
Citation: Socorro, J.; Rosales, J.J.;

Toledo-Sesma, L. Anisotropic

Fractional Cosmology: K-Essence

Theory. Fractal Fract. 2023, 7, 814.

https://doi.org/10.3390/fractalfract

7110814

Academic Editors: Seyed Meraj

Mousavi Rasouli and Shahram

Jalalzadeh

Received: 15 September 2023

Revised: 1 November 2023

Accepted: 3 November 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Anisotropic Fractional Cosmology: K-Essence Theory
José Socorro 1,*,† , J. Juan Rosales 2,† and Leonel Toledo-Sesma 3,†

1 Departamento de Física, División de Ciencias e Ingenierías, Universidad de Guanajuato-Campus León,
León 37150, Mexico

2 Departamento de Ingeniería Eléctrica, División de Ingenierías Campus Irapuato-Salamanca, Universidad de
Guanajuato Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km, Comunidad de Palo Blanco,
Salamanca 36885, Mexico; rosales@ugto.mx

3 Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional,
Carretera Pachuca—Actopan Kilómetro 1 + 500, San Agustín Tlaxiaca 42162, Mexico; ltoledos@ipn.mx

* Correspondence: socorro@fisica.ugto.mx
† These authors contributed equally to this work.

Abstract: In the particular configuration of the scalar field k-essence in the Wheeler–DeWitt quantum
equation, for some age in the Bianchi type I anisotropic cosmological model, a fractional differential
equation for the scalar field arises naturally. The order of the fractional differential equation is
β = 2α

2α−1 . This fractional equation belongs to different intervals depending on the value of the
barotropic parameter; when ωX ∈ [0, 1], the order belongs to the interval 1 ≤ β ≤ 2, and when
ωX ∈ [−1, 0), the order belongs to the interval 0 < β ≤ 1. In the quantum scheme, we introduce the
factor ordering problem in the variables (Ω, φ) and its corresponding momenta (ΠΩ, Πφ), obtaining
a linear fractional differential equation with variable coefficients in the scalar field equation, then the
solution is found using a fractional power series expansion. The corresponding quantum solutions
are also given. We found the classical solution in the usual gauge N obtained in the Hamiltonian
formalism and without a gauge. In the last case, the general solution is presented in a transformed
time T(τ); however, in the dust era we found a closed solution in the gauge time τ.

Keywords: fractional derivative; fractional quantum cosmology; k-essence formalism; classical and
quantum exact solutions

1. Introduction

Fractional cosmology is a new line of research born approximately twenty years
ago based on fractional calculus (FC). The FC is a non-local natural generalization to the
arbitrary order of derivatives and integrals. Non-local effects occur in space and time. In
the time domain, a non-local description becomes manifest as a memory effect, and in the
space domain, it manifests as non-homogeneous similarity structures [1–3]. During the
last decades, FC has been the subject of intense theoretical and applied research in almost
all areas of the sciences and engineering from the point of view of classical and quantum
systems [4–14]; recently, new studies on FC have been made [15–18]. This is because FC
describes complex physical systems more accurately, and at the same time investigates more
about simple dynamical systems [19,20]. General relativity is not an exception, in [21–31]
the importance of FC and its potential applications in cosmology was introduced. In [32],
the FRW universe was presented in the context of the variational principle of fractional
action. In this new cosmological formulation, the accelerated expansion of the universe
can be attributed to the fractional dissipative force without the need to introduce any kind
of matter or scalar fields; similar results are obtained in [33,34]. In [22], the concept of
fractional action cosmology was applied to massive gravity, where fractional graviton
masses are introduced.

Unlike the previously described formalism to obtain fractional cosmology, in [35]
it is mentioned that by quantifying different epochs of the k-essence theory, a fractional
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Wheeler–DeWitt equation in the scalar field component is naturally obtained. Recently,
such an equation was solved for some epochs in the FRW model and communicated in [36].
In this work, we present the continuation of our previous investigation. In this case, we
will analyze the Bianchi type I, which is the anisotropic generalization of the flat FRW
cosmological model. In the quantum scheme, we introduce the factor-ordering problem
in the variables (Ω, φ) and its corresponding momenta (ΠΩ, Πφ), obtaining a fractional
differential equation with variable coefficients in the scalar field equation. The solution is
found using a fractional series expansion [37,38], generalizing our previous work [36].

This paper is organized in the following way: in Section 1, we give a brief review of
fractional calculus and the main ideas of the k-essence formalism; in Section 2, we construct
the Lagrangian and Hamiltonian densities for the anisotropic Bianchi type I cosmological
model, considering a barotropic perfect fluid for the scale field in the variable X. We found
the classical solution in the usual gauge N obtained in the Hamiltonian formalism, and
without a gauge. In the last case, the general solution is presented in a transformed time
T(τ); however, in the dust era we found a closed solution in the gauge time τ; in Section 3,
the quantization of the model for any era in our universe is performed and we present
particular scenarios too. In this section, we introduce the factor ordering in both variables;
finally, in Section 4, the conclusions are given.

2. Brief Review on Fractional Calculus and K-Essence Theory
2.1. Brief Review on Fractional Calculus

In the theory of fractional calculus, there are some definitions of fractional derivatives;
Riemann–Liouville, Caputo, Caputo–Fabrizio, Atangana–Baleanu, to name a few, each
with its advantages and disadvantages [39–41]. In this work, we use the Caputo fractional
derivative of order γ, defined by using the Riemann–Liouville fractional integral [1]

Iγ f (t) =
1

Γ(γ)

∫ t

0

f (τ)
(t− τ)1−γ

dτ, γ > 0, (1)

recovering the ordinary integral when γ → 1. The Caputo fractional derivative of order
γ ≥ 0 of a function f (t), then, is defined as the fractional-order integral (1) of the integer-
order derivative

C
0 Dγ

t f (t) = I(n−γ)
0Dn

t f (t) =
1

Γ(n− γ)

∫ t

0

f (n)(τ)
(t− τ)γ−n+1 dτ, (2)

with n− 1 < γ ≤ n ∈ N = 1, 2, . . ., γ ∈ R is the order of the fractional derivative, f (n)

are the ordinary integer derivatives, and Γ(x) =
∫ ∞

0 e−ttx−1dt is the gamma function. The
Caputo derivative satisfies the following relations

C
0 Dγ[ f (t) + g(t)] = C

0 Dγ f (t) + C
0 Dγg(t). (3)

C
0 Dγc = 0, where c is a constant. (4)

The Laplace transform of the function f (t) defined in the ordinary case is given by

L[ f (t)] =
∫ ∞

0
f (t)e−stdt ≡ F(s), (5)

then, the Laplace transform of the Caputo fractional derivative (2) has the form

L[C0 Dγ f (t)] = sγF(s)−
n−1

∑
k=0

sγ−k−1 f (k)(0), (6)
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where f (k) is the ordinary derivative. Another definition which will be used is the Mittag–
Leffler function [42–44],

Eχ,σ(z) =
∞

∑
n=0

zn

Γ(nχ + σ)
(χ, σ > 0), (7)

for σ = 1, we have a one-parameter Mittag–Leffler function:

Eχ(z) = Eχ,1(z) =
∞

∑
n=0

zn

Γ(nχ + 1)
(χ > 0). (8)

Other special cases are given in [43,44]

E1(±z) = e±z, E2(z) = cosh
√

z, E2,1(−z2) = cos z,

E2,2(z2) =
sinh z

z
, E2,2(−z2) =

sin z
z

. (9)

A Laplace transform (5) of the Mittage–Leffler function is given by the formula

∫ ∞

0
e−sttχm+σ−1E(m)

χ,σ (±atχ)dt =
m! sχ−σ

(sχ ∓ a)m+1 . (10)

Consequently, the inverse Laplace transform is

L−1
[ m! sχ−σ

(sχ ∓ a)m+1

]
= tχm+σ−1E(m)

χ,σ (±atχ). (11)

This expression will be very useful to obtain analytical solutions of fractional differen-
tial equations using the Laplace transform.

2.2. K-Essence Fractional in the Bianchi Type I Scenario

One of the fundamental problems of cosmology is to find an explanation consistent
with experiments for the accelerated expansion of the universe. Many proposals to tackle
this task suggest modifying the general relativity theory. A recent proposal suggests
unifying the description of dark matter, dark energy, and inflation, employing a scalar field
with a nonstandard kinetic term, known as k-essence theory. Usually, the action of the
k-essence models [45–50] can be written as

S =
∫

d4x
√
−g
(

1
2
R+ f (φ)G(X) + Lmatter

)
, (12)

with g being the determinant of the metric,R the scalar curvature, f (φ) an arbitrary function of
the dimensionless scalar field φ, X = − 1

2 gµν∇µφ∇νφ the canonical kinetic energy, and Lmatter
is the corresponding Lagrangian density of ordinary matter. So, performing the variation of
the action (12) with respect to the metric gµν and X, the field equations are obtained:

Gµν − f (φ)
[
GX∇µφ∇νφ + Ggµν

]
= Tµν, (13)

f (φ)
[
GX∇µ∇µφ + GXX∇µX∇µφ

]
+

d f
dφ

[
G − 2XGX

]
= 0, (14)

where we have assumed that 8πG = 1 and a subscript X denotes differentiation with re-
spect to X. K-essence was originally proposed as a model for inflation; and then, as a model
for dark energy, along with explorations of unifying dark energy and dark matter [51,52].
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The last set of field Equations (13) and (14) are the results of considering the scalar
field X(φ) as part of the matter content, i.e., LX,φ = f (φ)G(X), with the corresponding
energy–momentum tensor

T (φ)
µν = f (φ)

[
GX∇µφ∇νφ + G(X)gµν

]
. (15)

Also, considering the energy–momentum tensor of a barotropic perfect fluid,

T(φ)
µν = (ρφ + Pφ)uµuν + Pφgµν, (16)

with uµ being the four-velocity satisfying the relation uµuµ = −1, ρφ the energy density,
and Pφ the pressure of the fluid. To simplify, we are going to consider a comoving perfect
fluid, whose pressure and energy density corresponding to the energy–momentum tensor
of the field X are

Pφ(X) = f (φ)G, ρφ(X) = f (φ)[2XGX − G], (17)

thus the barotropic parameter ωX =
Pφ(X)

ρφ(X)
for the equivalent fluid is

ωX =
G

2XGX − G
. (18)

Notice that the case of a constant barotropic index ωX (with the exception ωX = 0)
can be obtained using the G function

G = X
1+ωX
2ωX . (19)

At this point we can choose

G = Xα, α =
1 + ωX

2ωX
→ ωX =

1
2α− 1

. (20)

With this, we can write the states in the evolution of the universe summarized in
the Table 1.

Table 1. States of the universe’s evolution according to the barotropic parameter ωX .

ωX α G(X) State of Evolution

1 1 X Stiff matter
1
3 2 X2 Radiation

→ 0 → ∞ Xm, m→ ∞ Dust-like

−1 0 1, f (φ) = Λ = cte Inflation

− 1
3 -1 1

X Inflation-like

− 2
3 − 1

4
1

4√X
Inflation-like

We are interested in the four-dimensional fractional cosmology in the scenario of
k-essence within the anisotropic background, precisely, the Bianchi type I, whose metric
has the line element gαβ, which can be read as

ds2 = −N2(t) dt2 + A2(t) dx2 + B2(t) dy2 + C2(t) dz2, (21)
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where N(t) is the lapse function, and the functions A(t), B(t), and C(t) are the correspond-
ing scale factors in the (x, y, z) directions, respectively. Moreover, in Misner’s parametriza-
tion, the radii for this anisotropic background have the explicit forms

A = eΩ+β++
√

3β− , B = eΩ+β+−
√

3β− , C = eΩ−2β+ , (22)

where the functions in the radii are dependent on time, Ω = Ω(t), and β± = β±(t). In this
point, we notice that the line element (21) in the time dτ = Ndt reads as

ds2 = −dτ2 + e2(Ω(τ)+β+(τ)+
√

3β−(τ)) dx2 + e2(Ω(τ)+β+(τ)−
√

3β−(τ)) dy2 + e2Ω(τ)−4β+(τ) dz2, (23)

and employing the form of the functional G = Xα, and the following quantities:

′ = d
dτ

=
d

Ndt
, gττ = gττ = −1, GX = αXα−1, GXX = α(α− 1)Xα−2,

φ
,µ
;µ = gµν

(
φ,µν − Γθ

µνφ,θ

)
= −

(
φ′′ + 3Ω′φ′

)
, X;µφ,µ = gµνφ,νX;µ = −X′φ′,

X =
1
2
(
φ′
)2,

(
φ′
)2

= 2X, X′ = φ′φ′′, φ′′ =
X′

φ′
,

then Equation (14) is written as

αXα−1(φ′′ + 3Ω′φ′
)
+ α(α− 1)Xα−2X′φ′ + (2α− 1)Xα d

dφ
Ln f = 0, (24)

which can be transformed into

d
dτ

(
LnX +

6Ω
2α− 1

+ Ln f
1
α

)
= 0, (25)

and in turn integrated, resulting in∫
f

1
2α (φ) dφ =

√
2λ
∫

e−
3Ω(τ)
2α−1 dτ, (26)

where λ is an integration constant and has the same sign as f (φ). In the gauge N = 24e
3Ω

2α−1 ,
the right-hand side is ∫

f
1

2α (φ) dφ = 24
√

2λ (t− ti), (27)

where ti is the initial time for the α scenario in the universe. At this point, we can introduce
some structure for the function f (φ) and solve the integral.

When we consider the particular mathematical structure for the function
f (φ) = pφm or f (φ) = pemφ with p and m constants, the classical solutions for the field φ
in quadratures are

φ(τ) = φ(τi) +



[
(2α+m)

2α p−
1

2α

√
2λ
∫

e−
3Ω(τ)
2α−1 dτ

] 2α
2α+m

, f (φ) = pφm, m 6= −2α

Exp
[

p−
1

2α

√
2λ
∫

e−
3Ω(τ)
2α−1 dτ

]
, f (φ) = pφ−2α, m = −2α

2α
m Ln

[
m
2α p−

1
2α

√
2λ
∫

e−
3Ω(τ)
2α−1 dτ

]
, f (φ) = pemφ, m 6= 0,

p−
1

2α

√
2λ
∫

e−
3Ω(τ)
2α−1 dτ f (φ) = p, m = 0.

(28)
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The complete solution to the scalar field φ depends strongly on the mathematical

structure of the scale factor Ω(τ) in the α scenario in our universe. In the gauge N = 24e
3Ω

2α−1 ,
these solutions are

φ(t) = φ(ti) +



[
12(2α+m)

α p−
1

2α

√
2λ(t− ti)

] 2α
2α+m , f (φ) = pφm, m 6= −2α

Exp
[
24p−

1
2α

√
2λ(t− ti)

]
, f (φ) = pφ−2α, m = −2α

2α
m Ln

[
12m

α p−
1

2α

√
2λ(t− ti)

]
, f (φ) = p emφ, m 6= 0,

24p−
1

2α

√
2λ(t− ti) f (φ) = p, m = 0,

(29)

where ti and φ(ti) are the initial time and the scalar field in this time for the α scenario
in the universe. In what follows, we perform the calculations to obtain the scale factor in
some cases.

3. Lagrange and Hamilton Formalism

Introducing the line element (21) of the anisotropic Bianchi type I cosmological model
into the Lagrangian (12), we have

LI = e3Ω

{
6

Ω̇2

N
− 6

β̇2
+

N
− 6

β̇2
−

N
− f (φ)

(
1
2

)α

(φ̇)
2αN−2α+1

}
. (30)

Using the standard definition of the momenta Πqµ = ∂L
∂q̇µ , where qµ are the coordinate

fields qµ = (Ω, β±, φ), we obtain the momenta associated with each field

ΠΩ =
12
N

e3ΩΩ̇, Ω̇ = e−3Ω NΠΩ

12
,

Π± = −12
N

e3Ω β̇±, ˙β± = −e−3Ω NΠ±
12

,

Πφ = − f (φ)
(

1
2

)α 2α

N2α−1 e3Ωφ̇2α−1, φ̇ = −Ne−
3Ω

2α−1

[
2α

2α

Πφ

f (φ)

] 1
2α−1

, (31)

and introducing them into the Lagrangian density, we obtain the canonical Lagrangian as
Lcanonical = Πqµ q̇µ − NH = Πqµ q̇µ − H. When we perform the variation of this canonical

Lagrangian with respect to N, δLcanonical
δN = 0, we obtain the constraintH = 0. In our model,

this is the only constraint corresponding to the Hamiltonian density, which is weakly zero.
So, the Hamiltonian is

H =
N
24

e−
3

2α−1 Ω

e−
6(α−1)
2α−1 Ω

[
Π2

Ω −Π2
+ −Π2

−

]
− 12(2α− 1)

α

(
2α−1

α f (φ)

) 1
2α−1

Π
2α

2α−1
φ

. (32)

3.1. Exact Solution in the Gauge N = 24e
3

2α−1 Ω

Using the Hamilton equations for the momenta Π̇µ = − ∂H
∂qµ and coordinates q̇µ = ∂H

∂Πµ
,

we have
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Ω̇ = 2e−
6(α−1)
2α−1 ΩΠΩ (33)

˙β+ = −2e−
6(α−1)
2α−1 ΩΠ+, (34)

˙β− = −2e−
6(α−1)
2α−1 ΩΠ−, (35)

φ̇ = −24
(

2α−1

α f (φ)

) 1
2α−1

Π
1

2α−1
φ , (36)

Π̇Ω =
6(α− 1)
2α− 1

e−
6(α−1)
2α−1 Ω

[
Π2

Ω −Π2
+ −Π2

−

]
, (37)

Π̇± = 0, ⇒ Π± = p± = constant, (38)

Π̇φ = −12
α

(
2α−1

α

) 1
2α−1

Π
2α

2α−1
φ f−

2α
2α−1

ḟ
φ̇

, (39)

solving Equation (39) using (36), we have Πφ = pφ f
1

2α , with pφ an integration constant.
With this result, and taking into account Equation (36), we obtain

∫
f

1
2α dφ = −24

(
pφ2α−1

α

) 1
2α−1

(t− ti), (40)

that is, similar to (27), previously obtained, which was solved a Klein–Gordon-like equa-
tion directly. Using the Hamiltonian constraint and the solution to Equation (39) found
previously, we have

e−
6(α−1)
2α−1 Ω

[
Π2

Ω −Π2
+ −Π2

−

]
=

12(2α− 1)
α

(
p2α

φ 2α−1

α

) 1
2α−1

, (41)

then, the solution for the momenta becomes

ΠΩ = ηα t + p0, (42)

where the constant ηα = 72(α−1)
α

(
p2α

φ 2α−1

α

) 1
2α−1

and p0 are constants of integration that,

when introduced into the equation for Ω, give us the equation for the Ω function,

dΩ
dt

= 2e−
6(α−1)
2α−1 Ω(ηαt + p0), e

6(α−1)
2α−1 Ω =

6(α− 1)
2α− 1

(
ηαt2 + 2p0t + p1

)
, (43)

whose solution becomes

Ω =
2α− 1

6(α− 1)
ln
[

6(α− 1)
2α− 1

(
ηαt2 + 2p0t + p1

)]
, (44)

and the solution for the scalar field is given by Equation (29). The solutions for the
anisotropic function β± are given by

β±(t) = b± −
(2α− 1)p±

24(α− 1)ηα

√
p2

0 − ηα p1

ln

ηαt + p0 −
√

p2
0 − ηα p1

ηαt + p0 +
√

p2
0 − ηα p1

, (45)

β± = b± −
(

2α− 1
24(α− 1)

)
p±

ηα
√

λα
ln
(

Σ−(t)
Σ+(t)

)
, (46)
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where
Σ±(t) = ηαt + p0 ±

√
λα, and λα = p2

0 − ηα p1 > 0.

According to the last expressions, the radii associated with the Bianchi type I have the
following behavior:

A(t) = eΩ+β++
√

3 β− = A0

[
6(α− 1)
2α− 1

(
Σ+(t)
Σ−(t)

) p++
√

3 p−
4ηα
√

λα

(ηαt2 + 2p0t + p1)

] 2α−1
6(α−1)

,

B(t) = eΩ+β+−
√

3 β− = B0

[
6(α− 1)
2α− 1

(
Σ+(t)
Σ−(t)

) p+−
√

3 p−
4ηα
√

λα

(ηαt2 + 2p0t + p1)

] 2α−1
6(α−1)

,

C(t) = eΩ−2β+ = C0

[
6(α− 1)
2α− 1

(
Σ−(t)
Σ+(t)

) p+
2ηα
√

λα

(ηαt2 + 2p0t + p1)

] 2α−1
6(α−1)

,

(47)

with the volume of this universe V(t) = ABC = e3Ω

V(t) = V0

[
6(α− 1)
2α− 1

(ηαt2 + 2p0t + p1)

] 2α−1
2(α−1)

. (48)

where we have graphed on different time scales in each scenario; in both cases the volume
is increasing, as shown in Figure 1.

1 2 3 4 5
t

50000

100000

150000

200000

250000

300000

V

60 70 80 90 100
t

2×106

3×106

4×106

5×106

6×106

V

Figure 1. Volume of the universe into the radiation and dust ages, respectively, according to Table 1,
we choose pφ = 2 and p1 = 1.

3.2. Exact Solution without Gauge N in the Time τ

For this case, the Hamilton procedure is not adequate, so we shall use the Hamilton–
Jacobi procedure in order to find the solutions for the remaining mini-superspace variables,
which arise by making the identification ∂S(Ω,β± ,φ)

∂qµ
= Πµ in the Hamiltonian constraint (32),

H = 0, taking S(Ω, β±, φ) = SΩ(Ω) + S+(β+) + S−(β−) + Sφ(φ), which results in

e−
6(α−1)
2α−1 Ω

[(
dSΩ

dΩ

)2
−
(

dS+

dβ+

)2
−
(

dS−
dβ−

)2
]
− Aα

(
1

f (φ)

) 1
2α−1

(
dSφ

dφ

) 2α
2α−1

= 0. (49)

Separating this equation, we have

e−
6(α−1)
2α−1 Ω

[(
dSΩ

dΩ

)2
−
(

dS+

dβ+

)2
−
(

dS−
dβ−

)2
]
= Aα

(
1

f (φ)

) 1
2α−1

(
dSφ

dφ

) 2α
2α−1

= `2
φ. (50)

with `φ a separation constant. The solution in the variable φ is



Fractal Fract. 2023, 7, 814 9 of 19

Πφ =
dSφ

dφ
=

[
`2

φ

Aα

] 2α−1
2α

f
1

2α (φ) = pφ f
1

2α (φ), (51)

where S(φ) = pφ

∫
f

1
2α (φ) dφ, obtaining similar results in the Hamilton procedure.

The specific values of the constants are pφ =

[
`2

φ

Aα

] 2α−1
2α

and Aα = 12(2α−1)
α

(
2α−1

α

) 1
2α−1 ,

in terms of the α parameter.
The other equations are read as(

dSΩ

dΩ

)2
= `2

+ + `2
− + `2

φ e
6(α−1)
2α−1 , (52)(

dS+

dβ+

)2
= `2

+, S+ = s+ ± `+ β+, (53)(
dS−
dβ−

)2
= `2

−, S− = s− ± `− β−, (54)

where `2
i are separation constants and s± integration constants. On the other side, recall-

ing the expressions for the momenta we can obtain solutions for Equations (52)–(54) in
quadrature for the variable Ω and for α 6= 1.

3.3. Case for α 6= 1

In this particular case, we have

dτ = 12
e3Ω dΩ√

`2 + `2
φ e

6(α−1)
2α−1 Ω

, `2 = `2
+ + `2

−, (55)

and for the anisotropic variables,

∆β± = ∓ `±
12

∫
e−3Ω(τ) dτ. (56)

For solving Equation (55), we employ the transformation in the time variable dτ =

e
3

2α−1 ΩdT and U = `2 + `2
φ e

6(α−1)
2α−1 Ω, so, dU = `2

φ
6(α−1)
2α−1 e

6(α−1)
2α−1 ΩdΩ, resulting in

dT = 12
e

6(α−1)
2α−1 ΩdΩ√
U

=
2(2α− 1)
(α− 1)`2

φ

dU√
U

,

and the solution is

T − T0 =
4(2α− 1)
(α− 1)`2

φ

(√
U −

√
U0

)
,

then, for the Ω variable, we have

Ω(T) = Ln

( `φ(α− 1)
4(2α− 1)

(T − T0) +

√
U0

`2
φ

)2

−
(

`

`φ

)2
 2α−1

6(α−1)

, (57)

and the time transformation becomes

dτ =

( `φ(α− 1)
4(2α− 1)

(T − T0) +

√
U0

`2
φ

)2

−
(

`

`φ

)2
 1

2(α−1)

dT. (58)
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To obtain the solutions in the time T for the anisotropic functions β±(T), we solve
the integral∫

e−3Ω(τ)dτ =
∫

e−
6(α−1)
2α−1 Ω(T)dT =

∫ dT(
`φ(α−1)
4(2α−1) (T − T0) +

√
U0
`2

φ

)2

−
(

`
`φ

)2

=
4(2α− 1)
`(α− 1)

Ln

 `2
φ(α−1)

4(2α−1)) (T − T0) +
√

µ0 − `

`2
φ(α−1)

4(2α−1)) (T − T0) +
√

µ0 + `

, (59)

then, the anisotropic functions (56) become

β±(T) = β±(Ti)∓
`±
3

(2α− 1)
`(α− 1)

Ln

 `2
φ(α−1)

4(2α−1)) (T − T0) +
√

µ0 − `

`2
φ(α−1)

4(2α−1)) (T − T0) +
√

µ0 + `

. (60)

and the scalar field (28) takes the form

φ(T) = φ(Ti) +



[
(2α+m)

2α p−
1

2α

√
2λ(T − Ti)

] 2α
2α+m , f (φ) = pφm, m 6= −2α,

Exp
[

p−
1

2α

√
2λ(T − Ti)

]
, f (φ) = pφ−2α, m = −2α,

2α
m Ln

[
m
2α p−

1
2α

√
2λ(T − Ti)

]
, f (φ) = pemφ, m 6= 0,

p−
1

2α

√
2λ(T − Ti), f (φ) = p, m = 0,

(61)

On the other side, the only state when the time τ = T corresponds to the scenario
α→ ∞, which is calculated below.

Dust Scenario, α→ ∞

For this particular case, we have

Ω(τ) = Ln

( `φ

8
(τ − τ0) +

√
U0

`2
φ

)2

−
(

`

`φ

)2
 1

3

, (62)

then, the volume function becomes

V(τ) = V0


(
`φ

8
(τ − τ0) +

√
U0

`2
φ

)2

−
(

`

`φ

)2
, (63)

and the anisotropic functions are

β±(τ) = β±(τ0)∓
`±
3

2
`

Ln

 `2
φ

8 (τ − τ0) +
√

µ0 − `

`2
φ

8 (τ − τ0) +
√

µ0 + `

. (64)

We can see that the scalar field constant `φ is huge, the anisotropic function tends to
constant, and the anisotropic model can be an isotropic one. We rewrite the corresponding
solutions in the scalar field (28) for this scenario:

φ(τ) = φ(τ0) +



[√
2λ(τ − τ0)

]
, f (φ) = pφm, m 6= −2α,

Exp
[√

2λ(τ − τ0)
]
, f (φ) =, m = −2α,

Ln
[√

2λ(τ − τi)
]
, f (φ) = pe2αφ,

√
2λ(τ − τ0), f (φ) = p, m = 0.

(65)
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4. Quantum Regime

The WDW equation for these models is obtained by making the usual substitution
Πqµ = −ih̄∂qµ in (32) and promoting the classical Hamiltonian density in the differential
operator applied to the wave function Ψ(Ω, β±, φ), ĤΨ = 0; we have

h̄2e−
6(α−1)
2α−1 Ω

[
− ∂2Ψ

∂Ω2 +
∂2Ψ
∂β2

+

+
∂2Ψ
∂β2
−

]
− 12(2α− 1)

α

(
2α−1

α f (φ)

) 1
2α−1

h̄
2α

2α−1
∂

2α
2α−1

∂φ
2α

2α−1
Ψ = 0. (66)

This fractional differential equation of degree β = 2α
2α−1 , belongs to different intervals

depending on the value of the barotropic parameter [36]. We can write this equation in
terms of the β parameter; we have

h̄2e−3(2−β)Ω

[
− ∂2Ψ

∂Ω2 +
∂2Ψ
∂β2

+

+
∂2Ψ
∂β2
−

]
− 24

β

(
2α−1

α f (φ)

) 1
2α−1

h̄β ∂β

∂φβ
Ψ = 0. (67)

For simplicity, the factor e−3(2−β)Ω may be the factor ordered with Π̂Ω and f−
1

2α−1 (φ)

may be the factor ordered with ∂β

∂φβ . In many ways, what we employ what might be called a

semi-general factor ordering, which, in this case, would order the terms e−3(2−β)ΩΠ̂2
Ω

as −e−(3(2−β)−Q)Ω ∂Ωe−QΩ∂Ω = −e−3(2−β)Ω ∂2
Ω + Q e−3(2−β)Ω∂Ω, where Q is any real

constant that measures the ambiguity in the factor ordering in the variables Ω and its
corresponding momenta. For the other factor ordering, we make the following calculation
which, in this case, would order the terms g(φ)

f
1

2α−1 (φ)

∂β

∂φβ , where in the particular case we

choose g(φ) = φs, similarly to f (φ) in the classical case, is

f−
1

2α−1 (φ) φ−s ∂β/2

∂φβ/2 φs ∂β/2

∂φβ/2 = f−
1

2α−1 (φ)
∂β

∂φβ
+ f−

1
2α−1 (φ) φ−s

[
∂β/2

∂φβ/2 φs

]
∂β/2

∂φβ/2 , (68)

where the Caputo fractional derivative of
[

∂β/2

∂φβ/2 φs
]

becomes [1],

c
0Dβ/2

x φs =
Γ(s + 1)

Γ(s− β/2 + 1)
φs−β/2. (69)

Thus, Equation (68) is rewritten as

f−
1

2α−1 (φ) φ−s ∂β/2

∂φβ/2 φs ∂β/2

∂φβ/2 = f−
1

2α−1 (φ)
∂β

∂φβ
+ f−

1
2α−1 (φ) φ−s Γ(s + 1)

Γ(s + 1− β/2)
φs−β/2 ∂β/2

∂φβ/2

= f−
1

2α−1 (φ)
∂β

∂φβ
+ f−

1
2α−1 (φ)

Γ(s + 1)
Γ(s + 1− β/2)

φ−β/2 ∂β/2

∂φβ/2 (70)

Assuming this factor ordering for the Wheeler–DeWitt equation, we obtain

e−3(2−β)Ω

[
− ∂2Ψ

∂Ω2 + Q
∂Ψ
∂Ω

+
∂2Ψ
∂β2

+

+
∂2Ψ
∂β2
−

]

−24
β

(
2α−1

α f (φ)

) 1
2α−1

h̄β ∂β

∂φβ
Ψ− 24

β

(
2α−1

α f (φ)

) 1
2α−1

h̄βφ−s Γ(s + 1)
Γ(s + 1− µ)

∂
β
2

∂φ
β
2

Ψ = 0. (71)

Using the ansatz for the wave function Ψ(Ω, β+, β−, φ) = A(Ω)B+(β+)B−(β−)C(φ),
we obtain the following differential equations on the corresponding variables:
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d2A
dΩ2 −Q

dA
dΩ
−
[
±
(ρ

h̄

)2
e3(2−β)Ω + ρ2

1

]
A = 0, (72)

d2B+
dβ2

+

− ρ2
2B+ = 0, (73)

d2B−
dβ2
−
− ρ2

3B− = 0, ρ2
3 = ρ2

2 − ρ2
1 (74)

φγ d2γC
dφ2γ

+
Γ(s + 1)

Γ(s + 1− γ)

dγC
dφγ
±
( pφα

2α−1

) 1
2α−1 γρ2

12h̄2γ
C = 0, β = 2γ, 0 < γ ≤ 1.(75)

We can see that the fractional differential Equation (75) has variable coefficients, so to
solve it we can use the fractional power series [37,38], also f (φ) = pφφm, with pφ a constant
and choosing m

2α−1 = −γ, as a particular case, which implies that the parameter m = −α in
the sense that the γ parameter is in accordance with its original definition (see Equation (75)
and the definition of the β parameter, or the equation in the text after Equation (76)).

Following the book of Polyanin [53] (page 179.10), we find the solution for the first
equation, considering different values in the factor-ordering parameter (we take the corre-
sponding sign as minus in the constant ρ2):

A(Ω) = e
QΩ

2

[
C1Kν

(
ρ

3h̄(1− γ)
e3(1−γ)Ω

)
+ C2 Iν

(
ρ

3h̄(1− γ)
e3(1−γ)Ω

)]
, (76)

where Kν(z) and Iν(z) are the modified Bessel functions, and order ν =

√
Q2+4ρ2

1
6(1−γ)

with

γ = β
2 = α

2α−1 the new order in the fractional derivative. However, for physical conditions
we will only take the modified Bessel Kν.

The corresponding quantum solutions for Equations (73) and (74) are

B+ = a0eρ2β+ + a1e−ρ2β+ , (77)

B− = b0eρ3β− + b1e−ρ3β− . (78)

with ρ2 and ρ2
i being separation constants.

The solution of Equation (75) with a positive sign and f (φ) = pφ = constant, with zero
factor ordering, may be obtained by applying direct and inverse Laplace
transforms [20,36], providing

C+(φ, γ) = E2γ

(
−z2

)
, z =

( pφα

2α−1

) 1
2(2α−)

√
γρ

2
√

3h̄γ
φγ, 0 < γ ≤ 1, (79)

where E2γ is the Mittag–Leffler function (7), then, the probability density of the wave
function for this particular case becomes

|Ψ|2 = ψ2
0eQΩ±2ρ2β+±2ρ3β− K2

ν

[
ρ

3h̄(1− γ)
e3(1−γ)Ω

]
E2

2γ(−z2), (80)

and its corresponding plot for two values in the ordering parameter Q is shown in the Figure 2.
Table 2 shows the differential equations obtained from (75), depending on the values

of ωX , α, and γ.
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(a) (b)

Figure 2. Probability density (80) of the universe dominated by dust era in this stage of the universe
shows that the probability density has a decay, both in Ω and φ. Both are plotted with ρ = 0.5, γ = 1

2 ,
and ρ1 = 0.1. (a) Q = 6, ν = 2.00111; (b) Q = 2, ν = 0.669992.

Table 2. Fractionary equation in the field φ according to the barotropic parameter ωX .

ωX α γ Fractionary Equation

1 1 1 φ d2C
dφ2 +

Γ(s+1)
Γ(s)

dC
dφ ± pφ

µ2

24h̄2 C = 0

1
3 2 2

3 φ
2
3 d

4
3 C

dφ
4
3
+ Γ(s+1)

Γ(s+ 1
3 )

d
2
3 C

dφ
2
3
± (pφ)

1
3

µ2

18h̄
4
3
C = 0

→ 0 → ∞ 1
2 φ

1
2 dC

dφ + Γ(s+1)
Γ(s+ 1

2 )
d

1
2 C

dφ
1
2
± µ2

24h̄C = 0

−1 0 0 without equation

− 1
3 −1 1

3 φ
1
3 d

2
3 C

dφ
2
3
+ Γ(s+1)

Γ(s+ 2
3 )

d
1
3 C

dφ
1
3
±
(

pφα

2α−1

) 1
2α−1 µ2

36h̄
2
3
C = 0

− 2
3 − 1

4
1
6 φ

1
6 d

1
3 C

dφ
1
3
+ Γ(s+1)

Γ(s+ 5
6 )

d
1
6 C

dφ
1
6
±
(

pφα

2α−1

) 1
2α−1 µ2

72h̄
1
3
C = 0

Solution to FDE Associated with the Different State Evolutions

We write the fractional differential Equation (75) as follows:

φγ d2γC
dφ2γ

+ A
dγC
dφγ

+ B C = 0, 0 < γ ≤ 1, (81)

where we have made the simplifications A = Γ(s+1)
Γ(s+1−γ)

and B(α,γ) = ±
(

pφα

2α−1

) 1
2α−1 γµ2

12h̄2γ . The
last linear fractional differential Equation (81) will be solved using the fractional power
series [37,38]

C =
∞

∑
n=0

an φnγ. (82)

Then, the fractional derivatives are

dγC
dγφ

=
∞

∑
n=1

an
Γ[nγ + 1]

Γ[(n− 1)γ + 1]
φ(n−1)γ,

d2γC
d2γφ

=
∞

∑
n=2

an
Γ[nγ + 1]Γ[(n− 1)γ + 1]

Γ[(n− 1)γ + 1]Γ[(n− 2)γ + 1]
φ(n−2)γ.

(83)

Substituting expressions (83) into (81), we obtain
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∞

∑
n=2

an
Γ[nγ + 1]

Γ[(n− 2)γ + 1]
φ(n−1)γ + A

∞

∑
n=1

an
Γ[nγ + 1]

Γ[(n− 1)γ + 1]
φ(n−1)γ + B(α,γ)

∞

∑
n=0

an φnγ = 0. (84)

Now, taking ` = n− 1 into the first and second terms, and n = ` into the third term
of (84), we have

∞

∑
`=1

a`+1
Γ[(`+ 1)γ + 1]
Γ[(`− 1)γ + 1]

φ`γ + A
∞

∑
`=0

a`+1
Γ[(`+ 1)γ + 1]

Γ[`γ + 1]
φ`γ + B(α,γ)

∞

∑
`=0

a` φ`γ = 0. (85)

Shifting one place in the second and third summations, we have
∞

∑
`=1

a`+1
Γ[(`+ 1)γ + 1]
Γ[(`− 1)γ + 1]

φ`γ+A
Γ[γ + 1]

Γ[1]
a1 + A

∞

∑
`=1

a`+1
Γ[(`+ 1)γ + 1]

Γ[`γ + 1]
φ`γ

+ B(α,γ)a0 + B(α,γ)

∞

∑
`=1

a` φ`γ = 0. (86)

From the last expression (86), we obtain (s 6= 0)

a1 = −
B(α,γ)

AΓ(γ + 1)
= −

Γ[s + 1− γ]B(α,γ)

Γ[s + 1] Γ[γ + 1]
a0, (87)

and the recurrence relationship between the parameters a` is

a`+1 = −
Γ[s + 1− γ]B(α,γ) Γ[`γ + 1] Γ[(`− 1)γ + 1]

Γ[(`+ 1)γ + 1]
{

Γ[s + 1− γ] Γ[`γ + 1] + Γ[s + 1] Γ[(`− 1)γ + 1]
} a`, ∀ ` ≥ 1. (88)

Some terms of this relation are

a1 = −
Γ[s + 1− γ]B(α,γ)

Γ[s + 1] Γ[γ + 1]
a0,

a2 =

(
Γ[s + 1− γ]B(α,γ)

)2

Γ[s + 1]Γ[2γ + 1](Γ[s + 1] + Γ[s + 1− γ]Γ[γ + 1])
a0,

a3 = − Γ[γ + 1]
Γ[s + 1]Γ[3γ + 1](Γ[s + 1− γ]Γ[2γ + 1] + Γ[s + 1]Γ[γ + 1])

×

( (
Γ[s + 1− γ]B(α,γ)

)3

(Γ[s + 1] + Γ[s + 1− γ]Γ[γ + 1])

)
a0, (89)

a4 =
Γ[γ + 1]Γ[2γ + 1]

Γ[s + 1]Γ[4γ + 1](Γ[s + 1− γ]Γ[3γ + 1] + Γ[s + 1]Γ[2γ + 1])
×(

(Γ[s + 1− γ] B(α,γ))
4

(Γ[s + 1γ]Γ[2γ + 1] + Γ[s + 1]Γ[γ + 1])(Γ[s + 1] + Γ[s + 1− γ]Γ[γ + 1])

)
a0,

...

Then, the solution of the fractional Equation (81) has the form

Cs,α,γ = a0

[
1−

Γ[s + 1− γ]B(α,γ)

Γ[s + 1] Γ[γ + 1]
φγ (90)

+

(
Γ[s + 1− γ]B(α,γ)

)2

Γ[s + 1]Γ[2γ + 1](Γ[s + 1] + Γ[s + 1− γ]Γ[γ + 1])
φ2γ + . . .

.
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For the dust-like scenario (see Table 2), α → ∞ and γ = 1
2 , then B(∞, 1

2 )
= µ2

24h̄ . The
solution associated with this fractional differential equation is given in fractional series
form by

Cs,→∞, 1
2

= a0

1−
2Γ[s + 1

2 ]B(∞, 1
2 )

Γ[s + 1]
√

π
φ

1
2 +

2
(

Γ[s + 1
2 ]B(∞, 1

2 )

)2

Γ[s + 1](2Γ[s + 1] + Γ[s + 1
2 ]
√

π)
φ (91)

−
2
(

2Γ[s + 1
2 ]B(∞, 1

2 )

)3

3
√

πΓ[s + 1](2Γ[s + 1
2 ] + Γ[s + 1]

√
π)(2Γ[s + 1] + Γ[s + 1

2 ]
√

π)
φ

3
2 + · · ·

,

where we employed Γ[ 3
2 ] =

√
π

2 and Γ[ 5
2 ] =

3
√

π
4 .

For the radiation stage, α = 2 and γ = 2
3 , then B(2, 2

3 )
=

3√pφµ2

18h̄
4
3

, the solution for the

fractional differential equation is

Cs,2, 2
3

= a0

1−
3Γ[s + 1

3 ]B(2, 2
3 )

2Γ[s + 1]Γ[ 2
3 ]

φ
2
3 +

(
3Γ[s + 1

3 ]B(2, 2
3 )

)2

4Γ[s + 1]Γ[ 4
3 ]
(

3Γ[s + 1] + 2Γ[s + 1
3 ]Γ[

2
3 ]
) φ

4
3 (92)

−
2
3 Γ[ 2

3 ]
(

3Γ[s + 1
3 ]B(2, 2

3 )

)3

2Γ[s + 1]
(

2Γ[s + 1
3 ]Γ[

4
3 ] + Γ[s + 1]Γ[ 2

3 ]
)(

3Γ[s + 1] + 2Γ[s + 1
3 ]Γ[

2
3 ]
) φ

8
3 + · · ·

,

with Γ[ 2
3 ] = 1.35412 and Γ[ 4

3 ] = 0.89298.
We are going to present the graphical behavior of the wave function for the dust-like

case, in which the solution is constrained to the variables Ω and φ. This means we are
going to shrink the directions β+ and β−. So, the wave function takes the form

Ψ(Ω, β+, β−, φ) = e
QΩ

2

[
C1Kν

(
ρ

3h̄(1− γ)
e3(1−γ)Ω

)]
×[

1− a1φ
1
2 + a2φ− a3φ

3
2 + a4φ2 − a5φ

5
2 + a6φ3 − a7φ

7
2 + a8φ4 + . . .

]
. (93)

By restraining ourselves to the values of ν =

√
Q2+4ρ2

1
6(1−γ))

, Q = 10, 6, 2, 1.6, ρ = 1
2 , γ = 1

2 ,
s = 1, ρ1 = 0.1, and C1 = 1, we see that the wave function ((93)) can be rewritten as

Ψ2(Ω, φ) = eQΩ K2
ν

(
2
3

e
3Ω
2

)[
1− 1

24
φ1/2 +

√
π

576(4 + π)
φ− 2

√
π

41472(4 + π)
φ3/2

+
π

3
2

663552(8 + 3π)(4 + π)
φ2 − π

3
2

69672960(8 + 3π)(4 + π)
φ

5
2

+
π

5
2

334430208(8 + 3π)(4 + π)(32 + 15π)
φ3

− π
5
2

45649723392(8 + 3π)(4 + π)(32 + 15π)
φ

7
2

+
5π

7
2

208684449792(8 + 3π)(4 + π)(32 + 15π)(192 + 105π)
φ4

]2

, (94)

where we have taken the cut-off order in φ4 and the ’a’ parameters are read from (89).
In the following, we present some plots of the probability density of the wave function,
including the factor-ordering parameter Q and particular values in the parameter ρ, ρ1 and
the particular value to the ordering parameter s = 1. In all of them, we observe that for
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any value of Q, the probability density decays with respect to the scale factor, but has a
different evolution in the scalar field. For small Q’s, the quantum universe has considerable
existence in the evolution with respect to the scale factor and then decays. On the other
hand, for large Q’s, this interval is small. What we can say about the evolution of the scalar
field is that at small Q’s, the scalar field appears faster than for large Q’s, which enters late,
but has existed forever (Figure 3).

(a) (b)

(c) (d)

Figure 3. Probability density (94) of the universe dominated by dust era in this stage of the universe
shows that the probability density has a decay in Ω and exhibits considerable growth for certain
values of φ. The plots have the parameters ρ = 0.5, γ = 1

2 , and ρ1 = 0.1. (a) Q = 10, ν = 3.334;
(b) Q = 6, ν = 2.00111; (c) Q = 2, ν = 0.0669992; (d) Q = 1.6, ν = 0.537489.

5. Conclusions

Unlike the previous work [36], in the present paper we employed a barotropic equation
with perfect fluid for the energy–momentum tensor in the k-essence scalar field into the
Lagrangian and Hamiltonian formalism, obtaining the momentum of a scalar field with
fractional numbers, while the momentum of the scale factor appears in the usual way. We
obtained the classical solutions for different scenarios in the universe, employing different
times (t, T(τ), τ). In the quantum scheme, we include the factor-ordering problem, and we
find a fractional differential equation for the scalar field with variable coefficients, which
was solved using the fractional series expansion. With this in mind, we visualize two
alternatives in our analysis; the first one is within the traditional expectation over the
behavior of the probability density, that the best candidates for quantum solutions are those
that have a damping behavior with respect to the scale factor, appearing in all scenarios
under our study, without saying anything about the scalar field. The other scenario is when
we keep the scale factor, and we consider the values of the scalar field as significant in the
quantum regime, appearing in various scenarios in the behavior of the universe; mainly in
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those where the universe has a huge behavior, for example, in the actual epoch, where the
scalar field appears as background.

In other words, the interpretation of the probability density of the unnormalized wave
function is given when we demand that Ψ does not diverge when the scale factor A (or Ω)
goes to infinity, and the scalar field is arbitrary. However, the evolution with the scalar field
is important in this class of theory and others as it appears in some stages of the evolution
of our universe.

In reference [54], the gravitational action integral is altered by hand, leading to a mod-
ified Friedmann-type equation. They employed the dynamical system approach in order
to find the balance points providing a range for the order of the fractional derivatives in
their investigation of the cosmological universe, and they mention that it can be confirmed
that the solutions isotropize at a late time. In our approach, this occurs when the `φ is huge
(see Equation (64)); due to that, the anisotropic parameters become constants. On the other
hand, as we use the volume of the universe V = ABC = e3Ω(τ) on any timescale, it depends
only on the Ω function and not on the anisotropic parameters β±. Whereas the scale factors
A, B, and C depend on these anisotropic parameters. It remains to be studied whether the
fractional derivatives alter the gravitational part and how the universe’s singularity can be
avoided because, from our approach, this part needs to be revised since the gravitational
part is not altered from the point of view of the equations of motion. It is modified in the
scalar field part.

It would be interesting to extend the Bohm-type semi-classical formalism in this context,
which we will explore in future work. Much work has been made in this direction [55–61],
where the quantum potential emerges as the imaginary part in the Bohm formalism, appearing
as a constraint equation. In this sense, in Reference [62] an approach appears that is based on
the semi-classical limit of fractionary quantum cosmology using the Riesz derivative. It would
be interesting to continue under our focus, where the corresponding Friedmann equation and
the Hubble parameter depend on Levy’s fractional parameter, which is associated with the
concept of the Lévy path in the corresponding quantum cosmology.

We briefly illustrate the main results of this work.

1. Using the k-essence formalism in a general way, applied to the anisotropic Bianchi
type I cosmological model, we found the Hamiltonian density in the scalar field
momenta raised to powers of non-integers, which produces in the quantum scheme
a fractional differential equation in a natural way. We include the factor-ordering
problem in both variables (Ω, φ) and its momenta (ΠΩ, Πφ), with the order β = 2α

2α−1 ,
where α ∈ (−1, ∞), and it was solved in a general way, we include two particular
scenarios of our universe.

2. We found the solution in the classical scheme employing two gauges, N = 24e3Ω,
for two forms of the function f (φ) in the time t; however, when we let the Lagrange
multiplier N, we need to employ a transformed time T(τ) for solving the classical
equation and, only in the dust era, we recover the gauge time τ.

3. In the quantum regime, when we include the factor-ordering problem, the fractional
differential equation in the scalar field appears with variable coefficients, and it was
necessary to use the fractional series expansion to solve it in a general way.

4. In one of our analyses presented on the probability density, we consider the values of
the scalar field as significant in the quantum regime, appearing in various scenarios in
the behavior of the universe, mainly in those where the universe has a huge behavior;
for example, in the actual epoch, where the scalar field appears as a background, the
quantum regime appears with big values, but it presents a moderate development in
other scenarios with different ordering parameters Q and s.
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