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Abstract: This paper delves into an examination of the existence, uniqueness, and stability properties
of a non-local integro-differential equation featuring the Hilfer fractional derivative with order
ω ∈ (1, 2) for the RLC model. Based on Schaefer’s fixed point theorem and Banach’s contraction
principle, the existence and uniqueness results are established. Furthermore, Ulam–Hyers and Ulam–
Hyers–Rassias stability results for the boundary value problem of the RLC model are discussed. To
showcase the practicality and efficacy of our theoretical findings, a two-step Lagrange polynomial
interpolation method is applied to solve some numerical examples.

Keywords: fixed point theorem; fractional order integro-differential RLC circuit; Hilfer fractional
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1. Introduction

Numerous studies in science and engineering have shown the importance of math-
ematical modeling and numerical simulations. Fractional-order modeling is one of the
well-researched areas which has provided scientists with a useful technique for the general-
ization of classical results. The development of fractional order operators includes both
local and non-local kernels, and singular and non-singular kernels are of great interest
as well in the community of researchers. There have been some fascinating new studies
examining these factors; see [1–5].

Hilfer [3] proposed an extended form of Riemann–Liouville (R-L) and Caputo frac-
tional derivatives, called the “Hilfer fractional derivative”, which allows one to interpolate
with another; see [6–14].

Fractional derivatives offer numerous advantages when compared to their conventional
counterparts. To begin with, they encompass memory, a fundamental characteristic in non-
integer type differential equations. This quality renders fractional derivatives more effective
in precisely characterizing physical systems in contrast to classical derivatives [15–18]. Fur-
thermore, fractional derivatives play a pivotal role in enabling the exploration of various
diffusion phenomena, encompassing superdiffusion, hyperdiffusion, and ballistic diffusion.
This presents a fertile area of research for those intrigued by these phenomena [19].

The introduction of fractional derivatives resulted in the development of several types
of novel mathematical models, particularly in the discipline of electrical circuits, which can
be found in [20–22]. Some results have emerged for the investigation of fractional modeling
of RL and RC circuits; hence, we refer the reader to [23–27]. The fractional LC circuit, first
introduced in [25], extends to the repertory of available models. The exploration of both
numerical and analytical solutions that provide the foundation of these investigations are
essential to the investigation of fractional electrical circuits [26,27].
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In [25], the AB derivative is employed to explore the numerical solutions for fractional
RL and RC circuits. In [19], Aguilar et al. proposed the solutions for non-integer order
electrical RC, LC, and RL circuits using the Mittag–Leffler fractional derivative. In [26],
Rawdan et al. discussed fractional-order RL and LC circuits, suggesting a comparative
analysis with conventional electrical circuits. Additionally, in [28], Aguilar et al. introduced
fractional electrical circuits characterized by a non-integer derivative with a regular Kernel.

Integer order integro-differential equations find applications in various domains of
science and engineering, including circuit analysis. According to Kirchhoff’s second law,
the total voltage drop across a closed loop is equal to the applied voltage, denoted as E(t).
This principle essentially stems from the law of energy conservation. Consequently, an
RLC circuit equation has the form

L d
dt
I(t) +RI(t) + 1

C

t∫
0

I(s)ds = E(t).

The RLC circuit serves as a fundamental component in the assembly of more intricate
electrical circuits and networks. Illustrated in Figure 1, it comprises a resistor with a
resistance of R ohms, an inductor with an inductance of L henries, and a capacitor with
a capacitance of C farads, all arranged in series with an electromotive force source (like a
battery or a generator) providing a voltage of E(t) volts at time t.

R

V

C
L

Figure 1. Diagram of a series RLC circuit.

In [29] U. Arshad et al. investigated the fractional order RLC derivative using three
numerical methodologies of the system:

D2αI(t) + 1
LCI(t) =E(t)

L

DαV(t) + 1
CRV(t) =E(t)

R (1)

DαI(t) + R
LI(t) =E(t)

L .

In [30], Malarvizhi et al. discussed the transient analysis of an RLC circuit in the RK4
order method. In [24], Gomez-Aguilar et al. studied the electrical circuits RC and RL for
the Atangana–Beleanu–Caputo (ABC) fractional bi-order system:

ABCDβV(t) = δE(t)− δV. (2)

Inspired by the above mentioned work, we are interested in studying the existence and
uniqueness of solutions and the Ulam stability analysis for the following Hilfer fractional
differential equation for the RLC circuit model with non-local boundary conditions:

Dω,τI(t) = E(t)
L −

R
L I(t)−

1
CL

t∫
0
I(s)ds, t ∈ J = [a, b],

y(a) = 0, y(b) =
k
∑

j=1
$j I

νj y
(
ζ j
)
, νj > 0, $j ∈ R, ζ j ∈ J.

(3)

The primary contribution of this endeavor can be outlined as follows:
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1. The existence, uniqueness, and stability of the solution of the Hilfer fractional integro-
differential equation for the RLC circuit model has been investigated via the fixed
point approach.

2. We apply a novel hypothesis to verify the existence, uniqueness, and Ulam–Hyers
stability of the solution to the RLC circuit Equation (3). Additionally, we illustrate
numerical results using the two step Lagrangian polynomial approach, in order to
validate the theoretical outcomes.

The paper is structured as follows. In Section 2, we introduce various definitions and
preliminaries. The existence and uniqueness results for the Hilfer fractional boundary value
problem for the RLC model are discussed in Section 3. The Ulam-type stability results
are studied in Section 4. Some numerical examples are listed in Section 5. We end with
Section 6 containing the conclusions.

2. Auxiliary Results

In this section, we recall some important preliminaries that are related to our analysis.
Let Y = C[J,R] be the space of all continuous function form J into R with norm

||v|| = max{|v(t)|, t ∈ J}. Obviously, Y is a Banach space under this norm, and hence, the
product is also a Banach space with norm ||(v, w)|| = ||v||+ ||w||.

Definition 1 ([10] Caputo fractional derivative). The Caputo derivative of order q for the
function g : J → R is defined as:

cDωg(x) =
1

Γ(p−ω)

x∫
a

g(p)(s)
(x− s)ω+1−p ds = Ip−ωg(p)(x), x > 0, p− 1 < ω < p.

Definition 2 ([10] Riemann–Liouville fractional integral). The R-L fractional integral of order
ω > 0 of the function g is defined as:

Iω
a g(x) =

1
Γ(p−ω)

x∫
a

g(s)
(x− s)p−ω−1 ds, p− 1 < ω < p.

Definition 3 ([10] Riemann–Liouville fractional derivative). The R-L fractional derivative of
order ω > 0 of a continuous function g is defined as:

RLDωg(t) = Dp Ip−ωg(t)

=
1

Γ(p−ω)

(
dp

dtp

) t∫
a

g(s)
(t− s)p−ω−1 ds, p− 1 < ω < p.

By a new theory of the fractional derivative which had been proposed by Hilfer [3],
the generalized R-L fractional derivative of a continuous function g is defined as:

Definition 4 ([10] Hilfer fractional derivative). The generalized R-L fractional derivative of
order ω and parameter τ of a function g is described as:

H Dω,τ g(x) = Iτ(p−ω)Dp I(1−τ)(p−ω)g(x),

where ω ∈ (p− 1, p), τ ∈ [0, 1], x > a, D = d
dx .

Remark 1 ([10]). From Definition 4, we observe that:

1. The operator H Dω,τ can be written as

H Dω,τ = Iτ(1−ω)DI(1−γ) = Iτ(1−ω)Dγ, γ = ω + τ − τω.



Fractal Fract. 2023, 7, 804 4 of 18

2. The Hilfer fractional derivative can be interpolated between the R-L fractional derivative
(τ = 0) and the Caputo fractional derivative (τ = 1) as:

H Dω,τ =

{
DI(1−ω) = Dω, if τ = 0;
I(1−ω)D = CDω, if τ = 1.

Lemma 1 ([10]). If 1 < ω ≤ 2, then,

Iω(Dωg)(t) = g(t)−
(

I1−ωg
)
(a)

Γ(ω)
(t− a)ω−1 −

(
I2−ωg

)
(a)

Γ(ω− 1)
(t− a)ω−2. (4)

3. Main Results

Here, we introduce some assumptions for the following sequels.
(A1) The function g : J × Y × Y → Y is completely continuous and there exists a

function µ ∈ L1(J,R) such that:

|g(t, x, y)| ≤ µ(t), ∀t ∈ J, x, y ∈ Y.

(A2) The function g is continuous and there exist constants L1, L2 > 0 such that:

|g(t, x1, y1)− g(t, x2, y2)| ≤ L1|x1 − x2|+ L2|y1 − y2|, ∀t ∈ J, xi, yi ∈ Y, i = 1, 2.

(A3) The function f is continuous and there exists a constant M > 0 such that:

| f (t, s, x1)− f (t, s, x2)| ≤ M|x1 − x2|, ∀t ∈ J, xi ∈ Y, i = 1, 2.

Problem Formulation

Let us consider the general structure of the Hilfer fractional order RLC circuit integro-
differential equation with nonlocal boundary conditions:

H Dω,τy(t) = g(t, y(t), H(y(s))), t ∈ J, (5)

y(a) = 0, y(b) =
k

∑
j=1

$j I
νj y
(
ζ j
)
, νj > 0, $j ∈ R, ζ j ∈ J, (6)

where H Dω,τ is the Hilfer fractional derivative of order ω ∈ (1, 2), and parameter
τ ∈ [0, 1], Iνj is the R-L fractional integral of order νj > 0, ζ j ∈ [a, b], a ≥ 0, $j ∈ R,

j = 1, . . . , k, g(t, y(t),
t∫

a
f (t, s, y(s)ds) = E(t)

L −
R
L I(t) −

1
CL

t∫
0
I(s)ds, and H(y(s)) =

t∫
a

f (t, s, y(s))ds. Using some fixed point theorems, the existence and uniqueness results are

established. For (5) and (6), we employ Banach’s fixed point theorem and Schaefer’s fixed
point theorem for uniqueness and existence results.

Lemma 2. For g ∈ C(J,R), it is a solution of the boundary value problem,

H Dω,τy(t) = g(t, y(t), Hy(s)), t ∈ J,

y(a) = 0, y(b) =
k

∑
j=1

$j I
νj y
(
ζ j
)
, νj > 0, $j ∈ R, ζ j ∈ J,

which satisfies the following equation:
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y(t) =
(t− a)σ−1

ΦΓ(σ)

(
Iωg(s, y(s), Hy(s))(b)−

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ j)

)
+ Iωg(s, y(s), Hy(s))(t), (7)

where

Φ =
k

∑
j=1

$j(ζ j − a)σ−νj−1

Γ(σ + νj)
− (b− a)σ−1

Γ(σ)
6= 0, (8)

where j = 1, 2, 3, ..., k, 1 < ω < 2, σ = ω + τ −ωτ.

Proof. Equation (7) can be written as:

Iτ(2−ω)D2 I(1−τ)(2−τ)y(t) = g(t). (9)

As a result of determining the ω order integral of the related inequality, we obtain

Iω Iτ(2−ω)D2 I(1−τ)(2−τ)y(t) = Iωg(t).

Indeed,

Iω Iτ(2−ω)D2 I(1−τ)(2−τ)y(t) = IσD2 I2−σy(t) = Iσ
(

RLDσy
)
(t),

and therefore,
Iσ
(

RLDσy
)
(t) = Iωg(t).

By using Equation (4) and setting
[
I2−ωg

]
(a) = c1,

[
I1−ωg

]
(a) = c2, one has

y(t) =
c2

Γ(σ)
(t− a)σ−1 +

c1

Γ(σ− 1)
(t− a)σ−2 + Iωg(t, y(t), Hy(t)). (10)

By the condition y(a) = 0, we obtain c1 = 0. Then, we obtain

y(t) =
c2

Γ(σ)
(t− a)σ−1 + Iωg(t, y(t), Hy(t)), (11)

and
k

∑
j=1

$j I
νj y(ζ j) = c2

k

∑
j=1

$j(ζ j − a)σ+νj−1

Γ(σ + νj)
+

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ j). (12)

From our condition, by using (12), one has

c2

(
k

∑
j=1

$j(ζ j − a)σ+νj−1

Γ(σ + νj)
− (t− a)σ−1

Γ(σ)

)
=Iωg(s, y(s), Hy(s))(b)

−
k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ j), (13)

from which we obtain

c2 =
1
Φ

(
Iωg(s, y(s), Hy(s))(b)−

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ j)

)
. (14)

Substituting the value of c1 and c2 in (10), we obtain the solution (7). This completes
the proof.
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Theorem 1. Assume that (A1) is verified. Then (5) and (6) admit at least one solution on J.

Proof. Let C = C1−σ[J, Y] and define the operator P : C → C by,

(Py)(t) =
(t− a)σ−1

ΦΓ(σ)
Iωg(s, y(s), Hy(s))(b)

− (t− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ) + Iωg(s, y(s), Hy(s))(t).

For q > 0, let
Bq = {y| y ∈ C : ‖y‖ ≤ q}.

Step 1: P is continuous.
Let yn be a sequence such that yn → y in C. For each t ∈ J, one has

|(t− a)1−σ((Pyn)(t)− (Py)(t))|

= | 1
ΦΓ(σ)

[ 1
Γ(ω)

t∫
a

(b− s)ω−1(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))ds

−
k

∑
j=1

$j
1

Γ(ω + ζ j)

t∫
a

(ζ j − s)ω+ζ j−1(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))ds
]

+
(t− a)1−σ

Γ(ω)

t∫
a

(t− s)ω−1(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))ds|

≤ 1
|Φ|Γ(σ)

[ 1
Γ(ω)

t∫
a

(b− s)ω−1|(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))|ds

−
k

∑
j=1
|$j|

1
Γ(ω + ζ j)

t∫
a

(ζ j − s)ω+ζ j−1|(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))|ds
]

+
(t− a)1−σ

Γ(ω)

t∫
a

(t− s)ω−1|(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))|ds,

≤ 1
‖Φ‖Γ(σ)

[ (b− s)ω

Γ(ω + 1)
‖(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))‖C

−
k

∑
j=1
‖$j‖

(ζ j − s)ω+ζ j

Γ(ω + ζ j + 1)
‖(g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s)))‖C

]
+

(t− s)ω(t− a)σ−1

Γ(ω + 1)
‖g(s, yn(s), Hyn(s))− g(s, y(s), Hy(s))‖C.

Since the function g is continuous, then we obtain

‖(t− a)1−σ((Pyn)(t)− (Py)(t))‖

≤ 1
‖Φ‖Γ(σ)

[ (b− s)ω

Γ(ω + 1)
‖(g(., yn(.), Hyn(.))− g(., y(.), Hy(.)))‖C

−
k

∑
j=1
‖$j‖

(ζ j − s)ω+ζ j

Γ(ω + ζ j + 1)
‖(g(., yn(.), Hyn(.))− g(., y(.), Hy(.)))‖C

]
+
(t− s)ω(t− a)σ−1

Γ(ω + 1)
‖g(., yn(.), Hyn(.))− g(., y(.), Hy(.))‖C → 0, as n→ ∞.
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Therefore, the operator P is continuous.
Step 2: P(Bq) is bounded.
For each t ∈ J and y ∈ Bq, we obtain that:

|(t− a)1−σ(Py)(t)| ≤ 1
|Φ|Γ(σ)

[
1

Γ(ω)

t∫
a

(b− s)ω−1|g(s, y(s), Hy(s))|ds

−
k

∑
j=1
|$j|

1
Γ(ω + ζ j)

t∫
a

(ζ j − s)ω+ζ j−1|g(s, y(s), Hy(s))|ds

]

+
(t− a)1−σ

Γ(ω)

t∫
a

(t− s)ω−1|g(s, y(s), Hy(s))|ds,

≤ 1
|Φ|Γ(σ)

[ 1
Γ(ω)

t∫
a

(b− s)ω−1|µ(s)|ds−
k

∑
j=1
|$j|

1
Γ(ω + ζ j)

×
t∫

a

(ωζ j − s)ω+ζ j−1|µ(s)|ds
]
+

(t− a)1−σ

Γ(ω)

t∫
a

(t− s)ω−1|µ(s)|ds

≤ ‖µ(s)‖C
|Φ|Γ(σ)

[ (b− s)ω

Γ(ω + 1)
−

k

∑
j=1
|$j|

(ζ j − s)ω+ζ j

Γ(ω + ζ j + 1)

]
+

(t− s)ω(t− a)1−σ

Γ(ω + 1)
:= `.

Thus, ‖P(y)‖ ≤ `.
Step 3: P(Bq) is equicontinuous.
For a ≤ t1 < t2 ≤ b, and y ∈ Bq, we obtain
|(t2 − a)1−σ(Py)(t2)− (t1 − a)1−σ(Py)(t1)|

≤ 1
| Φ | Γ(σ)

[
1

Γ(ω)

t2∫
a

(b− s)ω−1|g(s, y(s), Hy(s))|ds

−
k

∑
j=1

| $j |
Γ(ω + ζ j)

t2∫
a

(ζ j − s)ω+ζ j |g(s, y(s), Hy(s))|ds

]

+
(t2 − a)σ−1

Γ(ω)

t2∫
a

(t2 − s)ω−1|g(s, y(s), Hy(s))|ds

− 1
| Φ | Γ(σ)

[ 1
Γ(ω)

t1∫
a

(b− s)ω−1|g(s, y(s), Hy(s))|ds

+
k

∑
j=1

| $j |
Γ(ω + ζ j)

t1∫
a

(ζ j − s)ω+ζ j |g(s, y(s), Hy(s))|ds
]

− (t1 − a)σ−1

Γ(ω)

t1∫
a

(t1 − s)ω−1|g(s, y(s), Hy(s))|ds

≤ |g(s, y(s), Hy(s))|
| Φ | Γ(σ)Γ(ω)

 t2∫
a

(b− s)ω−1ds−
t1∫

a

(b− s)ω−1ds
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−
k

∑
j=1

| $j | |g(s, y(s), Hy(s))|
| Φ | Γ(σ)Γ(ω + ζ j)

 t2∫
a

(ζ j − s)ω+ζ j−1ds−
t1∫

a

(ζ j − s)ω−1ds


+
|g(s, y(s), Hy(s))|(t2 − a)σ−1

Γ(ω)

t2∫
t1

(t2 − t1)
ω−1ds

≤ ‖µ‖C
| Φ | Γ(σ)Γ(ω)

 t2∫
a

(b− s)ω−1ds−
t1∫

a

(b− s)ω−1ds


−

k

∑
j=1

| $j | ‖µ‖C

| Φ | Γ(σ)Γ(ω + ζ j)

 t2∫
a

(ζ j − s)ω+ζ j−1ds−
t1∫

a

(ζ j − s)ω−1ds


+
‖µ‖C(t2 − a)σ−1

Γ(ω)

t2∫
t1

(t2 − t1)
ω−1ds.

As t2 → t1, the R.H.S. of the above inequality→ 0. Consequently, we deduce that P is
completely continuous.

Step 4: The priori bounds.
We need to show that the set Λ = {y ∈ C : y = $(P(y)); $ ∈ (0, 1)} is bounded.
For this, let y ∈ Λ, y = $(P(y)) for some $ ∈ (0, 1). Thus, for each t ∈ J, one has

y(t) = $
[ (t− a)σ−1

ΦΓ(σ)
Iωg(s, y(s), Hy(s))(b)

+
(t− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ) + Iωg(s, y(s), Hy(s))(t)

]
.

This implies, by (A2), that:

|y(t)(t− a)1−σ| ≤ |(t− a)1−σ(Py)(t)|

≤ 1
| Φ | Γ(σ)

[
1

Γ(ω)

t∫
a

(b− s)ω−1|g(s, y(s), Hy(s))|ds

−
k

∑
j=1
|$j|

1
Γ(ω + ζ j)

t∫
a

(ζ j − s)ω+ζ j−1|g(s, y(s), Hy(s))|ds

]

+
(t− a)1−σ

Γ(ω)

t∫
a

(t− s)ω−1|g(s, y(s), Hy(s))|ds

≤ 1
| Φ | Γ(σ)

[
1

Γ(ω)

t∫
a

(b− s)ω−1|µ(s)|ds

−
k

∑
j=1
|$j|

1
Γ(ω + ζ j)

t∫
a

(ζ j − s)ω+ζ j−1|µ(s)|ds

]

+
(t− a)1−σ

Γ(ω)

t∫
a

(t− s)ω−1|µ(s)|ds

≤ 1
| Φ | Γ(σ)

[
(b− s)ω

Γ(ω + 1)
‖µ(s)‖C −

k

∑
j=1
|$j|

(ζ j − s)ω

Γ(ω + ζ j + 1)
‖µ(s)‖C

]

+
(t− a)1−σ(t− s)ω

Γ(ω + 1)
‖µ(s)‖C := <.
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Thus, ‖µ(s)‖C ≤ <.
Therefore, the set Λ is bounded. Hence, we deduce that P has a fixed point that

is a solution of the presumed problems (5) and (6) as an outcome of Schaefer’s Fixed
point theorem.

The next theorem contains the second main result in this paper that is the uniqueness
of the solution to the presumed problems (5) and (6).

Theorem 2. Suppose that the conditions (A2) and (A3) are satisfied such that:

(L1 + L2M)

[
(b− a)ω+σ−1

| Φ | Γ(σ)Γ(ω + 1)
+

(b− a)ω+σ−1

| Φ | Γ(σ)

m

∑
i=0

| $j | (ζ j − a)ω+ζ j

Γ(ω + νj + 1)
+

(b− a)ω

Γ(ω + 1)

]
< 1. (15)

Then, the presumed problem (5) and (6) has a unique solution on J.

Proof. We consider the operator P : C → C defined as

(Py)(t) =
(t− a)σ−1

ΦΓ(σ)
Iωg(s, y(s), Hy(s))(b) +

(t− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ)

+ Iωg(s, y(s), Hy(s))(t).

We shall show that P is a contraction map. Let x, y ∈ C, then one has for each t ∈ J

|(Py)(t)− (Px)(t)| ≤ (b− a)σ−1

ΦΓ(σ)
Iω |g(s, y(s), Hy(s))− g(s, x(s), Hx(s))|(b)

+
(b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj |g(s, y(s), Hy(s))− g(s, x(s), Hx(s))|(ζ)

+ Iω |g(s, y(s), Hy(s))− g(s, x(s), Hx(s))|(t)

≤ (L1 + L2M)|y(s)− x(s)|
[

(b− a)ω+σ−1

| Φ | Γ(σ)Γ(ω + 1)

+
(b− a)ω+σ−1

| Φ | Γ(σ)

m

∑
i=0

| $j | (ζ j − a)ω+ζ j

Γ(ω + νj + 1)
+

(t− a)ω

Γ(ω + 1)

]
.

Therefore, we obtain

‖(Py)(t)− (Px)(t)‖ ≤(L1 + L2M)
[ (b− a)ω+σ−1

| Φ | Γ(σ)Γ(ω + 1)

+
(b− a)ω+σ−1

| Φ | Γ(σ)

m

∑
i=0

| $j | (ζ j − a)ω+ζ j

Γ(ω + νj + 1)
+

(b− a)ω

Γ(ω + 1)

]
‖y− x‖.

Hence, in view of the condition (15) and the Banach contraction principle, P has a
unique fixed point. Thus, the existence of the unique solution of the presumed problems (5)
and (6).

4. Ulam Stability Results

An important part of the qualitative theory of linear and nonlinear differential equa-
tions is the stability of Ulam–Hyers (UH), originally formulated by Hyers and Ulam in 1940.
Also, the study of stability analysis of Hyers–Ulam (HU) and the Ulam–Hyers–Rassias
(UHS) for non-linear fractional differential equations is a hot topic of research and the
study of this area has grown to be one of the most important subjects in the mathematical
analysis, see [31–35]. A general view of the development of the Ulam–Hyers (UH) and the
Ulam—Hyers–Rassias (UHS) stability theory for fractional differential equations can be
found in [36–39].
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Definition 5 ([11]). Equations (5) and (6) are UH stable if there exists a real number Cg > 0 such
that for each ε > 0 and for each z ∈ Cσ

1−σ[J] solution of the inequality:

|Dω,τ
0+ z(t)− g(t, z(t), Hz(t))| ≤ ε, t ∈ J, (16)

there exists a solution y ∈ Cσ
1−σ(J) of Equations (5) and (6) such that:

| z(t)− y(t) |≤ Cgε, t ∈ J.

Definition 6 ([11]). Equations (5) and (6) are generalized UH stable if there exists ψg ∈ C(R+,R+)
with ψg(0) = 0, such that for a solution z ∈ Cσ

1−σ(J) of the inequality:

|Dω,τ
0+ z(t)− g(t, z(t), Hz(t))| ≤ ε, t ∈ J, (17)

there exists a solution y ∈ Cσ
1−σ(J) of Equations (5) and (6) such that:

| z(t)− y(t) |≤ ψg(ε), t ∈ J.

Definition 7 ([11]). Equations (5) and (6) are UHS stable with respect to ν ∈ C(J,R+) if there
exists a real number cg,ν > 0 such that for each ε > 0 and for each z ∈ Cσ

1−σ(J) solution of
the inequality:

|Dω,τ
0+ z(t)− g(t, z(t), Hz(t))| ≤ εν(t), t ∈ J, (18)

there exists a solution y ∈ Cσ
1−σ(J) of Equations (5) and (6) such that:

| z(t)− y(t) |≤ cg,νεν(t), t ∈ J.

Definition 8 ([11]). Equations (5) and (6) is generalized UHS stable with respect to ν ∈ C(J,R+)
if there exist Cg,ν > 0 such that for each z ∈ Cσ

1−σ(J) solution of the inequality:

|Dω,τ
0+ z(t)− g(t, z(t), Hz(t))| ≤ ν(t), t ∈ J, (19)

there exists y ∈ Cσ
1−σ(J) solution of Equations (5) and (6) such that:

| z(t)− y(t) |≤ cg,νν(t), t ∈ J.

Remark 2 ([11]). A function z ∈ Cσ
1−σ(J) is a solution of the inequality:

|Dω,τ
0+ z(t)− g(t, z(t), Hz(t))| ≤ ε, t ∈ J,

if there exists a function w ∈ Cσ
1−σ(J) such that:

1. | w(t) |≤ ε, t ∈ J,
2. Dω,τ

0+ z(t) = g(t, z(t), Hz(t)) + w(t), t ∈ J.

Remark 3 ([11]). It is clear that:

1. Definition (5)⇒ Definition (6).
2. Definition (7)⇒ Definition (8).

Theorem 3. Assume that (A1) and (15) are satisfied, then the presumed problems (5) and (6) is
UH stable.

Proof. Let z ∈ Cσ
1−σ(J) be a solution of the inequality (16) and let y ∈ Cσ

1−σ[a, b] be a unique
solution of the given system:
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H Dω,τy(t) = g(t, y(t),
t∫

a

g(t, s, y(s))ds), t ∈ J, 1 < ω < 2, 0 ≤ τ ≤ 1,

y(a) = 0, y(b) =
k

∑
j=1

$j I
νj x
(
ζ j
)
, νj > 0, $j ∈ R, ζ j ∈ J,

where 1 < ω < 2 and parameter 0 ≤ τ ≤ 1.

In view of Remark 2, we have

|z(t)− (b− a)σ−1

ΦΓ(σ)
Iωg(s, z(s), Hz(s))(b) +

(b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, z(s), Hz(s))(ζ)

− Iωg(s, z(s), Hz(s))(t)| ≤ εtω

Γ(ω + 1)
≤ εbω

Γ(ω + 1)
.

Then for each t ∈ J, we obtain

|z(t)− y(t)| ≤|z(t)− (b− a)σ−1

ΦΓ(σ)
Iωg(s, y(s), Hy(s))(b)

+
(b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ)− Iωg(s, y(s), Hy(s))(t)|

≤|z(t)− (b− a)σ−1

ΦΓ(σ)
Iωg(s, z(s), Hz(s))(b)

+
(b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, z(s), Hz(s))(ζ)− Iωg(s, z(s), Hz(s))(t)|

+ | (b− a)σ−1

ΦΓ(σ)
Iω{g(s, z(s), Hz(s))− g(s, y(s), Hy(s))}(b)

− (b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj{g(s, z(s), Hz(s))− g(s, y(s), Hy(s))}(ζ)

+ Iω{g(s, z(s), Hz(s))− g(s, y(s), Hy(s))}(t)|

≤ εbω

Γ(ω + 1)
+ (L1 + L2M)

(
(b− a)ω+σ−1

| Φ | Γ(σ)Γ(ω + 1)

+
(b− a)ω+σ−1

| Φ | Γ(σ)

m

∑
i=0

| $j | (ζ j − a)ω+ζ j

Γ(ω + νj + 1)
+

(b− a)ω

Γ(ω + 1)

)
|z(t)− y(t)|,

≤ εbω

Γ(ω + 1)
+ K|z(t)− y(t)|

≤ εbω

(1− K)Γ(ω + 1)
.

Therefore,

|z(t)− y(t)| ≤ cgε,

where,
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K =: (L1 + L2M)

(
(b− a)ω+σ−1

| Φ | Γ(σ)Γ(ω + 1)
+

(b− a)ω+σ−1

| Φ | Γ(σ)

m

∑
i=0

| $j | (ζ j − a)ω+ζ j

Γ(ω + νj + 1)
+

(b− a)ω

Γ(ω + 1)

)
.

This shows that (5) and (6) is UH stable.

Theorem 4. Assume that (A1)–(A3) and (15) hold. Then, there exists an increasing function
ν ∈ C1−σ[J] and a real number ςν > 0 such that:

|z(t)− y(t)| ≤ ςν ϕ(t), t ∈ J.

Then (5) and (6) are UHR stable.

Proof. Let z ∈ Cσ
1−σ[a, b] be a solution of the inequality (18) and let x ∈ Cσ

1−σ(J) be the
unique solution of the given system:

H Dω,τy(t) = g(t, y(t),
t∫

a

g(t, s, y(s))ds), t,

y(a) = 0, y(b) =
k

∑
j=1

$j I
νj x
(
ζ j
)
, νj > 0, $j ∈ R, ζ j,

where 1 < ω < 2 and parameter 0 ≤ τ ≤ 1.

By Remark 2, we have

|z(t)− (b− a)σ−1

ΦΓ(σ)
Iωg(s, z(s), Hz(s))(b) +

(b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, z(s), Hz(s))(ζ)

− Iωg(s, z(s), Hz(s))(t)| ≤ εςν ϕ(t).

Then, for any t ∈ J, we obtain

|z(t)− y(t)| ≤
∣∣∣∣∣z(t)− (b− a)σ−1

ΦΓ(σ)
Iωg(s, y(s), Hy(s))(b)

+
(b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, y(s), Hy(s))(ζ)− Iωg(s, y(s), Hy(s))(t)

∣∣∣∣∣
≤
∣∣∣∣∣z(t)− (b− a)σ−1

ΦΓ(σ)
Iωg(s, z(s), Hz(s))(b)

+
(b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj g(s, z(s), Hz(s))(ζ)− Iωg(s, z(s), Hz(s))(t)

∣∣∣∣∣
+

∣∣∣∣∣ (b− a)σ−1

ΦΓ(σ)
Iω{g(s, z(s), Hz(s))− g(s, y(s), Hy(s))}(b)

− (b− a)σ−1

ΦΓ(σ)

k

∑
j=1

$j I
ω+νj{g(s, z(s), Hz(s))− g(s, y(s), Hy(s))}(ζ)

+ Iω{g(s, z(s), Hz(s))− g(s, y(s), Hy(s))}(t)
∣∣∣∣∣



Fractal Fract. 2023, 7, 804 13 of 18

≤εςν ϕ(t) + (L1 + L2M)

(
(b− a)ω+σ−1

| Φ | Γ(σ)Γ(ω + 1)

+
(b− a)ω+σ−1

| Φ | Γ(σ)

m

∑
i=0

| $j | (ζ j − a)ω+ζ j

Γ(ω + νj + 1)
+

(b− a)ω

Γ(ω + 1)

)
|z(t)− y(t)

≤εςν ϕ(t) + K|z(t)− y(t)|

≤ εςν ϕ(t)
(1− K)Γ(ω)

.

Therefore, we obtain that:

|z(t)− y(t)| ≤ cg,νεν(t).

Hence, (5) and (6) are UHR stable.

5. Examples

Example 1. Consider the nonlocal BVP’s by using Hilfer FIDE’s of the form.
H Dω,τy(t) = cos2 t

(e−t+2)2|y(t)| +
1
2

t∫
0

e−1/2y(s)ds, t ∈ [ 3
10 , 13

10 ],

y( 3
10 ) = 0, y( 13

10 ) =
17
50 I

13
15 y( 23

50 ) +
21
50 I

37
100 y( 91

100 ) +
3
25 I

41
100 y( 4

5 ).
(20)

where ω = 6
5 , τ = 1

5 , σ = 7
4 , a = 3

10 , b = 13
10 , $1 = 17

50 , $2 = 21
50 , $3 = 3

25 , ν1 = 13
15 , ν2 = 37

100 ,
ν3 = 41

100 , ζ1 = 23
50 , ζ2 = 91

100 , ζ3 = 4
5 , L1 = L2 = 1

9 , M = 1
8 .

Hence, the assumptions (A2) and (A3) hold.
We check the condition,

(L1 + L2M)
[ (b− a)ω+σ−1

| Φ | Γ(σ)Γ(ω + 1)
+

(b− a)ω+σ−1

| Φ | Γ(σ)

m

∑
i=0

| $j | (ζ j − a)ω+ζ j

Γ(ω + νj + 1)
+

(b− a)ω

Γ(ω + 1)

]
< 1 ≈ 0.7347.

Hence, the problem (20) has a unique solution on [ 3
10 , 13

10 ].

Example 2. Examine the RLC circuit equation of the Hilfer fractional differential equation of
the form.

H Dω,τI(t) = E0
L −

R
L I(t)−

1
CL

t∫
0
I(s)ds, t ∈ [0, 1],

y(0) = 0, y(1) = 0.34I0.87y(0.46) + 0.42I0.37y(0.91) + 0.12I0.41y(0.8).
(21)

RLC circuits are commonly used in filter design, where they can be configured as
low-pass, high-pass, band-pass, or band-stop filters. These filters are crucial in signal
processing, telecommunications, and audio electronics. It is used in tuned circuits, which
are employed in radio receivers to select a particular frequency from a mixture of signals.
This is essential for tuning in to specific radio stations. It can be used in control systems for
tasks such as damping oscillations and stabilizing feedback loops.

In Figure 2a, various fractional orders fix the parameter value at 0.5 for the RLC circuit
equation. Figure 2b represents the three-dimensional view of RLC with the circuit elements,
R = 4, I = 2, C = 5, and E0 = 10.
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Figure 2. RLC circuit equation with Hilfer fractional derivative of parameters R = 4, I = 2,
C = 5, and E0 = 10. (a) Hilfer Fractional Derivative of RLC circuit; (b) 3D-view of RLC circuit.

Example 3. Consider the following integro-differential equation of the Hilfer fractional differential
equation of the form.

H Dω,τy(t) = cos2(t)
(e−t+2)2 +

1
2 e−1/2

t∫
0

y(s)ds, t ∈ [0, 5],

y(0) = 0, y(5) = 0.34I0.87y(0.46) + 0.42I0.37y(0.91) + 0.12I0.41y(0.8).
(22)

In these figures, the significance of fractional order derivatives is clearly revealed. In
order to show the significance of the fractional order derivative, the output responses of the
considered systems with respect to the Riemann-Liouville, Caputo, and Hilfer derivative
are graphically represented in Figures 3−5.

Notably, in Figure 3a, for the distinct values of order ω, (ω = 1.2, 1.4, 1.6, 1.8) with
the parameter τ = 0 is plotted. Similarly, for τ = 1, it is plotted in Figure 3b. Figure 4a
pictures τ = 0.9. In Figure 4b, it should be noted that the Hilfer fractional order derivative
is defined for different values of τ, which lies between 0 and 1.

In addition to this, a 3D plot with respect to the order ω, parameter τ and y(t) is given
in Figure 5. This figure clearly pictures the the impact of order ω and parameter τ for
obtaining the solution of the considered systems. Overall, from the simulation result, the
robustness of the developed methodology is validated.
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Figure 3. Different Fractional order of R-L and Caputo Derivative. (a) Riemann-Liouville Fractional
Derivative, (b) Caputo Fractional Derivative.



Fractal Fract. 2023, 7, 804 15 of 18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

-25

-20

-15

-10

-5

0

5

s
o
lu

ti
o
n

Hilfer Derivative with Parameter value=0.9

order=1.2

order=1.4

order=1.6

order=1.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

Hilfer Derivative with Order 1.2

=0

=0.2

=0.4

=0.6

=0.8

=1

(a) (b)

Figure 4. Hilfer Fractional Derivative. (a) Different Fractional Order, (b) Different Parameter Values.

The solution representation is modified when we change the order and parameter.
One of the main benefits of our problem of non-local integro differential boundary value
problems is that, while this changes the small size of the order and parameter values, it can
have a major effect when applied to a real-world problem.

Figure 5. 3D-View of Hilfer Derivative of Different Orders and Parameter at t = 2.5.

Example 4. Consider the following non-local boundary value problem with the integro-differential
equation of the Hilfer fractional differential equation of the form.

H Dω,τy(t) = 4
4t+7 (

y2(t)
1+|y(t)| +

2
3 ) +

1
2 e−1/2

t∫
0

y(s)ds, t ∈ [0, 3],

y(0) = 0, y(3) = 0.8I0.75y(0.5) + 0.5I0.85y(0.75) + 0.48I0.54y(0.25).
(23)

In Figure 6a, the solution is plotted for different values of ω = 1.2, 1.4, 1.6, 1.8 with pa-
rameter τ = 0, which is the Riemann-Liouville derivative. In Figure 6b, the solution is plot-
ted for distinct values of the order ω = 1.2, 1.4, 1.6, 1.8 with parameter τ = 1, which is the
Caputo derivative.

In Figure 7a, the solution is plotted for different fractional orders and the Hilfer
derivative with parameter τ = 0.6. In Figure 7b, the solution is plotted for fractional
order ω = 1.2 with different parameter values. In Figure 6, the solution is plotted for the
parameter values τ = 1 and τ = 0, then it is referred to as the Caputo derivative and the
R-L derivative, respectively. In Figure 7, the solution is plotted for the Hilfer derivative of
various parameter values.
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Figure 6. Various Fractional order of R-L and Caputo Derivative. (a) Riemann–Liouville Fractional
Derivative, (b) Caputo Fractional Derivative.
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Figure 7. Hilfer Fractional Derivative. (a) Different Fractional Order, (b) Differential Parameter Values.

6. Conclusions

In this paper, the existence and uniqueness results of the RLC circuit equation are
investigated utilizing Schaefer’s fixed point theorem and Banach’s contractions principle.
The Ulam-type stability results for the Hilfer fractional integro-differential equations with
non-local boundary conditions are studied for the RLC model. Finally, some numerical
examples are provided for illustrating the theoretical results. A similar generalized system
involving (k, ψ)-Hilfer fractional derivatives with particular multi-point boundary condi-
tions, and various constant and distributed delays will be further studied in future works.
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Notations
The following abbreviations are used in this manuscript:

I(t) Current
V(t) charge at t
E(t) Supplied source (volt)
C Capacitance (farad)
R Resistance (ohms)
t time
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