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Abstract: This paper considers the disturbance observer-based event-triggered adaptive fuzzy track-
ing control issue for a class of fractional-order nonlinear systems (FONSs) with quantized signals
and unknown disturbances. To improve the disturbance rejection ability, a fractional-order nonlin-
ear disturbance observer (FONDO) is designed to estimate the unknown composite disturbances.
Furthermore, by combining an improved fractional-order command-filtered backstepping control
technique and an event-triggered control mechanism, an event-triggered adaptive fuzzy quantized
control scheme is established, which guarantees the desired tracking performance can be achieved
even in the presence of network constraint. Finally, the validity and superiority of the theoretic results
are verified by a fractional-order horizontal platform system.

Keywords: command filtered backstepping control; event-triggered control; fractional-order nonlinear
systems; input quantization; nonlinear disturbance observer

1. Introduction

On account of the notable merits of fractional calculus in modeling and characterizing
accurate dynamical properties of many real-world systems, fractional-order systems (FOSs)
have received wide attention. Therefore, various control methods were extended to investi-
gate the control problem of FOSs [1–8]. In [5], the necessary and sufficient conditions were
proposed to guarantee the stability of a class of fractional-order (FO) descriptor systems.
In [8], an adaptive neural control design was developed to guarantee the uniform stability
of the closed-loop system (CLS) and avoid the violation of the preassigned state constraints.
To handle the mismatched uncertainties effectively, the adaptive backstepping control
method was widely utilized to achieve the tracking control of fractional-order nonlinear
systems (FONSs) due to its structural design and strong robustness to mismatched uncer-
tainties [9–11]. In [10], Liu et al. presented an adaptive fuzzy recursive control algorithm
to guarantee the boundedness of the resulting CLS based on direct fractional Lyapunov
stability. However, the traditional backstepping design method relies on the repeated
differentiation of virtual control laws in the recursive procedure, which undoubtedly will
cause the issue of the explosion of complexity and over-parametrization once the dimen-
sionality of the system is overlarge. To overcome this problem, inspired by the integer-order
results [12–16], some research works have reported using a modified FODSC technique for
FONSs [17–21]. It should be noted that the efforts have barely been made on the composite
disturbances consisting of the disturbances and approximation errors in the aforementioned
results, where the considered disturbance term is always handled by using the inequality
technique or designing a general compensation function. However, it is worth pointing
out that the disturbance rejection ability of the existing adaptive control method proposed
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for the FONSs needs to be further improved to maintain the desired control performance
when the investigated system suffers strong changing unknown disturbances.

As we know, unknown disturbances exist in nearly all actual systems; their existence
frequently undoubtedly degrades the performance and even destroy the system’s stabil-
ity. To improve the disturbance rejection ability of the system, the disturbance observer
(DO)-based control technique has attracted considerable attention and some significant
results have been reported for various types of nonlinear systems [22–28]. In [23], Chen
et al. proposed a DO-based synchronization control method to handle the robust synchro-
nization issue of two FO chaotic systems. In [26], a super twisting nonlinear disturbance
observer was designed to guarantee the finite-time convergence of the estimation errors.
Nevertheless, it is noted that most of the available DO-based adaptive control results
are concentrated on integer-order nonlinear systems. Thus, developing an NDO-based
adaptive backstepping control strategy for a class of FONSs remains an open problem.

On the other hand, it is universally known that real-time data are usually quantized
in some practical industrial processing control systems due to the influence of bandwidth
limitations. Therefore, one major challenge is how to realize the predefined control goal of
the CLSs by the quantized control signals. To this end, substantial attention has been paid
to adaptive backstepping quantized control for nonlinear systems [29–32]. In [30], Liu et al.
proposed a novel fuzzy quantized recursive control scheme for nonlinear systems. In [32],
Sui et al. proposed a finite-time quantized control method for stochastic nonlinear systems,
where the traditional power form was not required for determining the control signals.
Another effective way of reducing the communication burden is the even-triggered control
method. In recent years, a series of event-triggered mechanisms have been developed for
nonlinear systems [33,34]. In [33], three different kinds of event-triggered mechanisms
were developed to co-design adaptive controllers, which have been widely utilized to
address the event-triggered adaptive control problem. Unfortunately, the available adaptive
backstepping control methods for FONSs were concentrated on the time-triggered control
scheme, as in [17,19,20], where a large number of network communication resources were
required since the control signals need to be updated periodically. Therefore, the event-
triggered control problem for FONSs needs to be further investigated. Furthermore, a
new challenge arises that the complexity of controller design has to be faced when input
quantization and the event-triggered control are considered simultaneously. Therefore,
how to develop a suitable event-triggered adaptive quantized controller for FONSs also
motivates this work.

Inspired by the above observation, we aim to develop a novel FONDO-based event-
triggered adaptive fuzzy tracking control method for the FONSs with input quantization in
this paper. In comparison with other relevant studies, the main contributions of this paper
are as follows:

(1) To the best of our knowledge, this paper first attempts to develop a FONDO-based
event-triggered adaptive fuzzy tracking control scheme for unknown FONSs. Compared
with the existing adaptive backstepping control results [3,10,11,17–20], the disturbance
rejection ability against the mismatched disturbance can be greatly improved by the pro-
posed FONDO.

(2) A co-design consisting of the event-triggered communication mechanism and
input quantization is established such that a large amount of communication resources
can be saved while fulfilling the preassigned tracking task in comparison to the traditional
time-triggered control methods proposed in [3,10,11,17–20].

(3) Distinct from the logarithmic quantizer in [35,36] and hysteretic quantizer in [29,31],
an adjustable parameter is introduced to the quantizer for achieving the trade-off between
the quantization effects and control performance. Also, the saturation property is adopted
to keep the control energy within bounds, making the proposed control method closer to
the practical requirements.

The remaining part of this paper consists of the following sections. Section 2 presents
the preliminaries and formulates the considered problem. A disturbance observer-based
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event-triggered adaptive quantized control method is developed for a class of unknown
fractional-order nonlinear systems in Section 3. Section 4 provides an application example
to verify the feasibility and superiority of the developed method. Finally, the whole work
and the potential improvements are concluded in Section 5.

2. Preliminaries and Problem Formulation
2.1. Fractional Calculus

Definition 1 ([37]). The Caputo fractional derivative of order α of a function f (t) is

Dα f (t) =
1

Γ(n− α)

∫ t

0

f (n)(τ)
(t− τ)α+1−n dτ (1)

where n− 1 < α ≤ n.

Definition 2 ([37]). The Mittag-Leffler function including two parameters is expressed as:

Eα1,α2(r) =
∞

∑
i=0

ri

Γ(iα1 + α2)
, (2)

where α1 > 0, α2 > 0 and r is a complex number. Taking the Laplace transform (LT) for the above
equation, one has

L
{

tα2−1Eα1,α2(−κtα1)
}
=

sα1−α2

sα1 + κ
. (3)

Lemma 1 ([37]). For α1 ∈ (0, 2), if there exists a positive constant ` such that πα1/2 < ` <
min{π, πα1}, then the following inequality holds

|Eα1,α2(r)| ≤
}

1 + |r| , (` ≤ |arg(r)| ≤ π, |r| ≥ 0), (4)

where β2 is a real number and } > 0.

Lemma 2 ([37]). For α1 ∈ (0, 2), if there exist an arbitrary complex number α2 and a real number
` such that

πα1

2
< ` < min(π, πα1), (5)

then it can be verified that

Eα1,α2(r) =−
∞

∑
i=1

r−i

Γ(α2 − iα1)
+ o(|r|−1−`), |r| → ∞, ` ≤ |arg(r)| ≤ π (6)

for all integers ` ≥ 1.

2.2. Fuzzy Logic Systems

To better achieve the mentioned control objective, fuzzy logic systems (FLSs) are
adopted in this paper to handle the unknown nonlinearities. Consider k fuzzy IF–THEN
rules with the following form [11]:

Rs: if x1 is Fs
1 and . . . and xn is Fs

n
Then, y is Gs, s = 1, . . . , k

where Rs represents the sth rule, 1 ≤ s ≤ k, xi(i = 1, . . . , n), and y ∈ R denote the linguistic
variables associated with the inputs and outputs of the FLSs, respectively. Fs

i and Gs are
the fuzzy set. In this article, the FLSs are described as

y(x) =
∑k

s=1 ws

(
∏n

i=1 µFs
i
(xi)

)
∑k

s=1

(
∏n

i=1 µFs
i
(xi)

) . (7)
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Define the weight vector and fuzzy basis function vector as W = [w1, . . . , wk]
T

and φ(x) = [41, . . . ,4k]
T , where 4s =

[
(∏n

i=1 µFs
i
(xi))/ ∑k

s=1

(
∏n

i=1 µFs
i
(xi)

)]
; then, the

above expression can be represented as

y(x) = WTφ(x). (8)

Lemma 3 ([11]). For any continuous function f (x) defined over a compact set Θ and any given
constant o, there exist an FLS and an ideal weight vector W∗ such that

sup
x∈Θ
| f (x)−W∗Tφ(x)| ≤ ε. (9)

Lemma 4 ([38]). For z ∈ R and positive constant v, the following inequality holds

0 ≤ |z| − z2
√

z2 + v2
< v. (10)

2.3. Problem Formulation

Consider a class of FONSs subject to input quantization and unknown disturbances
described by 

Dαxi =xi+1 + fi(x̄i) + di(x, t), (i = 1, . . . , n− 1),

Dαxn =q(u) + fn(x̄n) + dn(x, t)

y =x1,

(11)

where x = x̄n = [x1, . . . , xn]
T ∈ Rn is the state vector; y ∈ R denotes the system output;

fi(x̄i) represents an unknown but smooth nonlinear function; di(x, t) represents the un-
known but bounded disturbance terms; and q(u) represents the quantized control signal.
To reduce the chattering phenomenon, the following hysteresis quantizer is considered to
obtain a quantized control signal:

q(u) =



uisgn(u),
ui

1 + δ
< |u| ≤ ui, u̇ < 0, or

ui < |u| ≤
ui

1− δ
, u̇ > 0

ui(1 + δ)sgn(u), ui < |u| ≤
ui

1− δ
, u̇ < 0, or

ui
1− δ

< |u| ≤ ui(1 + δ)

1− δ
, u̇ > 0

0, 0 ≤ |u| < umin
1 + δ

, u̇ < 0, or

umin
1 + δ

≤ |u| ≤ umin, u̇ > 0

q(u(t−)), otherwise

(12)

where ui = ρ1−iumin(i = 1, 2, . . .) with 0 < ρ < 1 and δ = 1−ρ
1+ρ , umin denotes the scope of

the dead-zone for q(u) and q(u(t−)) represents the status prior to q(u(t)).
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Lemma 5 ([30]). The quantizer q(u) can be expressed as q(u) = (1− κ)u+ κθ with the quantizer
error v satisfying 

θ2 ≤
(

κ + δ

κ
u
)2

, ∀u ≥ |umin|,

θ2 ≤
(

1− κ

κ
umin

)2
, ∀u ≤ |umin|,

(13)

where 0 < θ < 1 is a constant.

Remark 1. The parameter ρ stands for a measure of quantization density. Compared with the
logarithmic quantizer, the hysteretic quantizer can reduce the chattering effectively, which can be
viewed as a special combination of two asymmetric logarithmic quantizers. In addition, the value of
κ, as an adjustable design parameter, could be selected appropriately by the designer to balance the
control performance and quantization effects, which also increases the freedom of quantization design.

Assumption 1. The reference signal yr and its FO derivative Dαyr are available and bounded.

Assumption 2. For the external disturbance di(x, t), there exist the unknown positive constants
d̄i,1 and d̄i,2 such that the inequalities |di| ≤ d̄i,1 and |Dαdi| ≤ d̄i,2 hold.

The control objective of this work is devoted to presenting a nonlinear disturbance
observer-based event-triggered adaptive quantized tracking control scheme for system (11)
such that all the signals of the CLS are bounded and the tracking error converges to a small
neighborhood of the origin.

3. Main Results

In this section, an NDO-based event-triggered adaptive command-filtered quantized
control scheme will be developed for system (11) by integrating with the FOCFB technique
and ETC mechanism. Then, the stability analysis of the CLS will be presented based on
Mittag-Leffler stability.

NDO-Based Event-Triggered Adaptive Command-Filtered Quantized Control Design

Step 1. At first, we introduce the change of coordinates as:{
z1 = x1 − yr,

zi = xi − ϑc
i , (i = 2, . . . , n),

(14)

where zj(j = 1, . . . , n) denotes surface error and ϑc
i is an auxiliary variable used for approx-

imating the virtual control signal, which is produced by

ι2Dαϑc
2 + ϑc

2 = η1, ϑc
2(0) = η1(0), (15)

where ι2 > 0 is a small time constant and η1 is the input of the FO filter. Define the filter
error ε1 = ϑ2,c − η1. To reduce the negative effects caused by filter errors, the compensation
signal is constructed as:

Dαγ1 = −a1γ1 − ∆1γ1 + ε1, (16)

where ∆1 = |z1ε1|
γ2

1
and a1 is a positive constant.

According to Lemma 3, the FO derivative of z1 is computed as:

Dαz1 = z2 + η1 + ε1 + l−1
1 W∗T1 φ1(x1) + Λ1 − Dαyr, (17)
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where the FLS is used to approximate the term F1(x1) = l1 f1(x1) and Λ1 = d1 + l−1
1 ε1

denotes an unknown composite disturbance satisfying Λ1 ≤ d̄1
1 + l−1

1 ε̄1
1.

The first virtual control function α1 and adaptive law are designed as:

η1 = −
z1η̄2

1√
z2

1η̄2
1 + v2

1

, (18)

η̄1 = (c1 +
1 + b1

2
)z1 + l−1

1 ŴT
1 φ1(x1)− b1γ1 − Dαyr + Λ̂1, (19)

DαŴ1 = l−1
1 z1φ1(x1)− ρ1Ŵ1, (20)

where b1, c1, ρ1 and l1 are all positive constants.
Select the Lyapunov function with the following form:

V1 =
1
2

z2
1 +

1
2

W̃T
1 W̃1 +

1
2

γ1
2 +

1
2

Λ̃2
1 (21)

Taking the FO derivative of V1 yields

DαV1 ≤z1η1 + z1

(
z2 + ε1 + l−1

1 W∗T1 φ1(x1) + Λ1 − Dαyr

)
− W̃T

1 DαŴ1 + γ1Dαγ1 + Λ̃1DαΛ̃1. (22)

Subsequently, the following FONDO is designed to obtain the estimation of the
composite disturbance Λ1

Λ̂1 = l1x1 + ξ1, (23)

with
Dαξ1 = −l1

(
ξ1 + x2 + l−1

1 ŴT
1 φ1(x1) + l1x1

)
. (24)

Using (23)–(24) yields

DαΛ̂1 = W̃T
1 φ1(x1) + l1Λ̃1. (25)

Furthermore, the term Λ̃1DαΛ̃1 in (22) is calculated as:

Λ̃1DαΛ̃1 = Λ̃1DαΛ1 − Λ̃1W̃T
1 φ1 − l1Λ̃2

1, (26)

where DαΛ1 = Dαd1 + l−1
1 Dαε1 ≤ d̄1,2 + l−1

1 ε̄1,2 = Λ̄1.
Using Young’s inequality leads to

Λ̃1DαΛ̃1 ≤ −(l1 − 1)Λ̃2
1 +

1
2

Λ̄2
1 +

1
2

W̃T
1 W̃1. (27)

On account of Lemma 5, the following relationship holds

z1η1 = −
z2

1η̄2
1√

z2
1η̄2

1 + v2
1

≤ v1 − z1η̄1. (28)

Substituting (18)–(20) and (27)–(28) into (22), one can obtain

DαV1 ≤− c1z2
1 −

(1 + b1)

2
z2

1 + ρ1W̃T
1 Ŵ1 + z1Λ̃1 − a1γ2

1 + b1z1γ1

+ γ1ε1 − (l1 − 1)Λ̃2
1 +

1
2

Λ̄2
1 +

1
2

W̃T
1 W̃1 + z1z2 + v1. (29)
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Since ρ1W̃T
1 Ŵ1 ≤ − ρ1

2 W̃T
1 W̃1 +

ρ1
2 W∗T1 W∗1 holds, using Young’s inequality for (29) yields

DαV1 ≤− c1z2
1 −

(ρ1 − 1)
2

W̃T
1 W̃1 −

(
a1 −

1 + b1

2

)
γ2

1

−
(

l1 −
3
2

)
Λ̃2

1 + z1z2 + Ξ1 (30)

where Ξ1 = ρ1
2 W∗T1 W∗1 + 1

2 ε2
1 +

1
2 Λ̄2

1 + v1.
Step i (i = 2, . . . , n− 1). Similar to the previous procedure, the FO filter is designed as:

ιi+1Dαϑc
i+1 + ϑc

i+1 = ηi, ϑc
i+1(0) = ηi(0). (31)

Define the filter error εi = ϑi+1,c − ηi and construct the compensation signal as:

Dαγi = −aiγi − ∆iγi + εi, (32)

where ∆i =
|ziεi |

γ2
i

.

In addition, the FO derivative of zi is calculated as:

Dαzi = zi+1 + ηi + εi + l−1
i W∗Ti φi(x̄i) + Λi − Dαϑc

i , (33)

where Λi denotes the composite disturbance satisfying Λi = di + l−1
i εi.

Design the virtual control signal αi and adaptive law as:

ηi = −
ziη̄

2
i√

z2
i η̄2

i + v2
i

, (34)

η̄i = (ci +
1 + bi

2
)zi + zi−1 − biγi + l−1

i ŴT
i φi(x̄i)− Dαϑc

i + Λ̂i, (35)

DαŴi = l−1
i ziφi(x̄i)− ρiŴi, (36)

The Lyapunov function is chosen as:

Vi = Vi−1 +
1
2

z2
i +

1
2

W̃T
i W̃i +

1
2

γi
2 +

1
2

Λ̃2
i . (37)

Taking the FO derivative of Vi along with (33) leads to

DαVi ≤−
i−1

∑
j=1

cjz2
j −

i−1

∑
j=1

(
ρj − 1

)
2

W̃T
j W̃j + Ξi−1 −

i−1

∑
j=1

(
aj −

1 + bj

2

)
γ2

j

−
i−1

∑
j=1

(
lj −

3
2

)
Λ̃2

j + zi−1zi + ziηi + zi

(
zi+1 + εi + l−1

i W∗Ti φi(x̄i)

+Λi − Dβϑc
i

)
− W̃T

i DβŴi + γiDβγi + Λ̃iDβΛ̃i. (38)

Similar to (23) in step 1, we construct a FONDO with the following form:

Λ̂i = lixi + ξi, (39)

with
Dαξi = −li

(
ξi + ϕixi+1 + l−1

i ŴT
i φi(x̄i) + lixi

)
. (40)

Using (39)–(40) yields
DαΛ̂i = W̃T

i φi(x̄i) + liΛ̃i. (41)
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It follows from (41) that

Λ̃iDαΛ̃i = Λ̃iDαΛi − Λ̃iW̃T
i φi(x̄i)− liΛ̃2

i . (42)

Using Young’s inequality obtains

Λ̃iDαΛ̃i ≤ −(li − 1)Λ̃2
i +

1
2

Λ̄2
i +

1
2

W̃T
i W̃i. (43)

Furthermore, one can obtain

ziηi = −
z2

i η̄2
i√

z2
i η̄2

i + v2
i

≤ vi − ziη̄i. (44)

Substituting (34)–(36) and (43)–(44) into (38), one has

DαVi ≤−
i

∑
j=1

cjz2
j −

i−1

∑
j=1

(
ρj − 1

)
2

W̃T
j W̃j + Ξi −

i−1

∑
j=1

(
aj −

1 + bj

2

)
γ2

j

−
i−1

∑
j=1

(
lj −

3
2

)
Λ̃2

j + vi −
(1 + bi)

2
z2

i + ρiW̃T
i Ŵi + ziΛ̃i + biziγi

− aiγ
2
i + γiεi − (li − 1)Λ̃2

i +
1
2

Λ̄2
i +

1
2

W̃T
i W̃i + zizi+1. (45)

Utilizing Young’s inequality, we have

DαVi ≤−
i

∑
j=1

cjz2
j −

i

∑
j=1

(
ρj − 1

)
2

W̃T
j W̃j −

i

∑
j=1

(
aj −

1 + bj

2

)
γ2

j

−
i

∑
j=1

(
lj −

3
2

)
Λ̃2

j + zizi+1 + Ξi, (46)

where Ξi = Ξi−1 +
ρi
2 W∗Ti W∗i + 1

2 ε2
i +

1
2 Λ̄2

i + vi.

Remark 2. In most existing results, more control energy may be expected for obtaining a desired
control performance. However, it is noted that the amplitude of the control signal is usually limited
due to the inherent limitations of physical structures. Therefore, making a trade-off between the
control performance and input energy is reasonable and significant for practical applications.

Step n. In this step, the following saturation function is used to bound the actual
control signal. Then, one has

u(t) =

{
sign(v)uMax, |v(t)| ≥ uMax

v, |v(t)| < uMax
(47)

where uMax > 0 is the bound of u(t) and v is the input of the saturation nonlinearity
g(v) satisfying

g(v) = uMax ∗
e

v
uMax − e−

v
uMax

e
v

uMax + e−
v

uMax

. (48)

Then, one has u(t) = sat(v) = g(v) + h(v) with |h(v)| = |sat(v)− g(v)| ≤ uMax(1−
tanh(1)) = H.

Utilizing the mean value theorem, the function g(v) can be expressed as:

g(v) = g(v∗) +
∂g(·)

∂v
|v=v`0 (v− v∗), (49)



Fractal Fract. 2023, 7, 810 9 of 20

where v`0 = `0v + (1− `0)v∗ with 0 < `0 < 1. Letting v∗ = 0, we can obtain

g(v) =
∂g(·)

∂v
|v=v`0 (v− v∗)v = g0(v`0)v. (50)

Furthermore, one can obtain

u(t) = sat(v) = g0(v`0)v + h(v). (51)

Since g(v) is a non-decreasing function, there exist two positive constants g
0

and ḡ0

such that 0 < g
0
≤ g0(v`0) ≤ ḡ0.

Design the compensating signal as:

Dαγn = −anγn. (52)

Furthermore, the FO derivative of zn is calculated as:

Dαzn =(1− κ)u(t) + κθ + l−1
n W∗Tn φn(x̄n) + Λn − Dαϑc

n, (53)

where Λn = dn + l−1
n εn.

For the purpose of reducing the unnecessary waste of communication resources, the
event-triggered mechanism is introduced into controller design. Then, the event-triggered
control signal is constructed as:

v(t) = η(tk), ∀t ∈ [tk, tk+1), (54)

with the trigger condition satisfying

tk+1 = inf{t > tk||e(t)| ≥ χ|v(t)|+ ς}, (55)

where η denotes the transition control signal to be designed and e(t) = η(t)− v(t) is the
measured error. χ and ς are design parameters satisfying 0 < χ < 1 and ς > 0.

For the interval [tk, tk+1), it follows from (54)–(55) that

η(t) = (1 + µ1(t)χ)v(t) + µ2(t)ς, (56)

in which µ1(t) and µ2(t) are the time-varying parameters satisfying |µ1(t)| ≤ 1 and
|µ2(t)| ≤ 1.

Using Equation (56), one can obtain

v(t) =
η(t)

1 + µ1(t)χ
− µ2(t)ς

1 + µ1(t)χ
. (57)

The control signal η(t) and parameter update law are given as:

η(t) = − (1 + χ)znη̄2
n

(1− κ)g
0

√
z2

nη̄2
n + v2

n
, (58)

η̄n =

(
cn +

1 + bn

2

)
zn + zn−1 − Dαϑc

n − bnγn + Λ̂n

+ ς̄ tanh
(

zn ς̄

h̄

)
+ l−1

n ŴT
n φn(x̄n) + (1− κ)sgn(zn)umin (59)

DαŴn = l−1
n znφn(x̄n)− ρnŴn, (60)

where ς̄ > (1−κ)ḡ0ς
1−χ .
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Construct the Lyapunov function as:

Vn = Vn−1 +
1
2

z2
n +

1
2

W̃T
n W̃n +

1
2

γn
2 +

1
2

Λ̃2
n. (61)

Using (53), the FO derivative of Vn is expressed as:

DαVn ≤−
n−1

∑
j=1

cjz2
j −

n−1

∑
j=1

(
ρj − 1

)
2

W̃T
j W̃j −

n−1

∑
j=1

(
aj −

1 + bj

2

)
γ2

j −
n−1

∑
j=1

(
lj −

3
2

)
Λ̃2

j

+
zn(1− κ)g0(v`0)η(t)

1 + µ1(t)χ
+ zn(1− κ)h(v)− zn(1− κ)g0(v`0)µ2(t)ς

1 + µ1(t)χ

+ zn

(
κθ + l−1

n W∗Tn φn(x̄n) + Λn − Dαϑc
n

)
− W̃T

n DαŴn + γnDαγn

+ Λ̃nDαΛ̃n + zn−1zn + Ξn−1. (62)

Furthermore, design the FONDO as:

Λ̂n = lnxn + ξn, (63)

with Dαξn = −ln
(
ξn + q(u) + l−1

n ŴT
n φn(x̄n) + lnxn

)
.

Then, it follows from (63) that

DαΛ̂n = W̃T
n φn(x̄n) + lnΛ̃n. (64)

According to (64), one yields

Λ̃nDαΛ̃n = Λ̃nDαΛn − Λ̃nW̃T
n φn(x̄n)− lnΛ̃2

n. (65)

Using Young’s inequality obtains

Λ̃nDαΛ̃n ≤ −(ln − 1)Λ̃2
n +

1
2

Λ̄2
n +

1
2

W̃T
n W̃n. (66)

It follows from (57) that

zn(1− κ)g0(v`0)η(t)
1 + µ1(t)χ

≤
zn(1− κ)g

0
η(t)

1 + χ
, (67)

− zn(1− κ)g0(v`0)µ2(t)ς
1 + µ1(t)χ

≤ (1− κ)ḡ0

1− χ
|znς|. (68)

Invoking (58)–(60) and (62)–(68), one has

DαVn ≤−
n

∑
j=1

cjz2
j −

n−1

∑
j=1

(
ρj − 1

)
2

W̃T
j W̃j −

n−1

∑
j=1

(
aj −

1 + bj

2

)
γ2

j −
n−1

∑
j=1

(
lj −

3
2

)
Λ̃2

j

+ Ξn−1 + vn + bnznγn + 0.2785h̄ +
(1− κ)ḡ0

1− χ
|znς| − |zn ς̄| −

(
2− κ + bn

2

)
z2

n

+ zn(1− κ)h(v) + ρnW̃T
n Ŵn + znΛ̃n − anγ2

n − (ln − 1)Λ̃2
n +

1
2

Λ̄2
n +

1
2

W̃T
n W̃n

− |zn|(1− κ)umin + znκθ. (69)
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Using ρnW̃T
n Ŵn ≤ − ρn

2 W̃T
n W̃n +

ρn
2 W∗Tn W∗n and ς̄ > (1−κ)ḡ0ς

1−χ , we obtain

DαVn ≤−
n

∑
j=1

cjz2
j −

n

∑
j=1

ρ̄jW̃T
j W̃j −

n

∑
j=1

ājγ
2
j −

n

∑
j=1

l̄jΛ̃2
j

− |zn|(1− κ)umin + znκθ + Ξn, (70)

where Ξn = Ξn−1 + vn +
ρn
2 W∗Tn W∗n + 0.2785h̄ + 1

2 Λ̄2
n +

1−κ
2 h̄2, ās = as − 1

2 , (s = 1, . . . , n−
1), ān = an − bn

2 , l̄j = lj − 3
2 and ρ̄j =

(
ρj − 1

)
/2, (j = 1, . . . , n).

By means of the preceding derivations, the following theorem is obtained.

Theorem 1. For the investigated fractional-order nonlinear plant (11) satisfying Assumptions 1–2,
if the recursive control framework consisting of virtual control laws (18)–(19) and (34)–(35), the
actual control law (58)–(59), the parameter update laws (20), (36) and (60), and the FONDOs
(23), (39) and (63) are adopted, then all the signals of the CLS are bounded and the tracking error
converges to a small neighborhood of the origin.

Proof. Utilizing Lemma 4, the following two cases are considered for inequality (70).

Case (I): umin ≤ uMax: for this case, the following two sub-cases need to be discussed.

Case (i): |u(t)| ≤ umin: according to Lemma 4 with θ2 ≤
(

1−κ
κ umin

)2
, we can obtain

DαVn ≤−
n

∑
j=1

cjz2
j −

n

∑
j=1

ρ̄jW̃T
j W̃j −

n

∑
j=1

ājγ
2
j −

n

∑
j=1

l̄jΛ̃2
j + Ξn. (71)

Case (ii): |u(t)| ≥ umin, the following inequality holds in accordance with the relation-

ship θ2 ≤
(

κ+δ
κ u

)2
in Lemma 4

DαVn ≤−
n

∑
j=1

cjz2
j −

n

∑
j=1

ρ̄jW̃T
j W̃j −

n

∑
j=1

ājγ
2
j −

n

∑
j=1

l̄jΛ̃2
j − |zn|(1− κ)umin

+ |zn|(κ + δ)|u|+ Ξn. (72)

Let the quantized parameter satisfy the condition uMax ≤ 1−κ
κ+δ umin; then, we have

|u| ≤ 1− κ

κ + δ
umin. (73)

Invoking equalities (72) and (73), one yields

DαVn ≤−
n

∑
j=1

cjz2
j −

n

∑
j=1

ρ̄jW̃T
j W̃j −

n

∑
j=1

ājγ
2
j −

n

∑
j=1

l̄jΛ̃2
j + Ξn. (74)

Case (II): umin ≥ uMax: for this case, we have |u| ≤ umin. Therefore, a similar result can be
obtained by referring to Case (i) in Case (I).

Combining with Case (I)–Case (II), by choosing the appropriate parameter cj, ρj, aj, lj
(j = 1, . . . , n), we can obtain

DαVn ≤− λVn + Ξn, (75)

where λ = min
{

2cj, 2ρ̄j, 2āj, 2l̄j
}

.
It follows from inequality (75) that

DβVn(t) + ψ(t) = −λVn(t) + Ξn, (76)
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where ψ(t) > 0 is a time-varying parameter.
By taking LT for (76), one has

Vn(s) =
sα−1

sα + λ
Vn(0) +

sα−(1+α)Ξn

sα + λ
− Ψ(s)

sα + λ
, (77)

where Vn(s) and Ψ(s) stand for the LT of Vn(t) and ψ(t).
Utilizing (2), one has

Vn(t) =Vn(0)Eα,1(−λtα) + ΞntαEα,1+α(−λtα)− ψ(t) ∗ tα−1Eα,α(−λtα). (78)

Since both tα−1 and Eα,α(−λtα) are non-negative functions, ψ(t) ∗ tα−1Eα,α(−λtα) is
non-negative. Then, for all t ≥ 0, we have arg(−λtα) = −π, | − λtα| ≥ 0. Therefore, it
follows from Lemma 1 that there exists a constant m > 0 such that |Eα,1(−λtα)| ≤ m

1+λtα .
When t tends to ∞, one yields

lim
t→∞
|Vn(0)|Eα,1(−λtα) = 0. (79)

Moreover, the following relationship holds

Eα,1+α(−λtαVn(0)) < σ1 (80)

for a time instant t1 > 0 and every σ1 > 0.
Using Lemma 2 with ` = 1, we have Eα,1+α(−κtα) = 1

Γ(1)λtα + o( 1
|λtα |2 ). According to

the fact that Γ(1) = 1, the following equality holds

tαΞnEα,1+α(−λtα) =
Ξn

λ
+ tαΞno(

1
|λtα|2 ). (81)

Moreover, one has

tαΞno(
1
|λtα|2 ) ≤ σ2 (82)

for all t > t2 and every σ2 > 0. In addition, for every σ3 > 0, we have Ξn
λ ≤ σ3 by choosing

the proper parameters. Therefore, we can obtain

tαΛ̄nEα,1+α(−λtα) ≤ σ2 + σ3. (83)

Since the term ψ(t) ∗ tα−1Eα,α(−λtα) is non-negative, invoking (78), (80) and (83) ob-
tains

Vn(t) ≤ σ1 + σ2 + σ3. (84)

Using Lemma 3 of [37] and the definition of Vn(t), we can conclude that all resulting
signals of the CLS are bounded for t > max{t1, t2}. Furthermore, it can be obtained
that the tracking error z1 can converge to a small neighborhood of the origin |z1| ≤√

2(σ1 + σ2 + σ3). This completes the proof.

Moreover, a block diagram, as demonstrated in Figure 1, is presented to clarify the
structure of the proposed control approach.
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Figure 1. Block diagram of the proposed control scheme.

4. Simulation Verification

In this section, the effectiveness and the practical potential of the presented control
approach will be verified through a horizontal platform system (HPS). According to [39], an
HPS is mainly composed of two components, i.e., a platform and an accelerometer located
on the platform, as shown in Figure 2. When the platform deviates from the horizon, the
accelerometer will send an output signal to the torque generator, which generates a torque
to invert the rotation of the platform about the rotational axis. The mathematical equation
of the HPS is

Aθ̈ + Dθ̇ + kg sin θ − 3g
R
(B− C) cos θ sin θ = F cos ωt, (85)

where θ is the rotation of the platform relative to the earth; θ̇ is the corresponding angular
velocity; F cos ωt is harmonic torque; A, B and C are the inertia moment of the platform;
D is the damping coefficient; k denotes the proportional constant of the accelerometer;
and g is the acceleration constant of gravity. The descriptions of relevant parameters are
presented in Table 1.

1
y

1
y

R

Figure 2. Model of the platform circles along the Earth.
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Table 1. Parameter list of the HPS.

Parameters Nomenclature Value Unit

A Inertia moment of the platform around axis 1 0.3 kg ·m2

B Inertia moment of the platform around axis 2 0.5 kg ·m2

C Inertia moment of the platform around axis 3 0.2 kg ·m2

D Damping coefficient 0.4 kg ·m2 · s−1

F Amplitude of the harmonic torque 3.4 N ·m
g Acceleration constant of gravity 9.8 m · s−2

k Proportional constant of the accelerometer 0.11559633 kg ·m · rad
R Radius of the Earth 6,378,000 m
ω Circular frequency of the harmonic torque 1.8 rad · s−1

We define x1 = θ and x2 = θ̇; then, system (85) can be transformed into the follow-
ing form: {

ẋ1 =x2

ẋ2 =− ax2 − b sin x1 + l cos x1 sin x1 + h cos ωt
(86)

where a = D
A , b = kg

A , l = 3g
RA (B-C) and h = F

A .
Furthermore, considering that the fractional-order model may provide a more accurate

description of physical behavior and the actual system is inevitably influenced by perturba-
tions, the fractional-order model of HPS with input quantization and perturbations can be
given by [40]{

Dαx1 =x2 + d1(x, t)

Dαx2 =− ax2 − b sin x1 + l cos x1 sin x1 + h cos ωt + q(u) + d2(x, t)
(87)

where α denotes fractional order satisfying α = 0.95, di(x, t) denotes the unknown pertur-
bation and q(u) represents the quantized control signal to be designed. The state response
of system (86) without control effort under initial condition [x1(0), x2(0)] = [0.1, −0.1] is
displayed in Figure 3.

0 5 10 15 20 25 30 35 40 45 50

Time(s)

-10

-5

0

5

x
1
(r
ad

),
x
2
(r
ad

/s
)

x1

x2

Figure 3. The state response of system (87) without control effort.

The control parameters, initial conditions and disturbances are provided in Table 2.
Obviously, the selection of parameters δ, κ, umin and uMax can ensure the quantization
condition (73) holds. To achieve an accurate approximation of nonlinear functions, the
Gaussian membership functions of FLSs are selected as: µFi (x) = exp[−(x − i + 5)2/4]
with i = 1, . . . , 9.
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Table 2. Selection of simulation parameters.

Design Parameters Disturbance Terms

c1 = c2 = 50, a1 = a2 = ρ2 = 2, ι = 0.01,
δ = 0.2, κ = 0.15, umin = 5, uMax = 8, l1 = 10,

l2 = 20, b1 = b2 = 1, χ = 0.5, α = 0.95.

d1(x, t) = 1.5 sin(2t) + 0.5 cos(x1x2),
d2(x, t) = 1.5 cos(2t) + 0.5 sin(x1x2).

Initial Conditions

x1(0) = 0.1,x2(0) = −0.1, γ1(0) = γ2(0) = 0,
Λ̂1(0) = Λ̂2(0) = 0, Ŵ(0) = [0, 0, . . . , 0︸ ︷︷ ︸

9

]T .

Reference Signal

yr = 0.5 sin(t) + sin(0.5t)

Based on the established control framework as shown in Figure 4, the comparative
simulation results under different control schemes are demonstrated in Figures 5–11. The
tracking performances are shown in Figures 5 and 6. Furthermore, three kinds of perfor-
mance indexes, consisting of integral absolute error (IAE), integral time-weighted absolute
error (ITAE) and integral square error (ISE), are introduced to quantify the tracking per-
formance under different control methods. It can be concluded from Figures 4 and 5 and
Table 3 that better tracking performance can be achieved by using the proposed method
in comparison to the FABC method proposed in [10] and the FACFQC method developed
in [31]. The responses of composite disturbance Λi and its estimation Λ̂i are plotted in
Figures 7 and 8. Figures 9 and 10 depict the trajectories of the norm of adaptive parameter
||Ŵ|| and the quantized control signal q(u). The time interval of each event is demonstrated
in Figure 11.

Quantized 
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2x q= &

( , )d x t
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2L

( )q u

e

Ŵf
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Compensation

signal

1g

2
g

FOHPS

Figure 4. Control framework of the FOHPS.
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Figure 5. The reference signal yr and the system output y under different control methods.
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Figure 6. The tracking error y-yr under different control methods.

Table 3. Performance comparisons under different methods.

Performance Index Items FABC in [10] FACFQC in [31] Proposed

IAE
∫ T

0 |z1(t)|dt 1.75 1.755 1.153
ITAE

∫ T
0 t|z1(t)|dt 40.62 40.77 26.09

ISE
∫ T

0 z2
1(t)dt 0.073 0.075 0.035
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Figure 7. The composite disturbance Λ1 and its estimation Λ̂1.
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Figure 8. The composite disturbance Λ2 and its estimation Λ̂2.
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Figure 11. Trigger interval tk+1–tk.

5. Conclusions

In this article, a nonlinear disturbance observer-based event-triggered adaptive
command-filtered quantized control approach is developed for fractional-order nonlinear
systems with unknown disturbances. By introducing the command-filtered backstepping
technique into the recursive design procedure, the potential issue of computational com-
plexity existing in [10] and the negative effect caused by filter error in [17] are successfully
avoided. Furthermore, a fractional-order disturbance observer is designed to achieve dis-
turbance estimation, which can improve system robustness against composite disturbances
consisting of unknown disturbances and approximation in comparison to the existing
recursive control schemes proposed in [10,17,31]. Moreover, differently from the com-
mon time-triggered control methods in [10,17,31], the event-triggered control mechanism
and input quantization are considered simultaneously, which can save a large amount
of communication bandwidth and provide a possible way to make a trade-off between
tracking performance and control costs. Finally, the validity and superiority of the proposed
method are verified by a fractional-order HPS. However, it should be pointed out that a
preassigned transient and steady-state performance cannot be ensured although the design
controller can guarantee a relatively satisfactory tracking performance. Therefore, one of
our future research works is to propose an adaptive control scheme with assured transient
and steady-state performance for fractional-order nonlinear systems.
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