H;, we obtain
1G ()]
1 _
<ion(ln [0 ([T LI ) oG @]+ 0 (0] + a5 DM T O] + arT T ()
[ B oo+ mG(0)] + 027 ()] + 05D T (0)] + as %7 (0) |
0 Tlc —1) 1% 1 2 3 4

v _ 2—2
+ |®2(7)] le ./01 e x1(17v) </0 (Ili(g;)_gl)

x [[00] + 1G(e) | + 027 (7) (€)| + 65°DP2G ()| + BTG () ] d )du
(1—v)s22
e
7 (’7_0)071 v (v—e € (E—m)g172
ool [ O ([ ( [ G
x [laol + la1G(m)] + a2 ()] + a5 DP1 T (m)]| + “4Iql‘7(m)'}dm>de>dv

CE—0P [ e [ [ e m)
T </o ' (/o Fle- 1)

X [|bo| + 061G (m)| + |62 T (T)(m)] + |63°DP2G (m)| + b4IqZQ(m)|}dm> de) dv

[bo| + 616 (v )|+|sz(r)(v)|+|bchng(v)+b4qug(v)|]dv1

—1—/01e)‘1(1”)</ (;(:)g)[yadﬂalg €)| + [ax T (¢)| + |as D1 T (e )|+|u4l'q1‘7(s)|}d£>dv]

_ o1 v ¢ (e—m)s1—2
+|q>4<r)|l/0"(’7p(?)</o fw_s)(./o o
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X [|a0| + a1 G(m)| + [ax T (m)| + |azDPLT (m)| + a4Iq1j(m)|}dm>ds>dv
¢ (g_v)371 v —x1(v—e) ¢ (S_m>gz72
e WA b ey
x [|bo| £ 0:G(m)] + [627 () ()| + |65 DP2G ()] + b4zq2g<m>|]dm> d8> dv
(1-v (U—S) c
+ / e ( I s )[\bo|+blg<>|+|sz<r><e>|+|b3 Dng@+b4zf*ZG<s>|}de>dv]
T — )61
+/0 e_Al(T_”)</ (Ili(gf))[|a0|+|a1g(>|+|a2j(s>|+|ascz>mj(e>|+|a4zq1j(s)|}de>du,
which, on taking the norm for T € [0, 1], yields
011 < a0+ anllgll + (o2-+ a3+ o5 ) 17l
bp+ (b b _— b
ot (b4 b % Y11+ sl Gl o]t
Similarly, we obtain
19/ <0+ allgll + (a2 + 05 + 55 171104
ot (b1 2+ g )G+ allGl o 24
This implies that
1
cHp _ [
150720 < o oo+ anllGl + (o2 o+ 12 )17l
oo (o102 g™ )6+ allGlo 26 @
Thus, we have
1611 =161 + |°DP2g]|
< [+ ol + o2+ 20+ 2 11110t
+ |bg+ b1+ + ——7— +b U
o0+ (614 62+ 12 ) 9]+ bl 61l
1
4o st gl + (o2 400+ 5 I llofur @
oot (b2 g )6+ ballgllo 26
Likewise, we can have
17lle =171l + D" 7|
< {ao+ﬂ1||g||u+ <az+a3+r()>||~7||Q]
ot (014 02+ 1 Y191k + ballGllo | 4 @)
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1 a4 *
+ o] [mo ol + (o + 00 s ) 19710 4

a4

oo (b2 % 191k + bslGl] 43 -
From (32) and (33), we find
110G, Dlluxe =l191lu + 11T 1le

us A b
< Up+ Ay + = ]+(b+b+3)
_IIQIIu{al{ VT T ) T T2 ) PR T+ )

) " P
+ Uy + Ay + z__ 4 2 }
PR T2 ) T2 )
+ 171 {b [u+A+ b 4 :|+<CL TP ) (34)
VTR I2—p) T T2 m) 2T T g+ 1)
) " P
+ U+ A+ =+ ! }
TN T T2 ) T T2 =)
U A

+ag|Uh + A+ =+
0[1 "TT2=p)  T@—p1)

< N3—|—max{./\/4 +N5}||g/j||Z,I><Q-

us A
+bo|lh+ A+ = 2—+ 2 ]
} 0{ 2T T2 ) T2-m)

Therefore, by implementing the assumption max Ny + N5 < 1, we can deduce

N3
—max{Ny + N5}

1, Tlluxe < 5

Hence, we deduce that the set ¢; is bounded.

Utilising Theorem 2, we can ascertain that the operator 7 possesses at least one fixed
point, which serves as a solution to our Problems (1) and (2). With this, we conclude
the proof. O

Subsequently, we will establish existence and uniqueness results for Problems (1) and
(2), employing the Banach contraction mapping principle.
We introduce the concepts

r1 = sup |¢1(7,0,0,0,0)|, o = sup |¢1(7,0,0,0,0)],
Tel0,1] Tel0,1]
A =Woo1Uy + Rop2 A1, M = WopUy' + Kopara Af,
A =pp1Uy + Kopa Ay, M* = Wop U + Ropara A,
Z| =rilhy + Ay, Zf = 1’1[/{1* -+ TzAT, Zl =11l + 1A, ZAl* = 7’11/{2* -+ 1’2./4;.

Theorem 3. Assume that H, holds. Furthermore, if

M n M*
r2—-y) I'(2-p1)

then Problems (1) and (2) have a unique solution.

[A T A+ } <1, (35)

Proof. We consider the positive number r given by

Z
2—p1)
r >

S (A g et ))

Z
[Zl T2ty T
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We show that 7B, C B,, where B, = {(G,T) e U xQ||G,Tlluxo < r}. For
G,J € B,, we obtain

l91(7,G(7), T (1), D" T (1), I T (1))
<lp1(7,G(7), I (1), D" T (1), 2% T (7)) — ¢1(7,0,0,0,0)| + [91(7,0,0,0,0)],
< Wo(|G(D)|+ T (O + DI (D) + 29T (D)]) + 71,

< Wo |[|G]ler + 1T Mo + 1 Tlle| +1,

1
I'(qp+1)
< Wo (|Gl + 11Tl Q) + 11,
< Wop1r + 1.

In a similar manner, we have
l1(T,G(1), T (1),“DP1 T (1), Z" T (7))| < Kopar + 2.
Then,

|T1(G, T) ()] <(Wop1r + r1)Uy + (Ropar +12)Aq,
= (Wop1lhy + Rop2 A1) + 12 A1 + Uiy,
=Ar+ 2, forall T €[0,1].

and

[T (G, T)(T)| <(Woprr + r1)Us + (Ropar + 12) Af,
= (WoprUy + Rop2 A7) + 2 A7 +U T,
=A'r+2Z{, forallTte[0,1].

which gives us

D70, ) < [ T e, )l

1

S 1_,(27_132)(/\/17’ + Zl*),fOT’LleT S [O, 1]

Therefore, we deduce

TG, Dllu =T (G, DI + PP T(G, T,

Zl
< (“mm)”zl*r(zpz)' 3)

In a similar manner, we obtain

T2(G, ) (1) < A'r+ 24,

IT3(G,T)(0)] < M*r+ 217,

D70, )0l < [ FT ST, D),

< ———(M*r+ 2, forallt € [0,1].

Then, we conclude

720G, Dl =IIT2(G, D + [|'D*1T2(G, T,
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* M* g 1
(A ) A 7

By Relations (36) and (37), we deduce

TG, Iuxo =IT1(G, T)lu+11T2(6, T)|lo
. M M* 2 2
A+ A
({ AT * DH— F(Z—P2)+F(2—P1)
"

21+ 2] +

r2—yp2) I2-p1)

This implies TB, C B,.
Next, we prove that the operator 7 is a contraction. For (G;, J;) € B,,i=1,2 and for
each T € [0,1], we have

T1(91, 1)(7) = T2(G2, T2) (7))
—g)612
@@l |p [ e ([ EE 06010, (0, DM 0, 7051 (6)
~1(6,G2(0) (), ‘DM ), T Jo(e)) ) do
2

_/ %VP](U G1(0), J1(v),“DP* 1 (v), I F1 (v)) —(Pl(v,Qz(v),jz(v)rch]Jz(v)/Iquz(Umdv}
o I'(g1—1)

a0 ([ LD i 6100, 510 D710, 761 0)
e Gl 6D G T e

(1_U)g2 —2 cpp2 q2 cPP2 q2
*/0 ﬁlmv ,G1(v), J1(v), “DP2G1(v), %G1 (v)) — $1(v, G2(v), J2(v), “DP2Ga(v), Z gz(v))|dv]

K (77 — U)nil vo_ 1(v—e € (S_m)gle
+|q>3<r>|[/0 el (/0 i ></0 omet
x [p1(m, G1(m), J1(m), “DP1 Ty (m), 2% T (m))

— ¢1(m, Go(m), Jo(m), “DP1 T (m), I Fp(m)) dm) ds) dv

4 (é'_v)é—l v 1(v—¢ ¢ (8_ )gz 2 cTyP2 2
+/0 TG) </O e~ )</0 WWH(I“ ,Gi1(m), J1(m), “DP2Gy(m), TG (m))

— ¢1(m, Go(m), To(m), “DP2G,(m), TG, (m)) |dm) ds) dv

—/01 e~ M(1-v) (/o (Ili(;le)g)kpl(& Gi1(¢), J1(e), “DPr Ty (e), M Th (¢))

— ¢1(e,G2(e), Ja(e), ‘DML Ja(e), T Ja(e)) |d£> dv

-1/ o e (g —m)s1-2
+|<I>4(T)|l/(;7 b r(l;)) (/0 fAl(H)(/O (;(gl)—gl)

X |@1(m, G1(m), J1(m), “DP1 7y (m), 29 Ty (m))

— ¢1(m, Go(m), Jo(m), “DP1 Jo(m), I Jp(m )dm) ds) dv
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C(E—o)p [ e [ (e—m)2? P2 )
+/0 F(5)</0 e~ )</0 m@l(m/gl(m)/jl(m)/ DP2Gy(m), Z92G; (m))

— ¢1(m, Go(m), T (m),DP2G,(m), 292G, (m)) |dm) de) dv

- [l </ov 016610, 1(6), DG (0 761 9)

— 1(e,Ga(e), Ja(e), “DP2Gy (¢), TGy (¢)) |ds> dv]

T v (v—g)s172
# e ([ O e 610, A0, DP (0, T )

—¢1(e,G2(¢), J2(e), ‘DM Ja(e), I T2 (¢)) |de)dv.

<UyWo(||G1 — Gal| + || A — F2|| + ||“DPLTy — DL G| + || IN T — TN D))
+ A180(|1G1 — Ga| + [|“DP2Gy — “DP2Go|| + ||Z%2Gy — I92Go|| + |[Jh — Jall)
<U1Wo([|G1 — Gal| + p1l| T2 — Jal| + ||“DPr L — “DP )
+ A8 (p2[|G1 — Go|| + [|“DP2G1 — “D2Go|| + || — Pl 1)
<A([|G1 = Gallu + 1|51 — Pl o)-

Then, we obtain
1T{(G1, T1)(1) = T} (G2, To) (7)| < M(|1G1 — Gallu + 11T1 — Pall)-

which gives us

DTS (G1, 1) (1) = DT 02, ) (1) < [T T (91 1)) = T (G0, ) 0
< I’(lez)M(‘gl = Gollu + |7 — P2l o)

From the above inequalities, we conclude

[17T1(G1, T1)(7) = T1(G2, T2) (D) u
= T1(G1, 71)(7) = Ti(G2, o) (D) + |"DP2 T1(G1, J1)(7) = “DP2T1 (G2, L) (T)[| - (38)

1
ORI M} (161 = Gallu + |7 = Z2ll0)-
p2)

<|a
< |4+ 73

In a similar manner, we deduce

1
172G, ) — Ta(Ga, )0 < [A* + )M*} (116 = Gallu + 171 — Fallo). (39)

r@2-—mp

Therefore, by (38) and (39), we obtain

|T(G1, J1) — T (G2, D)l o
= T1(G1, J1) = Ti(G2, ) llu + | T2(G1, T1) = T2(G2, T2) @

1
M| (161 - Gallu + 1171 — Fall0) + [A*+

1 N B B
o) FaM }(Hgl Gl + 1171 — Tl o)

L1 L B
< (A4 A4 gt Mot M) (161 = Gall + 1173 - Tallo)

Through the utilisation of Condition (35), it can be inferred that 7 qualifies as a
contraction operator. Consequently, by virtue of Banach’s fixed-point theorem, the operator
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T possesses a unique fixed point, corresponding to the unique solution of Problems (1) and
(2). With this, we conclude the proof. [

5. Example

Let Ay = 2;x1 = 3,1 = 4,0_12_15_ 5,T-1g1— 2,g2= %,Pl Z%
P = %, g1 = %, Q@ = % We then turn our attention to the following system of fractional
differential equations:

(‘DS + MDNG(T) = 91 (7, G(7), T (1), DM I (1), I T (1)), T € (0,1), (40)
(D% + 1D ) T () = (7, (1), T (¢), “DP2G(1), T%G(v)), T € (0,1)
complemented by the general coupled integral boundary conditions:
60)=0, ¢'0)=0, 1) =0, 61) = [T Goyao+ [*C g0par,
0 w( - <@—5v “
J(0)=0, J'(0)=0, J'(1) =0, j(1>:/0 W dv+/ o C=0P 7,

We have ()7 = 0.432332, (), = 0.533834, ()3 = 0.316738, (04 = 0.449976, ()5 = 0.281525,
Qe = 0.247777,0); = 0.00115512, (Og = 0.000118806, (29 = 0.00120999, (215 = 0.00029549,

O = 0.22659,Q, = 0.181378,A = 0.00192126,A; = 0.00046151,A; ~ 5.74083,
Ay ~ 00507348, A; =~ 17.6486,A, =~ 0.160883,5; ~ 0.0507341,Z, =~ 4.07506,
By ~ 0.121363,E4 ~ 10.1098,0; ~ —6.52253,0, ~ 0.0410882,0; ~ —10.017,
@y ~ 0.0084369,Y, ~ 5.09077,Y, ~ 0.0357116,Y; ~ —0.0854273,Y, ~ —7.11626,
®; ~ 3.03939,®, ~ 0.00551836,d; ~ 2.84393,d, ~ 0.0474878,¥; ~ 0.00507333,
¥, ~ 0.00415164,¥5 ~ 0.0121361, ¥, ~ 1.01096,14; ~ 0.344355,U, ~ 0.00133908,

A ~ 0.000357643, Ay = 0.0966458, U ~ 0.758877,Uy ~ 0.00793721, A} ~ 0.0000464214,
5 = 0.59475844.

Example 1. We consider the functions

1 1 1
lo1(T, 10,12, 13, 1g)| = 72;%—1 <3cosr+ 3 sin(ly + [2)) — m 3+ — 10 arctan ly,

T _ 1 T .
l1,,13,4)] = ——=|5e "+ = +2L ) — = 34+ 1),
[p1(T, 11, 2, 15, L) | (T+2)3( el tot 2) 6sm(3+ 1)

forall t € [0,1], 1, I, I3, [y € Re. We achieve the inequalities

1 1 1 1

3
lp1(T, 11, 1, 3, lg)| < 2+16|[1|+* §|[3|+E|[4"

5 1 1 1 1
I,h,15,)] <=+ —]I |t —t —t
|p1(T, 1,0, 13, 1) < 3 + 16| 11+ 4| 2| + 6| 3| + 6| 4,
forall T € [0,1],14,1p, 13,1y € R.. Hence, we arrive at ag = %,cq = %,az = f—é,ag = 11—0,
a4:%/b0:%/bl 16’b2 163:%/b4:%'
Given that Ny =~ 0.34571011 and N5 ~ 0.352583822, we can ascertain that the condition of
Theorem 2, max{Ny, N5} < 1, is indeed met. Therefore, in accordance with Theorem 2, we can

conclude that Problems (1) and (2) possess at least one solution, T € [0,1].

Example 2. We consider the functions

T 1 [ 1 .5 T
lh,b,13,1) == — 1 — I3 — — arctan [y,
1(7, 11, 1, 13, 1s) 2+8(T+1)2(1+|[1 2)+3251n 3 9arcan4

72 1 1 1 |14
(T,1,l0,3,13) = ——— — —sinly + —lph + —— et
4)1 s 7 7 7 T3+1 16 10 4+T2
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forallt € 10,1],11, 1,13,y € Re.
We obtain the following inequalities

lo1(T, 11, 12, 13, 1s) — @1(T, 01,0, n3,04) | < =(|l3 —ng| + | —ng| + |l3 — n3| + |lg — ny)

N - o) -

p1(T, 1, B2, 13, L) — 1 (T, m,mp,mg,ma)| < 2 ([l — | + [ = nof + I3 — n3| + [l4 — ny|)
forall T € [0,1] and (1,1, 13,15 € Re.

Here, Ry = %and My = %. Furthermore, we deduce p1 ~ 0.752252 p, ~ 0.249238,
A~ 0.03243582, A* ~ 0.00404732, M =~ 0.00404732, M* = 0.0247046 and

M M*
A+ A"+ + ~ 0.1447348 < 1. 42
r2—p) " TE=p) 4
Hence, all the conditions outlined in Theorem 3 are fulfilled. Consequently, in accordance
with Theorem 3, we can establish that Problems (1) and (2) possess a unique solution, denoted by
Te[0,1].

6. Conclusions

The primary objective of this research is to investigate the possible existence and
uniqueness of a solution to a system of fractional integrodifferential equations. Sequential
Liouville-Caputo derivatives and nonlinearities comprising both integral and differential
terms are present in Equation (1). Additionally, the system is supplemented with Riemann—
Liouville integral boundary conditions (2). It is noted that under these circumstances, the
unknown functions G and J at point 1 exhibit dependence on both G and J across the
entire interval [0, 1]. The Leray—Schauder alternative theorem and the Banach contraction
mapping principle were utilised in the demonstration of our primary theorems. The results
obtained in our study corresponded to specific problems when the parameters v, ; were
established. Suppose that Problems (1) and (2) are presented in a manner that the results
are obtained by setting v = 3 = 1.

G)=0, g'(0)=0, Gg'(1)=0, G(1) = /017 Q(v)dv+/(fj(v)dv,
J(0)=0, J'(0)=0, J'(1) =0, J(l):/o'”g(u)dwfogj(v)du.

The problems mentioned above can be solved using the same approach as Problems (1)
and (2), as described in the preceding section.
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