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fractional differential equations. These equations are subject to coupled nonlocal boundary conditions
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1. Introduction

We examine the system of fractional differential equations
] 4 (1)
subject to the nonlocal coupled boundary conditions

m AT ‘ no AT _

u(1) =0, "Dfu(T) = Y. [ #Dfu(s)dH(s)+ ) [ HD{o(s) dKi(s),
1;1 . o 1[1:1 T L (2)

v(1) =0, HD?Z)(T) = Z/l D?’u(s)dPi(s) + 2/1 D;'v(s) dQi(s),
i=1 i=1

where T > 1,a,7 € (1,2], 8,6 € [0,1], m,n,p,q € N, ¢,9,0;,0;,1;,6; € [0,1], FID["*? de-
notes the Hilfer-Hadamard fractional derivative of order x; and type x, (for
k1 = a,y and x; = B,9), HDf represents the Hadamard fractional derivative of order
k (for x = g,ﬂ,gi,crj,iyk,ﬂl, i=1,....mj=1,...,n,k=1,...,pand:1=1,...,q), the con-
tinuous functions f and g are defined on [1, T] x R?, and the integrals from the boundary
conditions (2) are Riemann-Stieltjes integrals with Hj, K]-, P,Q,i=1,....mj=1,...,n,
k=1,...,pand 1 =1,...,q functions of bounded variation.

In this paper, we present a variety of conditions for the functions f and g such that
problem (1) and (2) has at least one solution. We will write our problem as an equivalent
system of integral equations, and then we will associate it with an operator whose fixed
points are our solutions. The proof of our primary outcomes involves the utilization of
diverse fixed point theorems. Noteworthy among these theorems are the Banach contraction
mapping principle, the Krasnosel’skii fixed point theorem applied to the sum of two
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operators, the Schaefer fixed point theorem, and the Leray—Schauder nonlinear alternative.
The nonlocal boundary conditions (2) are general ones, and they include different particular
cases. For example, if x = 0, for k = 68,0100, i=1,...,mj= 1,...,n,k=1,...,p
and:=1,...,q, then the Hadamard derivative 'D¥z(t) coincides with z(t). If one of the
order of the Hadamard derivatives from the right-hand side of the relations from (2) is

zero (for example, if g1 is zero), then the term flT HDMu(s) dHy (s) becomes fl s)dH;(s),
which contains the cases of the multi-point boundary conditions for the funct1on u (if Hy is
a step function); a classical integral condition; a combination of them; or even a Hadamard
fractional integral for a special form of H; (as we mentioned in [1]). If o; € (0,1] and
H is a step function, then flT HDMu(s) dHy (s) = ¥1°, BD{'u(&;), which is a combination
of the Hadamard fractional derivatives of function u in various points. If all functions
K;,i=1,...,nand P]-, j=1,..., pare constant functions, then the boundary conditions
become uncoupled boundary conditions (where the Hadamard derivative of order ¢ of
the function u in the point T is dependent only of the derivatives HDQ’, i=1,...,mof
the function u, and the Hadamard derivative of order ¢ of the function v in the pomt Tis
dependent only of the derivatives HDf" ,i=1,...,gof functionv),andif H;, i=1,...,m
and Q;, j=1,...,q are constant functions, then the boundary conditions become purely
coupled boundary conditions (in which the Hadamard derivative of order ¢ of the function
u in T is dependent only of the derivatives HDT, i =1,...,n of the function v, and the
Hadamard derivative of order ¢ of the function v in T is dependent only of the derivatives
HDUI, i=1,...,p of the function u).

Next, we will introduce some papers that are relevant to the issue posed by
Equations (1) and (2). In [2], the authors investigated the existence and uniqueness of
solutions for the Hilfer-Hadamard fractional differential equation with nonlocal bound-
ary conditions

DY) = f(tx(1), tELT) r
x(1) =0, x(T) 2;7 x(&) +2§ZHI"" 6:) + Y A MDY x (y), ®
j=1 = k=1

where « € (1,2], B € [0,1], 1, 0;, Ax € R, f : [1,T] x R — R is a continuous function,
HI% is the Hadamard fractional integral operator of order ¢; > 0, and i 0 e € (1,T)
forj=1,...,mi=1,...,n,k=1,...,r. The multi-valued version of problem (3) is also
studied. For the proof of the main results, they used differing fixed point theorems. In [3],
the authors proved the existence of solutions for the system of sequential Hilfer-Hadamard
fractional differential equations supplemented with boundary conditions

(HADYVPT 4 Ay HHDS VP (6) = £(1u(t), (1)), t € [1e],
(HADYF2 4 ), HHD VP2 (1) — o(t,u(t), o(t)), t € [1,¢], @)
u(l) =0, u(e) = A1, v(1) =0, v(e) = A,

where a1, a0 € (1,2], A1, Az, A, Ay € Ry, and f,¢: [1,¢] x R> — R are given continuous
functions.

In paper [4], Hadamard defined a fractional derivative with a kernel involving a
logarithmic function with an arbitrary exponent. In [5], Hilfer introduced a new fractional
derivative (known as the Hilfer fractional derivative), which is a generalization of the
Riemann-Liouville fractional derivative and the Caputo fractional derivative. Some appli-
cations of this new fractional derivative are presented in papers [6,7]. The Hilfer-Hadamard
fractional derivative is an interpolation of the Hadamard fractional derivative, and it covers
the cases of the Riemann-Liouville-Hadamard and Caputo-Hadamard fractional deriva-
tives (see the definition in Section 2). The distinctive aspects of our presented challenge, (1)
and (2), emerge from the exploration of a set of Hilfer-Hadamard fractional differential
equations encompassing diverse orders and types. Additionally, the introduction of general
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nonlocal boundary conditions (2) contributes novelty, extending beyond numerous specific
instances as previously observed. To the best of our knowledge, this issue represented
by Equations (1) and (2) is a novel problem in the literature. Our theorems represent
original contributions and make substantial advancements in the realm of coupled systems
involving Hilfer-Hadamard fractional derivatives. Although the techniques employed
in demonstrating our primary findings in Section 3 are conventional, their adaptation to
address our problem (1) and (2) is innovative. For more recent investigations concern-
ing Hadamard, Hilfer, and Hilfer-Hadamard fractional differential equations and their
applications, we recommend the monograph [8] and the following papers: [1,9-28].

The structure of the paper unfolds as follows: In Section 2, we offer definitions and
properties related to fractional derivatives, along with a result regarding the existence of
solutions for the linear boundary value problem linked to Equations (1) and (2). Moving
on, Section 3 is dedicated to the core findings concerning the existence and uniqueness
of solutions for problem (1) and (2). Subsequently, in Section 4, we provide illustrative
examples that demonstrate the practical application of our theorems. Lastly, concluding
insights for this paper can be found in Section 5.

2. Auxiliary Results

In this section, we present some definitions and properties of fractional derivatives
and an existence result for the linear boundary value problem associated with (1) and (2).

Definition 1 (Hadamard fractional integral [29]). For a function z : [a,00) — R, (a > 0), the
Hadamard fractional integral of order p > 0 is defined by

(HIPz)(x) = F(lp) /ﬂ ' <ln %)” 71@ dt, x>a, ®)
and (F1%z) (x) = z(x), x > a.

Definition 2 (Hadamard fractional derivative [29]). For a function z : [a,00) — R, (a > 0),
the Hadamard fractional derivative of order p > 0 is defined by

d\" gon— 1 d\" ¥/ x\n—p-1z(t)
HpyP Hyn—p _ il
D;z(x) = <xdx> I "z(x) =) (xdx> /ﬂ (ln t) ; dt,  (6)
wheren —1 < p <n,(n €N). Forp =m € N, HD"z(x) = (6"z)(x), x > a, where § = x—d‘i

is the 5-derivative, and, for p = 0, HD%z(x) = z(x).

Lemma 1 ([29]). Ifa, B > 0, and a > 0, then

p-1 o\ fae
Hia <ln;> )(x) = 1“(1;3(—'?0()(1n E>ﬁ+ l,
s (mé)ﬁ_l) 0= B (1n2)

Definition 3 (Hilfer-Hadamard fractional derivative [2,7]). Let z € L!(a,b) and n —1 <
a <n,(neN)0< B < 1. The Hilfer-Hadamard fractional derivative of order a and type B for
the function z is defined by

@)

HHDZC/BZ (t) = Hlf(”*“)én HIE”*’X)U*/S)Z (t)

= (M 2 (1) — (M D) ) ®

where vy = o +nf — apP.
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If B = 0, the Hilfer-Hadamard fractional derivative HHD,’,X'ﬁ z coincides with the Hadamard

fractional derivative FD%z. If B = 1, the fractional derivative FHD; #2 coincides with the
Caputo-Hadamard derivative, given by “D%z(t) = (H[#=%5"z)(t).

Theorem 1 ([2]). Leta« > 0, n—1 < a <n,(n e N),p € [0,1], y = a+np —ap, and
0<a<b<oolIfzeLYab)and (F; "z)(t) € AC}[a,b], then the following relation holds

g (D32 (1) =H 1 (D32) 1) = =00 — & T (1 YT )

= T(y—1i) a

We consider now the system of linear fractional differential equations

{ HHDYPy () = h(t), te [1,T], (10)

HHDY Ay (1) = k(t), t € [1,T),

subject to the boundary conditions (2), where h,k € C([1,T],R). We denote by
A=a+Q2—a)B,p=7+2—7))and

T(A)

a:&ww*—f T eyt

T(A—¢) ST —a) A
s F( ! —Ui— .

- 1;1 r ]4 0'1) / (lnS)y 1 dKZ(S),
p

ZFA m) / (Ins)* 7 dFy(s), o
)

i=1
i o T T e
g - Ly Jy (ne Q)

A = ad — be.

Lemma 2. We suppose that a,b,c,d € R, A # 0, and h,k € C([1, T],R). Then, the solution of
problem (10) and (2) is given by

(Int)*M1

u(t) = Ioh(t) + [—dHI;‘—gh(T) +d(A1(h) + Az (k)

A
—b I K(T) + b(As(h) + As(K))], £ € [1,T), )
o(t) =H ITk(t) + % [—a Hllvfﬁk(T) +a(Asz(h) + Ag(k))
—cHISh(T) + c(As () + Az(k»], te[l,T],
where operators A; : C([1, T],R) = R, i =1,...,4are defined by
- (02 o
L 1 Trorsr  s\r=0i-1k(7)
As(k) = ; m/l (/1 (n2) Tdr) dKi(s),
1 T/ s s\« 1i—1h(T) (13)
Aa(h) = gl"(zx—’?i)/l </1 (n ) T‘”)””’l(”'
g 1 Trorsr s\r0i-1k(T)
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Proof. We apply the integral operators FI¥ and FI], respectively, to equations of system (10).
Then, the solutions of system (10) are given by

{ u(t) = ar(Int)* 1+ ap(Int)* 2 +H [20(t), t € [1,T), (14)

o(t) = by(Int)* L+ by(Int)* 2 +H17k(t), t € [1,T],

where a;,b; € R, i = 1,2. Because u(1) = v(1) = 0, we deduce that a; = b, = 0. So, we
obtain, for the solutions of (10), the formulas

u(t) = a;(Int)* 1+ I8n(t), te[1,T), (15)
o(t) = by (Int)r= 1+Hﬂk( ), teL,T].
Fork =g, 05,mj,i=1,...,m, j= 1,...,p, wefind
Hpyx Hpyx A—1 | Hpk Hya F(A) A—x—1 | Hyja—x
e (16)
_ I Ak 1 /t N R(s)
_alf(A—K)(lnt) +1"(1x—1<) A lns . ds,
and for ¥ = 8,0:,0,i=1,...,n, j=1,...,9,we obtain
HDEy(t) = by DY (Int)#—1 +HDE ATk (1) = blr(r( #) )(n YR L H T R (1)
(17)
TG p—i—1 #/t 1@
_blI’(y— )(lnt) +I’(’yf%) A lns s ds.

By applying the conditions #Dju(T) = Y1, 1T HDYu(s) dH;(s) + X4 1T HDTio(s)
dK;(s), and ADYo(T) = £ [ EDTu(s) dP;(s) + X1, [; HDfv(s) dQ;(s), we deduce

VIO /j(m)““hw

F(A=c) . T(x—g) s
o a—gi—
:;/1 [alr(/\—Qi)(lns)/\ el — (IX—Q, / ( ) ]dHi(S)
n T F(y) —oi— B
+z§/1 = M o (’r o) 41( ) } i) (18)
() oo 1 T/ T\ k( )
blm(lnT)V ¢ 1+m/ <lns) ds
_ e r'(A) —ni— § S '
1_21/1 [alr(/\_m)(lns)A =1 4 (0&—771 / ( ;) }dPl(s)
! T F(V) 1—0;— s S
+l_21/1 {blr(}l_el’)(lns)l 6 1+1"( / ( ;) ]in(S),
r'(A) e T T ot
“llm—@ (nTy et = Y=gy Jy (e 1de<s>]
n T
- gni(f)ai)/l (Ins)¥=e~" dKi(s)
= Hfi"*gh( )+ Ay () + Ay (K), .
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The determinant of system (19) in the unknowns 41 and b; is

’ a b ‘:ad—bc, (20)

—c d

that is, A, given by (11), which is different than zero by the assumptions of this lemma. So,
the solution of system (19) is unique, namely

a = g B =en(T) + é Ay (h) + Az(k)) — ngiy_ﬂk(T) + g(AS(h) + A4 k), (21)
b= -3 PK(T) + = (As(h) + Ag(k)) — 5 TRCR(T) + £ (Ax(h) + Ag(K)).

By replacing the above formulas for 21 and b in (15), we obtain the solution of problems (10)
and (2) given by (12). O

3. Existence Results

In this section, we will give the main existence and uniqueness theorems for the
solutions of problem (1) and (2). By using Lemma 2, our problem (1) and (2) can be
equivalently written as the following system of integral equations

% |~ "1 Fuo(T) + d(A1 (Fuo) + A2 (Guw)
+ b(As(Eu) +A4(Gm,))}, tel1,T),
o(t) =H I Gyo () + % [—aHlfl’Gw(T) +a(As3(Fu) + A4(Guo))
—cHIY S Foo(T) + ¢( A1 (Fuo) + AZ(GW))}, te[1,T],

u(t) =" I8F,(t) +
)

b H Gy (T
(22)

where F,,(7) = f(t,u(7),v(7)), Guo(7) = g(T,u(7),0(7)), T € [1,T].

We consider the Banach X = C([1, T], R) with the supremum norm [|ul| = sup;.}; 1
|u(t)| and the Banach space J) = X’ x X’ with the norm ||(u,v)||y = |lu|| + ||v||. We define
the operator A: Y — Y, A(u,v) = (A1(u,v), Ax(u,v)), with Ay, Ay : Y — X given by

Ay (u,0)(t) =HI¥E0 () + (h”AL {—dHIf*QFw(T) +d(A1(Fiw) + A2(Gup))

oM Gy (T) + b(As(Fuo) + As(Gi ))}
AZ(”, U)( ) HI’YGuv lnt [ HIV 19 ) + a(A?)(FW’) + A4(G ))
—c HI{“ *Fuo(T) + C(Al(Fuv) + AZ(Guv))}

(23)

forall t € [1,T] and (u,v) € ). We see that the solutions of problem (1) and (2) (or

system (22) are the fixed points of operator .A. So, next, we will investigate the existence of

the fixed points of this operator A in the space ).
We present now the basic assumptions that we will use in the next results.

(H1) o,y € (1,2]; B,0 € [0,1]; m,n,p,q € N; 6, 0,0i,05, Mk b € [0,1]; H;, K;, Py, Q, are
bounded variation functions, foralli = 1,...,m,j =1,...,n, k =1,...,p,
t=1,...,4a,b,c,d € R,and A # 0 (given by (11)).

We also introduce the constants

o o, nTT .
SN rES VALY [r<a—g+1>““” :
+|d|2 Qz+1'/ lns“QldH()‘

(ln $)* i dP;(s)

+|b|2 771+1)
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— (lnT))“l T o
B = g Ins)7% dK;
o = o X gy ) ne)7 e
+7|b| (lnT)7&+|b|Z‘/ (Ins)7~ 0; dQ;(s)||,
1"(7—19—1—1) I(y—6;+1
_ (nT)r? / .
A Ins)* " dP,
o= O W & g e |
L(m)ﬂ S 4 lc |z; T(lns)wi dH(s) (24)
Tla—¢+1) Fla—0i+1)
1 (InT)"" 1[ B i '
Ey=——(InT)" InT)?
i T (e
7=b;
+|a|Z 0+1‘/ (Ins)7~% dQ(s)
=0
+||Z Uz+1 ’/ (Ins) dK;(s)

Our first existence and uniqueness theorem for problem (1) and (2) is the following
one, which is based on the Banach contraction mapping principle (see [30]).

Theorem 2. We assume that assumption (H1) holds. In addition, we suppose that the functions
f,g:[1,T] x R? = R are continuous and satisfy the condition

(H2) There exist 1; > 0,i=1,...,4 such that

(t,x1,y1) — f(t,x2,y2)| < hi|xy — x2| + La|y1 — 2, 25)
1g(t, x1,y1) — g(t, x2,2)| < I3|xy — x2| + lg|y1 — v2l,
forallt € [1,T|and x;,y; € R, i =1,2.
If
Is5(E1 +E3) +16(E2a + E4) <1, (26)

where Is = max{ly, 2}, l¢ = max{l3, 14}, then the boundary value problem (1) and (2) has a
unique solution (u(t),v(t)), t € [1,T].

Proof. We will verify that operator A is a contraction in the space ). We denote this by
Ay = sup;ep |f(t,0,0)] and Ay = SUP;c1,71] |¢(t,0,0)|. By using (H2), we find

[Fuo ()| = | (£, u(t), 0(t))] < If(f/u(fgiv(f)) — f(£,0,0)| +[f(t,0,0)|

< O]+ bls()] 1 < B4 0 ¢ o
|Guo(8)] = [(£,u(t), 0(£))] < |g(t, u(t),v(t)) — &(t0,0)| +[g(t,0,0)]
< I3[u(t)] +l4\v(f)| + Mg < Is([u(t)] +[o(£)]) + Mg,
forallt € [1,T] and (u,v) € Y. We consider now the positive number
R > N(E1+Es) + Ao(E2 + Ey) 28)

T 1-15(81 + 83) —I6(E2 + Ey)’

and let the set Bg = {(u,v) € Y, ||(u,v)||y < R}.
We will show firstly that A(Bg) C Bg. Indeed, for this, let (u,v) € Bg. Then, we

obtain
a—1
A 0) 0] < g [ () Fal) 2

(InH)*1 [ |4 T/ T\* ¢! ds
At () e S
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+ld il e /12( J (0 2) " (o) 25 arico
1 o (/f(ln%)”’“’ﬂcw(rnd{)dms)j
o et
S
+||2 O Fuo(0) %7 )i )
+H Y f g (/ I)dQ()H
sﬁ/f(h‘ﬁ)“ Is(lu(s)] + |<s>>1+A1]d »
: o
mfAf [r () st + oo + 2 2
+|\2 L 0 )  islate +|<>|>+Al1—)dH<>\
1Y o (0 2) " e+ o + 8 % )k
+ (7"" 5 /T(l e Hueuu<>|+\ ) + A2 2
1 E (U 002) st (o) + 4 25 e
+|b|ii1m1 1 (02" e |+<>|>+Az}f)dgi<s>}.
So, we find
i () (O] < (sl 2) +A1>{r(1a)/f (m!)" %
(It |4 4T a1 g
o [w—g)T/l (m3) ¢
m 1 s s\a—0i—1d
L TN VACH T Jae)
P T/ s a—gi—
() 1d;)dpi<s>ﬂ}
n T s 0
Hallo)ly + A PO {|Zr S 3) T x| o

-1
+1“('yj—19) /;(1“527 s dss .
L g (f03) T )ae

|

nt)¥ n A-1
=<z5||<u,v>|y+A1>{r(‘ s+ e [ Ty

(a+1) Al

m 1 T
+|d 7’/ Ins)*~% dH,(s
L g1y o) i)

p 1 T
+ |b 7‘/ Ins)* i dP;(s
Y fa | On e

a—¢+1)

I
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(ln t)/\fl n 1 T o '
+(l6l| (u,v) ||y + Az)T [|d| l; W‘/l (Ins)7% dK;(s)

] ]

+—"——(InT)" %+ |p| Xq: 1’/T(1ns)7—"f dQ;(s)
I(y—9+1) ZT(y—6+1) 4 !

< (Is]|(u,0)[ly + A1)E1 + (l6]| (1, 0) ||y + A2)En
< R(l551 + 1652) + A1E1 + A3y, Vit e [1, T].

In a similar manner, we obtain

[ Az (u,0) (£)] < (5] (w,0) [y + A1) Es + (| (1, 0) [y + A2)E4

31
< R(I583 + l6B4) + A1Es + ApBy, YVt [1,T]. (31)

Then, by condition (26) and relations (30) and (31), we deduce
[A(u,0)lly = | A1 (1, 0)[| + [| A2 (u, 0) || < R[I5(E1 + E3) + l6(E2 + E4)] (32)

+A1(B1 + E3) + Ao (Ep + 54) <R

So, .A(BR) C Bg.
Next, we will prove that operator A is a contraction. For this, let (u1,v1), (u2,v2) € V.
Then, for any ¢ € [1, T| we obtain

| A1 (ug,01)(t) — Ay (ﬁlz, 02)(t)]
1 t F\ ¢ ds
<t (8) ()~ Fun(6)] S

11 |d T\* ¢! ds
( \A\ T(a | | /1 In ) |FL‘101(S)_FMZUZ(S)‘?
”‘ Qi— dt
Wer% S 02) " i (0 = Fun (0] 5 i)
'Y oi— dt
Y (1 16 (1) Gugn ()] i)

+r(7“’7'ﬁ,)/1 (1n )7 |cum(>—cuzvz<s>\§

+|b \Z N Buroy () — Fuos (7 )\dT>dP()
+\b\Z
a—1 s

S15||(H1/01)*(szvz)llyr(la) /;(lnf) ds

S S

IXI7‘

“_771

I (o
(N

G (1) = Gun ()] )05

] (33)

(ln‘tA)/‘\il {r(;” g)l5\|(u1,v1) (uz,vz)Hy/T (1n T)aglis
) Y sl o) = oy [ ([ (0 3)" " 5 Jare)

L )z6|| (1,21) ~ (12, 02) Hy]/ (fn2)™ " )ikt

T
|b| 191 g
+W16”(Ulrvl — (uz, 02 ||y/ ]n— 5

1 gy o)~ G o / ([ 2" )anes)
+ b Z 0y )16|| uy,01) — (u2,02) ||y 1T(/1S<1ni>7 " 1dT>sz( )]
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Therefore, we find

| A1 (ug,01) (8) — Aq (u2,02)(t)]

< ug,v1) — (u2,02)||y{15{ T

nT)A1
(n)e + D) {r(|ﬂ (InT)*~¢

1
at1) A a—g+1)

+|d]| i ﬁ‘/]ﬂﬂns)“%’f dH;(s)

e M L
(lnT))L 1 o

+l6 A d|;r(7_f7i+1)‘/1 (Ins) 7% dK;(s)

+%(IHT)'Y*I9+WZﬁ‘/ (Ins)7~ 0’dQ():|}

= [[(u1,01) — (u2,v2) ||y (1581 + lE2).

In a similar manner, we obtain

| A2 (u1,v1)(t) — A2(u2,02) (1) < [[(u1,01) — (u2,02) ||y (1523 + l6Z4), YVt € [1,T]. (35)
Then, by relations (34) and (35), we deduce

[ A(u1,01) — Auz, 02) [y = [ A1 (u1,01) — Ax (2, 02) || + [| A2 (11, 01) — Az (u2, 02) |

Lo 21y - (36)
< [I5(81 4+ 3) + l6(E2 + Ey)][[(u,01) — (u2,02) || y-

By (26), we conclude that operator A is a contraction. Therefore, operator .4 has a unique
fixed point by the Banach contraction mapping principle. Hence, problem (1) and (2) has a
unique solution (u(t),v(t)), t € [1,T]. O

The next two results for the existence of solutions of problem (1) and (2) are based on
the Krasnosel’skii fixed point theorem for the sum of two operators (see [31]).
Theorem 3. We suppose that assumptions (H1) and (H2) hold. In addition, we assume that the
functions f,g : [1, T] x R* — R are continuous and satisfy the following condition:
(H3) There exist the continuous functions ¢, P € C([1,T],Ry), (Ry = [0, 00)) such that

x| <o), lgtxy)l <pt), YLy € LTI xR @)

If

(In T)a:| + Iy |:Ez + Hy — (InT)7| <1, (38)

_ _
F'(a+1) I'(y+1)
then problem (1) and (2) has at least one solution (u(t),v(t)), t € [1,T].

I5|E1 + 83 —

Proof. We consider the number r > 0 satisfying the condition

r > (E1+ )l + (E2 + Z4) (9, (39)

and the closed ball B, = ||(u,v) € ), ||(u,v)|y < r}. We will verify the assumptions of
the Krasnosel’skii fixed point theorem for the sum of two operators. We split operator
A, defined on B;, as A = B+C, B = (B, B2), C = (C1,Cy), where B;,C;, i = 1,2 are
defined by
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A ds
<ln s> Fus(s) 5

u,0)(t) = By (u,0)(t), (40)

forallt € [1,T] and (u,v) € B,.
We will prove firstly that B(u1,v1) + C(up, v3) € B, for all (u3,v1), (u2,v2) € By. For
this, let (u1,v1), (42,v2) € B,. Then, we obtain

a—1
Bu(an,00)(1) + Caluz,22) 0] < s [ (1 ) Fuer (9]
(InH)*1 1 |d| T T“@l ds
L

I'(a—¢ s
+|d|Z

(192)" o)) 25 i)

T(S 'yg'l
Y-

(192)"" 6] £ a9

1
+r<7_19> /1 e R O
|

W L | (00 8) ™ (e 4 e
+ 10| i‘{ M /1T< 15 (1n%)7—9,»—1|(;u202(1)| dTT)in(s)H

< H¢||{r(1a)/lt(1n§)“ 1”? (41)
F(oc|d—|g) /1T I“Da_g_ldss

[ (] a2y 4 Yarnes
oSl ([ 2) " 2 aneo
L [ el (L ) o
*(Jblm/T(l‘“f) e

# Y g ([ S) ™ Jaas )H

E1||<PH+~2||IPH VfE [1,T],

)
1
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and
1 b\t ds
By 00)(6) + Calez, e2) O] < s () 16w 9115
(inH) [ Ja| /T ! ds
|A| 1"(7—19) 1 lns |GM2'02(S)| s

T
+|ﬂ‘2 _771) /1

il :
L /1T (/15 <1n%>’7*‘7i*1|(;u2v2(r)| T)dKi(S)

n 7 \f [ () an| @

i |C| /T lnz a—g—1 @
Ia—g¢) 1 s s
1

o /1T </ls (m%)“*g"*l dTT)dHi(s)

,N

/—\

»—\m
g
=]
@
N—
)

S

_

A W
ik

N———
[
=z
=

< Ea||<l>|| +~4HIIJ|| vte[1,T].
Then, by (41) and (42), we deduce

|B(u1,v1) + C(uz,02) ||y = || B1(u1,01) + Ci(uz, v2) || + || B2(u1,v1) + Ca(uz, v2)||

—_ 4 - _ 43
< (51 + E3)|0ll + (E2 + )|y < 1. )

Next, we will prove that operator C is a contraction mapping. Indeed, for all (11, v7),
(up,v2) € By, we find

|C1(u1,01)(t) — C1(u,v2) (1) < [[(u1,01) — (u2,02) |y

- 1 « -
C2(ug,01) () — Calua, v2) ()| < [[(u1,01) — (u2,02) |y
1
= v - v
X< 58 + g | By F(7+1)(lnT) :|}, VtE[l,T}.
Therefore, by (44), we obtain
|C(u1,01) — C(uz, v2) ||y < [[(u1,v1) — (u2, v2) |y
1 (45)

><{15 {31 - r(HU(m:r)“] g [324-34 _ mlH)(lnm} }

By condition (38), we conclude that operator C is a contraction.
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Operators By, By, and B are continuous by the continuity of functions f and g. In
addition, B is uniformly bounded on B, because

IBiw,0)] < £l IBatwo)l < (B Il V(o) € By o)
and then (InT)* (InT)7
180,901 < {191+ (gl ¥ (0,0) € B )

We finally prove that operator B is compact. Let t1,f, € [1,T|, t; < tp. Then, for all
(u,v) € By, we find

i () - )

<t [ ()= () e
() e ”

<ot (o) - () ]2 ()
trgnl

gl () o] g (o))

|Ba(u,v)(t2) — Ba(u, v)£t1)| 1

1 ty t2 T ds 1 f ; y— s
D) o () e
1

t 7—1_ h y—1
1 f2<1n:)7_1 <1 525

*W/h (102)" I6u(e)l T

)[(lnfz)AY — (Inty)7],

|Gua (s)] ;S (49)

r+1

which tends to zero as t; — t1, independently of (u,v) € B,.

Hence, by using (48) and (49), we obtain that operators 1, B, and B are equicontinu-
ous. By the Arzela—Ascoli theorem, we deduce that B is compact on B,. Therefore, by the
Krasnosel’skii fixed point theorem ([31]), we conclude that problem (1) and (2) has at least
one solution (u(t),v(t)), t € [1,T]. O

Theorem 4. We suppose that assumption (H1) holds and the functions f, g : [1,T] x R*> — R
are continuous and satisfy assumptions (H2) and (H3). If

1 . 1
l5m(ln T)* + Z6W(In T)Y <1, (50)

then problem (1) and (2) has at least one solution (u(t),v(t)), t € [1,T].
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Proof. Asin the proof of Theorem 3, we consider the positive number r > (E1 + Z3)||¢|| +
(Ep + E4) ||| and the closed ball B,. We also split operator A, defined on B,, as A = B+C,
B = (By,B),C = (C1,Cy), where B;, C;, i = 1,2 are defined by (40).

For (u1,v1), (uz,v2) € By, we obtain as in the proof of Theorem 3, that

|1B(u1,v1) +C(uz,v2) ||y <. (51)

We will prove next that the operator B is a contraction. Indeed, we find

¢ a—1 5
By, 20)(0) = B, 02) ()] < [, 00) = oz o)yt [ (m ) 2

S S

- z5r(0f+l)<1nt>“|<ul,v1> — (12, 02)ly

1
< l5m(ln T)"||(u1,v1) — (uz, UZ)HJ/I Vtel[l,T],

1o o\ las O
Ba(an,o0)(8) = Baluz o) O] < 0,00) — (o 2) o [ (n8) 5
- z6r(,yi+1)<1nt>7|<ul,vl> — (u2,22)ly
< l(,m(lnTﬁH(ul,vl) — (up,v2)|ly, Vte1,T].
Then, we deduce
IBus,00) = Bl o2)ly < |y 0T by | o

X ||(u1,v1) — (u2,v2) ||y,

that is, by (50), operator B is a contraction.
Operators Cy, Cy, and C are continuous by the continuity of the functions f and g.
Moreover, C is uniformly bounded on B, because we have

nT)A1 a—¢—1 s
|cl<u,v><t>|s“ 2 [W'dg) [ (D) a2

S
s oc— i—1 d
Y g4 () 1 5 arco)
+|d|2

T(y—o;) (/;( i “YailHlPHd:)dKi(s)
+<7b|19>/T<1 T>W " 1||¢||d:
+1b] Z (/ tx*mﬂ”(p” d:);zpi(s)
+1b] Z NG < Hiilll#’“ dTT>in(s)
o e {r( I .

Al —c+1)
+|d|2 Q;+1 ‘/ (Ins)*~%dH;(s)

+|b|2 m+1 ’/ (Ins)*~ " dPy(s)

(ln T)

I — d|2(7_0_i+1\/ (Ins)T-%dKi(s)
o

-0 4 —0;

DC—QZ

] (54)

o
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1
— 19121 - gy T + = Vi e LT, (o) €,

nT)*1 a 7—0-1 s
a0 < ST lr(i—'m (NG T
(1n2)" gl 5 Jars)

61 4
T 5 Jacus)

and

Y rear e (f002)™ ol 5
1 /1T</1 1n 701 |1,b||dT>dK()’

F(v 0;)
a1yt [, ¢ i
a|z(_17+1‘/1 (Ins)*~dPy(s)

= ol
)(1nT)H+|c|Z( L

]
INa—g¢+1 —0i+1)

(nT) 7 o ;
IR gy T

S ] e

+|C|Z_Zil"(’y—tfz+1)‘/1 (Ins)"“dK;(s)

= ||¢l|Zs + ||y {54 — r(ryl_i_l)(lnT)V], Vte[1,T], (u,0) € B,.

(55)

(ln s)*%dH;(s)

|

Therefore, by (54) and (55), we obtain

1
11,01 < 191|210 + vl

. (56)
€20, < 91123 + 9l |24~ -t Un )7,

and then .
< |g|l|E1 48— ———(InT)*
It < 91|21+ 25 - iy tnT)]

1 . (57)
9l |22+ 24~ it (0T, ¥(w0) € B
We finally prove that operator C is compact. Let ty, t, € [1,T], t; < tp. Then, for all

(u,v) € By, we find

|C1(u,0)(t2) — C1(u,v)(t1)]

_ 1 _ 1 _ _ (58)
< 2. p = A-1 A-1
< {0l |21~ gy On | + Wiz gy [ = ()],
which tends to zero as t; — t1, independently of (u,v) € B,. We also obtain
|Ca(u,v)(t2) — Co(u,v) (t1)]
1 (59)

< { ol + 1912 - gy 07| s [t = ey 1],
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which tends to zero as t, — t1, independently of (u,v) € B;.

So, by using inequalities (58) and (59), we obtain that operators C;, C», and C are
equicontinuous. By the Arzela—Ascoli theorem, we conclude that C is compact on B,. Then,
by applying the Krasnosel’skii fixed point theorem (see [31]), we deduce that problem (1)
and (2) has at least one solution (u(t),v(t)), t € [1,T]. O

Our next result is based on the Schaefer fixed point theorem (see [32]).

Theorem 5. We assume that assumption (H1) holds. In addition, we suppose that the functions
f, g:[1,T] x (R)? — R are continuous and satisfy the following condition:

(H4) There exist positive constants My, My such that
ftxy)| <My, [g(tx,y)| <My, VE€[L,T], x,y €R. (60)
Then, there exists at least one solution (u(t),v(t)), t € [1, T] for problem (1) and (2).

Proof. Firstly, we show that 4 is completely continuous. Operator A is continuous. Indeed,
let (uy,vn) € Y, n €N, (uy,v,) — (u,0), as n — oo in ). Then, for each t € [1,T],
we obtain

| A1 (un, 0) () — Ar (1%0)(f)|
1t t\“ ds
< m/l <ln> |Fu,, (s) — Fuu(s )| -

““QT_ s [ ) o 1|Funvn<s>1:w<s>|dj
e A CH SR RCTES T
w3 s (0 2) ™ G (0 = Gue) T i O

+”">/T(1n)7 . 1|Gunvn< )= Gur)] 2

I(y—9 s
1 2 e /T </1 (10 2)"" " By (1) — Fua() df)dpi@)
+lp ; oL ([ 02) " 60 - Gl )2 ]

and

| Az (1, vn) (£) = Az (u,0) (8)]

< iy [ (1) 1o Gt %
O (0 ) ™ ) - Gt
] /1T /15 ln%)a_ni_l|Fllnvn(T) — Fun(T)] dT>dP( )

+|LI| Z_il 1—‘(061—171 (
(182)"" 7 Gure (1)~ Gun(0)) 5 )i
1

(62)

)
faly
i—1 T(y—6)

s (0 D) a9~ sl
e f% L ) a0 = B 5 Y

el S iz (L 3) 6w (1)~ Gt 5 it

I(y— ‘71)
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Because f and g are continuous, we find

|Funvn(5) — Fup(s) |f(5 un(s), on(

| =
|Guyo, (8) = Guo(s)| = |8 (s, un(s), 0 (63)

s)) = f(s,u(s),v
(s)) —g(s,u(s),v

asn — oo, for all s € [1, T]. So, by relations (61)—(63), we deduce

))| = 0, and
s

() =0,

| A1 (un, vn) — Ay (u,0)|| =0, || A2(un,vn) — A2(u,0)|| = 0, as n — oo, (64)

and then || A(uy, v,) — A(u,v)||y — 0,as n — oo; i.e., A is a continuous operator.
We prove now that A maps bounded sets into bounded sets in J. For R > 0, let
={(u,v) €Y, ||(u,v)|ly < R}. Then, by using (60) and similar computations to those
in the first part of the proof of Theorem 2, we obtain

| A (1, 0)(1)] < M1Eq + MpEy, | Ax(u,0)(1)] < M1E3 + MpEy, (65)
forallt € [1,T] and (u,,v) € Bg. Then, by (65), we conclude
[A(u,0)|ly < Mi(81+ E3) + Ma(E2 + Ey), V(1,0) € Bg; (66)

i.e., A(Bg) is bounded.

In the following, we will prove that A maps bounded sets into equicontinuous sets.
For this, let t1,t, € [1,T], t1 < tp, and (u,v) € Bg. Then, by using similar computations to
those in the proofs of Theorems 3 and 4, we find

|A1(u,0)(t2) — Ay (u,0)(t1)]
< [By(u,0)(t2) = B1(u,0)(t1)| + |C1(w,0)(t2) — C1(u,0)(t1)]

1
S Mli[(ln tz)a — (h’l tl)“]
I'(a —i; 1) ) i i (67)
+{M1 l:\_*tl — m(lnT) :l + Mzdz}
XW [(m )1 — (In tl))‘*l} — 0, as tp = 1y,
independently of (u#,v) € Bg, and
| A2(u,0) (t2) — Az (u,0)(t1)|
< |32(M101)(f2) — By (u,0)(t1)] + [C2(u,0)(t2) — Ca(u,0) (1)
= Moy ()" = () =

+{M153 + M [54 - 1-(71_1_1)(111 T)W] }

XW |:(ln tz)]‘71 - (h’l tl)y71:| — O, as tz — tl,

independently of (u,v) € Bg.

Therefore, by using relations (67) and (68), we obtain that operators .4; and A; are
equicontinuous, and so, A is equicontinuous. So, the operator A : ) — Y is completely
continuous, by using the Arzela—Ascoli theorem.

Finally, we show thatset = {(u,v) € Y, (4,v) = wA(u,v), 0 < w < 1} isbounded.
Let (1,v) € U, i.e., thereexists w € [0,1] such that (u,v) = wA(u,v) or u(t) = wA; (u,)(t)
and v(t) = wAy(u,v)(t) forall t € [1, T]. Then, by (H4), we obtain in a similar manner as
that used in the first part of this proof that

(D] = wlA1(w,0)(D)] < [A1(u,0) ()] < M1Ey + MpZ, Vi€ [1,T],

y
69
[0(8)] = w| Az (1, 0)(1)] < [Aa(,0) ()] < MZs + MpBg, Vi [1T], &)
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and then
[, 0)lly = [lull + lloll < M1(E1 + E3) + M2(E2 + Ey). (70)

This shows that the set U/ is bounded. Therefore, by the Schaefer fixed point theorem
(see [32]), we deduce that operator A has at least one fixed point. Hence, problem (1)
and (2) has at least one solution. [

In our last existence result, we will use the Leray-Schauder nonlinear alternative
(see [33]).
Theorem 6. We suppose that assumption (H1) holds. Moreover, we assume that the functions
f, g :[1,T] x R?2 — R are continuous, and the following conditions are satisfied:
(H5) There exist the functions p1,p> € C([1,T],Ry) and the functions ¢, ¢, € C(Ry X

R4, R} nondecreasing in each of both variables such that

ftxy) < pr®e(lx] yl), 18t xy) < pa(a(lx], [yl), VE€[LT], x,y R (71)
(H6) There exists a positive constant L such that

L
Ip1ll@1(L, L) (21 + E3) + [|p2ll92(L, L) (22 + E4)

> 1. (72)

Then, the fractional boundary value problem (1) and (2) has at least one solution (u(t),v(t)), t € [1,T].

Proof. We define theset V = {(u,v) € ), ||(1,v)||y < L}, where L is the constant given
by (72). The operator A : V — Y is completely continuous.

We assume that there exist (1, v) € 9V such that (u,v) = v.A(u,v) for some v € (0,1).
Then, we find

u(O)] = vl A (o) (O] < | A (1, 2) (D] < [P @2 (lell, [ol)Z + P2l @2l ol)Z2, 7o)
[o(t)] = v Az (u, 0) ()] < [Az(u,0) ()] < lIpall@a(llull, [[0])Es + [[p2l| @2([lull, [[0]])Za,

forall t € [1, T], and, therefore,

[, 0)lly = llull + ol < llpall @l 101)(E1 + E3) + lpall@2([lull, [0])(Z2 + Z4) (78)
< lpallor(lGe, )y, NI (,0)ly) (Er + E3) + llp2ll @2(ll (u, 0) Ly, [[ (1, 0) [ ) (B2 + Eq).

So, we obtain

L

— —— <1, (75)
Ip1ll@1(L, L)(E1 + E3) + || pall@2(L, L) (Ea + Ey)

which, based on (72), is a contradiction.

We deduce that there is no (u,v) € dV such that (u,v) = v.A(u,v) for some v € (0,1).
Therefore, by the Leray-Schauder nonlinear alternative (see [33]), we conclude that .4 has a
fixed point (u,v) € V, which is a solution of problem (1) and (2). [

4. Examples

In this section, we will present some examples that illustrate our theorems obtained in
Section 3.

WeconsiderT:9,zx:%,'y:%, :%,(5:%,6':%,19:0,]’]/[:2’11:2’;):2,
1=20=00=%40=30=%m=01mpm=130=0andb = 4.
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In addition, we introduce the following functions
I3[ 19
22 7 7 6 7
15 {19 11)
Y S e
Hy (s) = 22 6" 2 0
=) B e B 7R 15y
27 22 27.23/2 273 )
8-19%2 15 79/2 25 ]
315/2 2 7.2 0 €l37)
35 1 54
B 12/ /ﬁ 7
Hy(s) = 8 ‘e 54 o,
3/ 13/ 7
7
Ki(s) = — (s —1)% s € [1,9)
2, s€[1,7);
K =
9= 7 el
38
72 (76)
25+15, s € |1,
1 25 + e s € 72 91,
6 7 11/ 7
1 33
Y s € 1/7 7
_ )2 8
R)=93 23 ‘I
%/ EES |:8/9:|/
17, s € [1,2);
Qi(s) = { 14 s€27); -
s —3)17/5 414 — = 225 5 e (7,9);
020 1\ T8,
25 2 ’ "8 )’
Qa(s) =
51-2%/2 53
——, S€ | —,9|.
25 .4925/6 8
We consider the system of fractional differential equations
32
MDD u(t) = f(tu(t),v(t), t€[LT],
. (77)
HBHDS 7o(t) = g(t,u(t),o(t)), t € [L,T],
subject to the nonlocal coupled boundary conditions
1 19\ 4 (% 7 1y 2 (54
u(1) =0, HD}u(9) = 24u ( ) 5 [T - 2)buls) ds - 4HD1“u(13>
9 3
LY (s—1)2 Hpsy ()ds+§HD12 7 ,
24 38 3
0(1) =0, v(9 2/ s)ds — — 72 | 2 npl/, (33 7
- B 1) 13 ! 8

—3v(2)

SY

%
S)ds—17/ (s—
1

)

HpYo(s) ds.
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After some computations, using the Mathematica program, we obtain A = %, U= ?,

~ —1831.69757626, b ~ —449.04583604, ¢ ~ 10.3109466, d ~ 37.64671349, and
A~ —64327.3062105 # 0. So, assumption (H1) is satisfied.

In addition, we find &1 ~ 4.99459858, Z, ~ 1.73975237, B3 =~ 0.93885308, and
&4 ~ 5.31130101.
Example 1. We consider the functions

1 g3 2 _ap cos(4t+1)
tx,y) = —e D732 41— Z o3 t =/
ft,x,y) 57¢ x2+1—2e” arctany + e

a
A

(t,x,y) = ! s + 3 cos?y —t2+7 79)
SV = 1) 1+ 2 T al(tr2) Y ’
forallt € [1,9] and x,y € R.
We have
F(bx1,m) — Ft %, 92)] < a1 — 2] + = [y1 — ol
f(tx1,y1) — f(t,x2, 2 < ol =X+ oy — el 0

1 2
8t x1,51) = gt x2,y2)| < 5ol — 2ol + 2l — w2,
forallt € [1,9]and x;,y; € R, i =1,2.So, wefind lh = 55, I = &, I3 = 51, ls = % (from
assumption (H2)), and then I5 = Z and l¢ = &. Because I5(E1 + Z3) + l6(E, + E4) ~
0.909 < 1, then condition (26) is satisfied. Therefore, by Theorem 2, we conclude that the
boundary value problem (77) and (78) with the nonlinearities (79) has a unique solution
(u(t),o(t)), t €[1,9].

Example 2. We consider the functions

1 X (7 +1)e~2+3 cos(4t> +9)
t = . _ PN )
fexy) =aim wat w e oY t+6 1)
2041 2 4P +1 0 2yt 41 et

Lx,Y) = ———— p
8t xy) 7,/t4+186 3(t° +42) y4—|—3+5t+4

forallt € [1,9] and x,y € R.
We have the following inequalities

1 (7 4 1)e2t+3 1
< =
FExyl < sy * 5@ aay Tive )

(82)
241 2(42+41) e 6
< =
lg(t,x,y)| < RN =Ny o v,

forallt € [1,9] and x,y € R, and

|£(t,x1,y1) — f(t,x2,92)| < 0.077|x1 — x2| + 0.1265|y1 — 2|,

83
|g(t,x1,y1) — g(t, x2,¥2)| < 0.1057|x1 — x2| 4+ 0.1041|y1 — 2|, (83)

forall t € [1,9] and x;,y; € R, i = 1,2. Sol; = 0077, I, = 0.1265, I = 0.1057,
Iy = 0.1041, and so Is = 0.1265 and /s = 0.1057. So, assumptions (H2) and (H3)

are satisfied. In addition, we obtain z; := Z; + &3 — ﬁ(ln 9)3/2 ~ 3.48339869 and

Zy 1= By 4 By — ﬁ(lm)% ~ 4.65193119. Then, we find I5z1 + lgzp ~ 0.932359 < 1,
i.e., condition (38) is also satisfied. By Theorem 3, we deduce that problem (77) and (78)
with the nonlinearities (81) has at least one solution (u(t),v(t)), t € [1,9].
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Example 3. We consider the functions

341
e
(t,x,y) = sin(x +y) + = \/t2—|—1
fltxy NEEw) v (84)
(t X )—;ﬁ_(t _zt)e_y +arctan72
LY = Wy 42

forallt € [1,9] and x,y € R. We obtain |f(t,x,y)| < 2and [g(t, x,y)| < 7125+ 7, for
allt € [1,9] and x,y € R. So, M; = 2 and M, = 712.5+ 7 (from assumption (H4)).
By Theorem 5, we conclude that the boundary value problem (77) and (78) with the
nonlinearities (84) has at least one solution (u(t),v(t)), t € [1,9].

Example 4. We consider the functions

3 x 3 Yy x 1
f(t,x,y) = Zrsl ( cos(x° +y) £g arctan ——— 1 + 2),
(85)

2t 5x y x+1 7
t —ay)+ L -z
g(txy) = 5103 ( sin(x? — 4y) + 3 arctan 2 8)'

forallt € [1,9] and x,y € R. We have the inequalities

3 (lal , 7yl 2t (5l 7yl
< -
|f(t'x'y)|*t2+81(28+ 100 +2 |g(t, x )|*t3+93 » T 31 +8 (86)

forallt € [1,9] and x,y € R. So, we find p;(t) = terim, pa(t) = pi—t%, p1(u,v) =

7% + o5 + %, ¢2(u,v) = g—g + 37+ %, forallt € [1,9] and u, v € R, and then assumption
(H5) is satisfied. In addition, we obtain ||p1| ~ 0.03658537 and ||p2| ~ 0.05155531. The
condition from assumption (H6) becomes

%(a + )|l pall + §(Bs + Ey) [|p2|

1
L>1_ T\ =) (2 4 T\(m =
(35 + 155) B+ Z)Ipall — (5 + &) (E2 + E4) | pa|

~ 0.48878552,  (87)

So, if L > 0.4888, then assumption (H6) is also satisfied. Therefore, by Theorem 6, we
deduce the existence of at least one solution (u(t),v(t)), t € [1,9] for problem (77) and (78)
with the nonlinearities (85).

5. Conclusions

In this paper, we investigated the existence and uniqueness of solutions for a system
of fractional differential equations denoted as (1). These equations are subject to nonlo-
cal boundary conditions as specified in (2). System (1) encompasses Hilfer—-Hadamard
fractional derivatives that vary in orders and types, while the conditions (2) are nonlocal,
featuring a combination of Riemann-Stieltjes integrals and Hadamard derivatives with
varying orders. It is worth noting that these conditions are general ones, encompassing
scenarios that range from uncoupled boundary conditions (in the event that all functions K;
fori=1,...,nand Pjforj=1,..., p are constants) to more complex cases that generalize
multi-point boundary conditions, classical integral conditions, and various combinations
thereof. In Section 2, we have provided an existence theorem for the linear fractional differ-
ential problem associated with (1) and (2). In Section 3, we have presented our primary
findings, supported by rigorous proofs in which we have employed various fixed point
theorems. These theorems include the Banach contraction mapping principle (applied to
prove Theorem 2), the Krasnosel’skii fixed point theorem for the sum of two operators
(utilized in proving Theorems 3 and 4), the Schaefer fixed point theorem (employed for
Theorem 5), and the Leray-Schauder nonlinear alternative (used to establish Theorem 6).
Finally, in Section 4, we have provided several illustrative examples to elucidate the im-
plications of our main existence results. Going forward, our aim is to investigate different
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sets of fractional equations, which include fractional derivatives of various kinds and are
subject to diverse boundary conditions.
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