An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network
Abstract
:1. Introduction
- Supplementary crack detection dataset with the open source crack segmentation dataset for network training and testing.
- Designed an automated methodology capable of detecting, segmenting, and estimating the fractal dimension of cracks in an end-to-end manner called DSD-Net.
- Designed a dual encoder structure based on FFT and CNN. The FFT-based target detection module effectively captures crack patterns and enhances crack localization. The CNN-based segmentation module accurately delineates the crack boundary by considering local and global context information.
- Extensive performance evaluation of the proposed method using several evaluation metrics and comparison with mainstream sum detection and segmentation methods.
2. Methods
2.1. Crack Detection and Segmentation System
2.1.1. Frequency Domain Encoder
2.1.2. CNN Encoder
2.1.3. Attention Fusion Detection Module
2.1.4. Loss Functions
2.2. Fractal Computing System
Algorithm 1 Calculate Fractal Dimension | |
| |
1: | Read the image from image_path and convert it to grayscale. |
2: | If max_box_size is not provided then |
3: | Set max_box_size to half the minimum dimension of the image. |
4: | end if |
5: | Function box_count(box_size): |
6: | Initialize count to 0. |
7: | for each box with size box_size do |
8: | if the box contains a crack then |
9: | Increment count by 1 |
10: | end if |
11: | end for |
12: | return count |
13: | Function fractal_dimension(): |
14: | Initialize an empty list counts. |
15: | for each box_size from min_box_size to max_box_size do |
16: | Calculate the number of boxes that cover cracks using box_count(box_size) and store it in counts. |
17: | end for |
18: | Fit a line to the pairs of box sizes and counts using the np.polyfit function. |
Calculate the fractal dimension using the fitted line. | |
19: | return Fractal Dimension |
20: | Function caculate_fractal_dimension (image_pathe, min_box_size, max_box_size): |
21: | Convert the image at image_path to grayscale. |
22: | if max_box_size is not provided then |
23: | Set max_box_size to half the minimum dimension of the image. |
24: | end if |
25: | Call fractal_dimension() to calculate the fractal dimension. |
26: | return Fractal Dimension |
3. Implementation
3.1. Public Crack Datasets
3.2. Implementation Details
3.3. Evaluation Metrics
4. Experiments and Analyses
4.1. Crack Detection Results
4.2. Crack Segmentation Results
4.3. Fractal Dimension Estimate
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, K.; Reichard , G.; Xu, X.; Abiola, A. Automated crack segmentation in close-range building façade inspection images using deep learning techniques. J. Build. Eng. 2021, 43, 102913. [Google Scholar] [CrossRef]
- Chen, C.; Seo, H.; Jun, C.; Zhao, Y. A potential crack region method to detect crack using image processing of multiple thresholding. Signal Image Video Process. 2022, 16, 1673–1681. [Google Scholar] [CrossRef]
- Nnolim, U.A. Automated crack segmentation via saturation channel thresholding, area classification and fusion of modified level set segmentation with Canny edge detection. Heliyon 2020, 6, e05748. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Peter, W.T.; Yuan, M. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector. Meas. Sci. Technol. 2018, 29, 025403. [Google Scholar] [CrossRef]
- Hong, Y.; Lee, S.J.; Yoo, S.B. AugMoCrack: Augmented morphological attention network for weakly supervised crack detection. Electron. Lett. 2022, 58, 651–653. [Google Scholar] [CrossRef]
- Matlack, G.R.; Horn, A.; Aldo, A.; Walubita, L.F.; Naik, B.; Khoury, I. Measuring surface texture of in-service asphalt pavement: Evaluation of two proposed hand-portable methods. Road Mater. Pavement Des. 2023, 24, 592–608. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Sekar, A.; Perumal, V. Automatic road crack detection and classification using multi-tasking faster RCNN. J. Intell. Fuzzy Syst. 2021, 41, 6615–6628. [Google Scholar] [CrossRef]
- Li, R.; Yuan, Y.; Zhang, W.; Yuan, Y. Unified vision-based methodology for simultaneous concrete defect detection and geolocalization. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 527–544. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, J.; Gong, C.; Wu, W. Automatic tunnel lining crack detection via deep learning with generative adversarial network-based data augmentation. Undergr. Space 2023, 9, 140–154. [Google Scholar] [CrossRef]
- Chu, H.; Wang, W.; Deng, L. Tiny-Crack-Net: A multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1914–1931. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Cai, F. On bridge surface crack detection based on an improved YOLO v3 algorithm. IFAC-PapersOnLine 2020, 53, 8205–8210. [Google Scholar] [CrossRef]
- Chen, L.; Yao, H.; Fu, J.; Ng, C.T. The classification and localization of crack using lightweight convolutional neural network with CBAM. Eng. Struct. 2023, 275, 115291. [Google Scholar] [CrossRef]
- Huang, H.w.; Li, Q.t.; Zhang, D.m. Deep learning based image recognition for crack and leakage defects of metro shield tunnel. Tunn. Undergr. Space Technol. 2018, 77, 166–176. [Google Scholar] [CrossRef]
- Shang, J.; Xu, J.; Zhang, A.A.; Liu, Y.; Wang, K.C.; Ren, D.; Zhang, H.; Dong, Z.; He, A. Automatic Pixel-level pavement sealed crack detection using Multi-fusion U-Net network. Measurement 2023, 208, 112475. [Google Scholar] [CrossRef]
- Xiang, C.; Guo, J.; Cao, R.; Deng, L. A crack-segmentation algorithm fusing transformers and convolutional neural networks for complex detection scenarios. Autom. Constr. 2023, 152, 104894. [Google Scholar] [CrossRef]
- Fan, Z.; Li, C.; Chen, Y.; Di Mascio, P.; Chen, X.; Zhu, G.; Loprencipe, G. Ensemble of deep convolutional neural networks for automatic pavement crack detection and measurement. Coatings 2020, 10, 152. [Google Scholar] [CrossRef]
- Jang, K.; An, Y.K.; Kim, B.; Cho, S. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 14–29. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, D.; Xue, Y.; Zhou, M.; Huang, H. A deep learning-based approach for refined crack evaluation from shield tunnel lining images. Autom. Constr. 2021, 132, 103934. [Google Scholar] [CrossRef]
- Xiang, C.; Wang, W.; Deng, L.; Shi, P.; Kong, X. Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network. Autom. Constr. 2022, 140, 104346. [Google Scholar] [CrossRef]
- Koga, K.; Yasumura, N.; Shigeta, Y.; Shinjin, M.; Nakagawa, K. Examination of TCI for the quantitative integrity of tunnel lining. Proc. Tunn. Eng. JSCE 2004, 13, 371–376. [Google Scholar]
- Shigeta, Y.; Tobita, T.; Kamemura, K.; Shinji, M.; Yoshitake, I.; Nakagawa, K. Propose of tunnel crack index (TCI) as an evaluation method for lining concrete. Doboku Gakkai Ronbunshuu 2006, 62, 628–632. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, X.; Taniguchi, T. Quantitative condition inspection and assessment of tunnel lining. Autom. Constr. 2019, 102, 258–269. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Arjovsky, M.; Shah, A.; Bengio, Y. Unitary evolution recurrent neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 1120–1128. [Google Scholar]
- Danihelka, I.; Wayne, G.; Uria, B.; Kalchbrenner, N.; Graves, A. Associative long short-term memory. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 1986–1994. [Google Scholar]
- Hirose, A.; Yoshida, S. Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, O.; Bilaniuk, Y.; Zhang, D.; Serdyuk, S.; Subramanian, J.; Santos, S.F.; Mehri, N.; Rostamzadeh, Y.; Bengio, C.; Pal, J. Deep Complex Networks. In Proceedings of the ICLR, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Hou, Q.; Zhang, L.; Cheng, M.M.; Feng, J. Strip pooling: Rethinking spatial pooling for scene parsing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4003–4012. [Google Scholar]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Rezaie, A.; Mauron, A.J.; Beyer, K. Sensitivity analysis of fractal dimensions of crack maps on concrete and masonry walls. Autom. Constr. 2020, 117, 103258. [Google Scholar] [CrossRef]
- Li, L.; Sun, H.X.; Zhang, Y.; Yu, B. Surface cracking and fractal characteristics of bending fractured polypropylene fiber-reinforced geopolymer mortar. Fractal Fract. 2021, 5, 142. [Google Scholar] [CrossRef]
- Wu, J.; Xie, D.; Yi, S.; Yin, S.; Hu, D.; Li, Y.; Wang, Y. Fractal Study of the Development Law of Mining Cracks. Fractal Fract. 2023, 7, 696. [Google Scholar] [CrossRef]
- An, Q.; Chen, X.; Wang, H.; Yang, H.; Yang, Y.; Huang, W.; Wang, L. Segmentation of concrete cracks by using fractal dimension and UHK-net. Fractal Fract. 2022, 6, 95. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Yu, S.; Prokhorov, D.; Mei, X.; Ling, H. Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1525–1535. [Google Scholar] [CrossRef]
- Eisenbach, M.; Stricker, R.; Seichter, D.; Amende, K.; Debes, K.; Sesselmann, M.; Ebersbach, D.; Stoeckert, U.; Gross, H.M. How to get pavement distress detection ready for deep learning? A systematic approach. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2039–2047. [Google Scholar]
- Yan, Y.; Zhu, S.; Ma, S.; Guo, Y.; Yu, Z. CycleADC-Net: A crack segmentation method based on multi-scale feature fusion. Measurement 2022, 204, 112107. [Google Scholar] [CrossRef]
- Ali, R.; Chuah, J.H.; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Structural crack detection using deep convolutional neural networks. Autom. Constr. 2022, 133, 103989. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.P.; Huang, X.C.; Zhao, X.F. Optimization of the Critical Slip Surface of Three-Dimensional Slope by Using an Improved Genetic Algorithm. Int. J. Geomech. 2020, 20, 04020120. [Google Scholar] [CrossRef]
- TruSoft International Inc. Benoit™; 1.01; TruSoft International Inc.: St. Petersburg, FL, USA, 1997; Available online: https://www.trusoft-international.com/ (accessed on 15 September 2023).
Method | MS (MB) | FPS (f/s) |
---|---|---|
Faster RCNN | 97.6 | 25.9 |
YOLO v5 | 58.3 | 30.1 |
YOLO v7 | 69.8 | 28.6 |
SSD | 65.9 | 57.8 |
Ours | 35.3 | 80.4 |
Method | Original | Low Brightness | ||||
---|---|---|---|---|---|---|
Pr | Re | F1 | Pr | Re | F1 | |
Faster RCNN | 85.80% | 87.10% | 86.45% | 82.20% | 83.60% | 82.89% |
YOLO v5s | 89.20% | 84.20% | 86.63% | 84.30% | 80.60% | 82.41% |
YOLO v7-tiny | 88.60% | 85.60% | 87.07% | 84.70% | 82.40% | 83.53% |
SSD | 86.40% | 85.90% | 86.15% | 79.80% | 73.40% | 76.47% |
Ours | 92.10% | 91.40% | 91.75% | 88.50% | 85.30% | 86.87% |
Method | Original | Low Brightness | ||||||
---|---|---|---|---|---|---|---|---|
Pr | Re | F1 | IoU | Pr | Recall | F1 | IoU | |
U-Net | 83.90% | 81.20% | 82.53% | 60.90% | 70.40% | 75.90% | 73.05% | 57.80% |
Deeplabv3+ | 84.70% | 85.00% | 84.85% | 63.70% | 72.80% | 74.60% | 73.69% | 53.40% |
PSPNet | 85.60% | 81.80% | 83.66% | 67.00% | 73.70% | 72.10% | 72.89% | 51.60% |
Seg-Net | 82.40% | 80.50% | 81.44% | 60.30% | 71.50% | 70.80% | 71.15% | 58.90% |
Ours | 86.30% | 89.20% | 87.73% | 68.00% | 76.30% | 78.10% | 77.19% | 62.60% |
Method | Line Segments | Squares | Sixth-Order Koch Curves |
---|---|---|---|
Benoit | 0.973 | 1.996 | 1.268 |
Ours | 0.986 | 1.994 | 1.267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Chen, Q.; Huang, X. An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network. Fractal Fract. 2023, 7, 820. https://doi.org/10.3390/fractalfract7110820
Cheng J, Chen Q, Huang X. An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network. Fractal and Fractional. 2023; 7(11):820. https://doi.org/10.3390/fractalfract7110820
Chicago/Turabian StyleCheng, Jiajie, Qiunan Chen, and Xiaocheng Huang. 2023. "An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network" Fractal and Fractional 7, no. 11: 820. https://doi.org/10.3390/fractalfract7110820
APA StyleCheng, J., Chen, Q., & Huang, X. (2023). An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network. Fractal and Fractional, 7(11), 820. https://doi.org/10.3390/fractalfract7110820