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Abstract: The dilatancy equation ignores the noncoaxiality of granular soil for the coaxial assumption
of the direction of the stress and strain rate in conventional plastic potential theory, which is incon-
sistent with extensive laboratory tests. To reasonably describe the noncoaxial effects on dilatancy,
the energy dissipation of plastic flow is derived based on the property-dependent plastic potential
theory for geomaterials and integrates the noncoaxiality, the potential theory links the plastic strain
of granular materials with its fabric, and the noncoaxiality is naturally related to the mesoscopic
properties of materials. When the fabric is isotropic, the dilatancy equation degenerates into the form
of the critical state theory, and when the fabric is anisotropic, it naturally describes the effects of
noncoaxiality. In the plane stress state, a comparison between a simple shear test and prediction of
the dilatancy equation shows that the equation can reasonably describe the effect of noncoaxiality on
dilatancy with the introduction of microscopic fabric parameters, and its physical significance is clear.
This paper can provide a reference for the theoretical description of the macro and micro mechanical
properties of geomaterials.

Keywords: geomaterials; plastic potential theory; microscopic fabric; noncoaxiality; dilatancy

1. Introduction

Dilatancy is the variation of soil porosity due to the particle rearrangement under shear
stress and is an essential mechanical property to distinguish geomaterial from other non-
granular materials and to establish the constitutive model. Based on the energy principle,
studying dilatancy is reasonable, and energy function at the critical state is usually used to
describe dilatancy, such as Rowe’s dilatancy equation in previous research [1]. Researchers
gradually realized that the dilatancy of granular soil is also related to the material state
in a later study [2]. Although Rowe also pointed out that the influence of material state
should be considered in the dilatancy theory [1], after many scholars performed similar
research, the stress dilatancy theory was successfully applied to the constitutive model
of granular materials [3–5], and many scholars studied the particle breakage of rockfill
from the perspective of energy [6–8]. Stress-dilatancy theory is widely used in the study of
mechanical properties and the constitutive model of soil.

With the deepening of research, noncoaxiality has gradually attracted attention, which
was first found by De Josselin de Jong [9] and has a significant effect on the mechanics and
deformation of geomaterials. Therefore, based on the conventional plastic potential theory
to derive dilatancy equations, there are some limitations in describing noncoaxiality due
to the theory implying the coaxial assumption of direction between the stress and plastic
strain rate. Researchers have conducted deeper research on noncoaxiality in subsequent
theoretical and experimental studies [10,11]. Several scholars conducted simple shear
tests to investigate noncoaxiality, such as the simple shear test of sand [12] and aluminum
rod accumulation [13]. Lade [14] also found noncoaxial phenomena on the deviatoric
plane in the true triaxial test of sand, where the direction of the stress and strain rate is

Fractal Fract. 2023, 7, 824. https://doi.org/10.3390/fractalfract7110824 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7110824
https://doi.org/10.3390/fractalfract7110824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-4533-793X
https://doi.org/10.3390/fractalfract7110824
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7110824?type=check_update&version=3


Fractal Fract. 2023, 7, 824 2 of 11

coaxially under triaxial compression and tension tests and noncoaxial under other stress
paths. Li [15] designed a similar true triaxial test, and although ideal spherical glass beads
with a single particle size were used, obvious noncoaxiality was still observed. Xiong [16]
found that noncoaxiality would cause the dilatancy curve to deviate from Rowe’s line,
which has a significant effect on sand dilatancy. Ignoring the noncoaxiality to deduce the
dilatancy equation is unreasonable. Therefore, some scholars have integrated noncoaxiality
into the research on dilatancy. Gutierrez [17] introduced the noncoaxial constant into the
plastic theory and further analyzed plastic work and dilatancy. However, the noncoaxial
angle seems to always exist in the whole stress space after the noncoaxial constant is set,
which is inconsistent with the test results of Lade and Ducan [14]. Rudnicki [18] proposed
a noncoaxial model for calculating the plastic deformation of the fractured rock mass.
Xiong [16] modified Rowe’s dilatancy equation by introducing Gutierrez’s noncoaxial
coefficient. Lashkari [19] proposed a dilatancy equation in the noncoaxiality constitutive
model, and the noncoaxial coefficient is consistent with Gutierrez’s previous research [20].
Tsegaye [21] established noncoaxial stress-dilatancy frames for axisymmetric, plane-strain,
and general stress states, and presented a mechanism for establishing noncoaxial angular
development in axisymmetric and plane-strain states. Pouragha [22] explored dilatancy
aspects. The above research introduces corresponding parameters to improve the dilatancy
equation based on the noncoaxial test phenomenon. At the microscopic level, noncoaxiality
is a result of anisotropy [23] from the perspective of fabric properties described as a
reasonable method.

To reasonably describe the stress–strain of granular materials, several researchers
turned their theoretical studies to microscopic soil mechanics. Oda [24] used fabric tensors
to describe the microscopic structure of granular materials and explored the connection be-
tween the initial fabric and the mechanical properties. Experiments by Wong [25] confirmed
the connection between fabric anisotropy and the noncoaxiality of granular materials. Li
and Dafalias [26] studied the anisotropy of sand from a microscopic perspective. In a
study on microscopic soil mechanics, some researchers used fractal theory to describe the
microstructure of granular materials [27]. The fractal dimension is used to characterize
the particle breakage, and the fractal dimension before and after shearing is introduced
into the constitutive model to simulate the influence of the change in the microscopic mor-
phology of the particles on the stress–strain relationship [28,29]. Based on consideration
of the microscopic characteristics of materials, Li [30] carried out relevant research work,
established the anisotropic failure criterion of sand from the perspective of the combination
of macro and micro, analyzed the noncoaxial characteristics of the simple shear test [31],
and proposed the property-dependent plastic potential theory for geomaterials (potential
theory for short) [32]. The theory connects the plastic deformation of materials with its
microscopic fabric and describes the plastic strain rate related to material properties.

Dilatancy equations are usually derived according to the plastic flow rule and energy
relation of materials. Therefore, from the perspective of the macro–micro combination,
based on the potential theory, the dilatancy equation will be modeled combined with
the idea of the energy transformation relation and the critical state of the soil. In the
dilatancy equation, the microstructure of particles will be described by the long axis of
particles and employed to define the noncoaxial coefficients. The noncoaxial coefficients
will be introduced into the dilatancy equation to describe the effect of noncoaxiality on the
geomaterials’ dilatancy from a microscale perspective. Finally, the results of a simple shear
test will be used to verify the rationality of the dilatancy equation.

2. Dilatancy Equation Based on the Potential Theory
2.1. Establishment Method

The dilatancy equation is established according to the energy transformation relation in
plastic deformation and the critical state of the soil. In the potential theory, the plastic strain
rate is shown in Equation (1), where g represents the plastic potential function to describe
the direction of plastic flow, dλ represents the plastic scalar factor, the derivation process
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can be referred to in reference [32], Fl j is the direction tensor of the fabric tensor Fl j, PF is
the size of the fabric tensor, and PF= 1/(3 + a 1+a2+a3). According to the characteristics
of the direction tensor, Fil can be decomposed into two parts, such as Equation (2) and
Equation (3). δl j in the equation is the Kronecker tensor, and when i = j, δ11 = δ22 = δ33= 1,
it represents isotropy. s̃l j represents the anisotropic part, and ai(i=1,2,3)

represents anisotropy
in the main direction of the fabric. When the material is isotropic, a1 = a2 = a3= 0 and
Fl j = δl j, the expression of plastic strain increment is consistent with the conventional
plastic potential theory. When the material is anisotropic, the anisotropic parameter ai(i=1,2,3)

is nonzero, and the plastic strain rate is naturally decomposed into two parts, isotropic and
anisotropic, as shown in Equation (4).

dε
p
lj= dλ

∂g
∂σil

Fil (1)

Fl j = PF

(
δl j + s̃l j

)
= PF

(
Fl j

)
(2)

δij =

1 0 0
0 1 0
0 0 1

, s̃ij =

a1 0 0
0 a2 0
0 0 a3

 (3)

dε
p
lj= dλ (

∂g
∂σij

+
∂g
∂σil

s̃il) (4)

According to Equations (1)–(4), the plastic dissipated work can be written in the form
of Equation (5):

dWp= σl jdε
p
lj= σl j

(
dλ

∂g
∂σij

+dλ
∂g
∂σil

s̃il

)
(5)

where dWp is the plastic dissipated work, dλ
∂g

∂σij
is the isotropic part of the plastic strain

rate, and dλ
∂g

∂σil
s̃il is the anisotropic part of the plastic strain rate. The plastic dissipated

work can be written as Equation (6) in the principal stress space, and stress σl j and strain
increments dε

p
lj are σk and dε

p
k instead, respectively. σk is the principal stress expressed by

stress invariants, which can be written as Equation (7).

dWp= σl j dε
p
lj = σk dε

p
k = σk

(
dλ

∂g
∂σk

+dλ
∂g
∂σk

sk

)
(6)

σk= p+
2
3

q sin[θ σ +
2π(2− k)

3

]
(7)

According to Equation (1), the principal plastic strain increment dε
p
k can be written

by strain rate invariants as shown in Equation (8), where dγp is the plastic shear strain
rate. The stress invariants in Equation (7) and strain increment invariants in Equation
(8) are substituted into Equation (6) to obtain the energy relation based on the potential
theory, as shown in Equation (9). In Equation (7), p = (σ1 + σ2 + σ3)/3 represents the

average principal stress, q = 1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2 is the generalized
shear stress, and the stress lode angle θσ represents the stress direction, which is defined on
the deviatoric plane; the calculation formula is shown in Equation (12). dε

p
v and dγp are

the increments of the plastic volumetric strain and shear strain, respectively, and the angle
θdε represent the direction of the strain rate, θdε = arctan

[
1√
3

(
2 dε2−dε3

dε1−dε3
−1
)]

.

dε
p
k =

1
3

dε
p
v+dγp sin

[
θdε +

2(2 − k)π
3

]
(8)
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dWp= p dεp
v +

2q dγp

3

3
∑

k=1
sin
[
θσ +

2π(2− k)
3

]
sin
[
θdε +

2π(2− k)
3

]
= p dεp

v+q dγp cos(θσ − θdε)
(9)

According to the critical state theory, when the soil reaches the critical state, the stress
and volumetric strain rate hold. Under the action of shear stress, shear deformation occurs
continuously, and the stress ratio reaches the critical stress ratio ηc. At this point, the energy
relation based on the potential theory can be simplified to Equation (10) in the critical
state, and the three-dimensional dilatancy equation shown in Equation (11) based on the
potential theory can be obtained.

dWp= p dεp
v+q dγp cos(θσ − θdε) = ηc p dγp (10)

dε
p
v

dγp = ηc − cos(θσ − θdε)
q
p

(11)

where the stress lode angle is shown in Equation (12), which is consistent with Equation
(7). The strain increments lode angle can be redefined in Equation (13) according to the
potential theory and a detailed analysis process can be found in reference [32].

θσ= arctan
[

1√
3

(
2

σ2 − σ3

σ1 − σ3
− 1
)]

(12)

θdε= arctan
[

1√
3

(
2

dε2 − dε3

dε1 − dε3
− 1
)]

= arctan

 1√
3

2
dλ

∂g
∂σ2

F2 − dλ
∂g
∂σ3

F3

dλ
∂g
∂σ1

F1 − dλ
∂g
∂σ3

F3
− 1

 (13)

According to Equation (10), when the stress lode angle is equal to the strain lode angle,
it is coaxial. The analysis combined with Figure 1 and Equation (13) shows that when the
material with the transversely isotropic fabric, F2 = F3, and under triaxial compression,
σ1 > σ2 = σ3, the principal stress acts in the three directions of F1, F2, and F3, respectively,
θσ = θdε, and the stress and strain increments are coaxial. In the triaxial tensile state,
σ1 = σ2 > σ3, the principal stress acts on F2, F3, and F1, respectively, the stress lode angle
is equal to the strain lode angle, and the stress and strain increment are coaxial. In other
stress states of the deviatoric plane, θσ 6= θdε. Accordingly, the description of noncoaxiality
under different stress states is associated with the meso-fabric properties of materials,
which is different from the noncoaxial coefficients commonly used in previous research,
has clearer physical significance, and is consistent with the experimental phenomenon in
reference [14].

Figure 1. Stress and fabric relation.
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2.2. Description of Dilatancy under Plane Stress State

To verify the rationality of the dilatancy equation in this paper, we first derived the
dilatancy equation under the plane stress state. Mohr’s circle under plane stress is shown in
Figure 2, where φdss and φp are the friction angle and the peak friction angle, respectively.
The relation between stress components σx, σy, σz, normal stress s, and shear stress t is
shown in Equation (14). Similarly, the relation between the strain component increments
dεx, dεy, and dεz, volumetric strain, and shear strain in the strain Mohr’s circle can be
written as Equation (15).

σx= s− t cos(2α), σy= s + t cos(2α), τxy= t sin(2α) (14)

dε
p
x = 1

2 dε
p
ν − 1

2 dγpcos(2β)
dε

p
y = 1

2 dε
p
ν +

1
2 dγpcos(2β)

dε
p
xy = 1

2 dγpsin(2β)

 (15)

where α is the stress direction angle (as shown in Figure 2) and β is the strain increment
direction angle in the strain space. Assuming the elastic strain is negligible, stress invariants
and strain invariants can be written as:

s = σx+σy
2 = σ1+σ3

2 , t =

√(
σx−σy

2

)2
+ τ2

xy = σ1−σ3
2 ,

dε
p
ν= dε

p
1+dε

p
2 , dγp= dε

p
1 − dε

p
2

(16)

Figure 2. Stress Mohr circle.

In the plane stress state, the plastic dissipation work can be written as Equation (17).
The stress component and strain component of Equation (14) and Equation (15) are sub-
stituted into Equation (17), respectively, and the incremental expression of the plastic
dissipation work shown in Equation (18) is further determined. According to critical state
soil mechanics, the volumetric strain increment of soil reaches zero and the stress ratio
reaches the critical stress ratio ηc under the plane stress state, and the plastic dissipation
work increment described in Equation (18) can be written the form of Equation (19) while
the dilatancy equation under plane stress can be obtained through further modifications as
Equation (20). Here, dε

p
v and dγp are the volume strain and shear strain increments, and s

and t are the average principal stress and shear stress, respectively.

dWp= σl jdε
p
lj = σxdε

p
x+σydε

p
y+2τxydε

p
xy (17)

dWp= s dε
p
v+t dγpcos(2∆) (18)

dWp= s dε
p
v+t dγpcos(2∆) = s ηcdγp (19)
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dε
p
v

dγp = ηc − c
t
s

(20)

In Equation (17), c = cos(2∆) = cos(2α− 2β), as shown in Figure 2, α can be writ-
ten as Equation (21) according to the geometric relation, and β can also be written as
Equation (22) in the strain space. ηc can be regarded as different parameters for sand with
different densities.

α =
1
2

arctan
2τxy

σy − σx
(21)

β =
1
2

arctan
2dγp

dε
p
y − dε

p
x

(22)

In the strain space, according to the idea of strain distribution in the potential theory,
the strain increment in Equation (22) is expressed by Equation (1) and resubstituted into
Equation (22), and the expression of strain rate direction angle Equation (23) based on the
potential theory is obtained. It should be noted that in most cases, geomaterials are trans-
versely isotropic, so the transversely isotropic fabric is adopted in the strain distribution by
Equation (1). The specific components of the fabric are shown in Equation (24), and two
components of the fabric direction tensor in Equation (4) can be written as Equation (25)
where g represents the plastic potential function and a represents the anisotropic parameter
of transversely isotropic fabric. The value of a is measured by the method proposed by
Li [33], where ai(i=1,2,3)

represents the amplitude parameter of the orthorhombic anisotropy

as shown in Equation (26) and the physical meanings of θ(K) and α(K) are shown in Figure 3.
When α(K)= π/4, sin(α (K)) = cos(α (K)

)
, a2 = a3, which is transversely isotropic, and the

value of a is shown in Equation (27). In Equations (26) and (27), N is the particle number of
the sample, and it represents the number of contact fabrics when Fij is employed to describe
the contact of particles.

β =
1
2

arctan
2 ∂g

∂τxy
(1 + a)

∂g
∂σy

(1− a)− ∂g
∂σx

(1 + a)
(23)

Fl j =
1

3 + a

1− a 0 0
0 1 + a 0
0 0 1 + a

 (24)

δij =

1 0 0
0 1 0
0 0 1

, s̃ij =

−a 0 0
0 a 0
0 0 a

 (25)

a1 = 1
2N

{[
2N
∑

K=1
(cos 2

(
θ
(K)
1

)
− sin2

(
θ
(K)
1

)
cos2

(
α(K)

))]2

+

[
2N
∑

K=1
sin
(

2θ
(K)
1

)
cos
(

α(K)
)]2

} 1
2

a2 = 1
2N

{[
2N
∑

K=1
(cos 2

(
θ
(K)
1

)
− sin2

(
θ
(K)
1

)
sin2

(
α(K)

))]2

+

[
2N
∑

K=1
sin
(

2θ
(K)
1

)
sin
(

α(K)
)]2

} 1
2

a3 = 1
2N

{[
2N
∑

K=1
sin2

(
θ
(K)
1

)
cos
(

2α(K)
)]2

+

[
2N
∑

K=1
sin2

(
2θ

(K)
1

)
sin
(

2α(K)
)]2

} 1
2

(26)

a =
1

2N


 2N

∑
K=1

(cos 2
(

θ
(K)
1

)
−

sin2
(

θ
(K)
1

)
2

2

+
1
2

[
2N

∑
K=1

sin
(

2θ
(K)
1

)]2


1
2

(27)
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Figure 3. Particle direction diagram.

We then introduce two directional angles of Equations (21) and (23) into Equation (20),
and the expression form of the dilatancy equation based on the potential theory under
plane stress can be obtained. The plastic potential g can be obtained by integrating the
equation D = − dt/ds; in the critical state, the plastic volumetric strain increment and

shear stress are constant, which means dpdε
p
v + dqdγp = 0. We let D = dε

p
v

dγp = − dq
dp = − dt

ds ,
and introducing the dilatancy equation (Equation (28)) into the expression of the critical
state obtains the plastic potential g by the integral as shown in Equation (29).

D =
dε

p
v

dγp = d0

(
ηc − c

t
s

)
(28)

g = t+
d0ηcs

d0c− 1

[(
s
s0

)d0c−1
− 1

]
(29)

where s0 represents the initial average principal stress. It can be seen that the dilatancy
equation can reflect the noncoaxiality of stress and plastic strain increments in the plane
stress state and also reflect the coaxiality when a = 0. According to Equation (23), the more
obvious the anisotropy is, the more significant the noncoaxiality is. The dilatancy and stress
ratio under plane stress are shown in Figure 4, which is drawn by setting different model
parameters, in which d0 was defined by Li [2] and anisotropic parameter a was under the
same stress condition. With the gradual increase in the stress ratio, dilatancy presents as
shear contraction followed by dilatancy. With the increase in the fabric parameter a, the
difference in dilatancy is more significant with different anisotropy. With the decrease in
material coefficient d0, the volume contraction is lower, and the difference in dilatancy
is lower.

Figure 4. Stress dilatancy relation in plane stress state: (a) d0 = 0.8; (b) d0 = 0.6; (c) d0 = 0.4.



Fractal Fract. 2023, 7, 824 8 of 11

3. Model Verification

To verify the dilatancy equation, Equation (20) is compared with the results of the
simple shear test [34]. First, the simple shear test is introduced. The principal stress
rotation in the loading process is the noticeable feature of the simple shear test, and the
position of the failure plane is uncertain, as shown in Figure 5. The black line is the initial
stress unit, and the blue line is the stress unit after deformation. In the laboratory test,
Cambridge University’s Mark 5 DSS apparatus was used to shear the sample prepared
by Leighton–Buzzard sand. The consolidation of the sample is loaded under the normal
stress σy = 400 kPa. After the loading starts, shear is carried out at a constant shear rate
until the peak value is reached. The test can reflect the rotation of principal stress and
the noncoaxiality between the stress direction and strain increment direction, which is
consistent with the research goal of this paper.

Figure 5. Stress-state diagram of a simple shear test.

3.1. Noncoaxiality Verification

The predicted and tested values of principal stress rotation are shown in Figure 6a.
In this paper, the critical stress ratio sin ϕc of loose sand, medium dense sand, and dense
sand in relevant tests are extracted from [17], which was performed by Cole [34]. The
experimental results show an extremely small difference in the principal stress rotation
angle among the samples, the simulation results are close to the experimental values, and
the model’s principal stress rotation angle is consistent with the experiment. Figure 6b–d
shows the variation in noncoaxial angles, which decrease with the increase in the stress
ratio (τxy/σy) under different densities, gradually close to the coaxial state. When the stress
ratio of loose and medium-dense sand is close to 0.6, the noncoaxial angle is close to zero.
When the stress ratio of dense sand reaches 0.8, the noncoaxial angle is approximately 5◦.
The dilatancy equation can aptly predict this law, which shows that the dilatancy equation
in this paper is reasonable.

3.2. Verification of Dilatancy

Noncoaxiality has a significant effect on the dilatancy of sand [35] and the critical stress
ratio with three densities is set to a fixed value in this section (sin ϕc= 0.5), the dilatancy
coefficient D is calculated by different anisotropic parameters a, the effect of noncoaxiality
on dilatancy is analyzed, and the predicted and experimental values(−dv/dγ) are shown
in Figure 7. When the fabric parameter a in the dilatancy equation takes different values,
the dilatancy of prediction shows the same law with three densities, and the law of first
contraction and then dilatancy is consistent with the experiment. The loose sand test results
show significant volume contraction, which is closer to the predicted value and is consistent
with the findings that noncoaxiality can lead to more significant volume contraction than in
reference [16], indicating that the noncoaxial coefficient modified by the dilatancy equation
from the mesoscopic perspective can reasonably reflect the influence of noncoaxiality on
dilatancy. Meanwhile, under the low-stress ratio, the deformation is greatly affected by the
material properties [36–38], and the different noncoaxiality values with different a values
lead to the curves of dilatancy not coinciding. When reaching the high-stress ratio, the
effect of material properties is weak, the stress–strain tends to be coaxial, and the dilatancy
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curves of different a values are less affected by noncoaxial and gradually coincide, which is
consistent with the existing consensus.

Figure 6. The predicted and tested values of principal stress direction and noncoaxial angle: (a) direction
of principal stress; (b) loose sand; (c) medium dense sand; (d) dense sand.

Figure 7. Comparison of predicted dilatancy values with test values: (a) loose sand; (b) medium
dense sand; (c) dense sand.

4. Conclusions

To integrate the effect of noncoaxiality and describe the dilatancy of geomaterials
reasonably, the strain increment lode angle θdε defined in the potential theory by macro-
micro combination is used to define the noncoaxial coefficient, introducing noncoaxiality
to the dilatancy equation. It can reflect the influence of noncoaxiality on dilatancy and
comprehensively considers the material properties. Finally, the rationality of the dilatancy
equation is verified by a simple shear test, and the following conclusions are drawn:

(1) For noncoaxial conditions, calculation using stress invariants and strain increment
invariants will overestimate the energy dissipated during loading. The energy transfor-
mation relation based on the potential theory introduces a new noncoaxial coefficient
with values of 0–1, which can reasonably correct the influence of noncoaxiality on
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energy dissipation. Meanwhile, the influence of material microscopic properties on
energy dissipation is introduced, which is closer to the actual condition.

(2) The new noncoaxial coefficient is different from previous research, which is not
only related to the stress level and stress direction but also related to the material
microscopic fabric characteristics. The potential theory can be used to calculate the
newly defined noncoaxial coefficient to provide a dilatancy equation considering
noncoaxiality. When the microscopic fabric is isotropic, the noncoaxial coefficient
is naturally 1, and the dilatancy equation can be reduced to the form of the critical
state theory. When the fabric is anisotropic, the noncoaxial angle is related to the
material anisotropy, the geometric relation between the fabric and the stress direction.
The dilatancy equations can naturally describe noncoaxial effects, and the physical
meaning is clearer.

(3) Under the simple shear stress state, after introducing the noncoaxial coefficient, the
dilatancy equation can naturally reflect the influence of noncoaxiality on the dilatancy
under the condition of principal stress rotation. At the low-stress ratio, the generation
of noncoaxiality depends on the material properties and has a significant effect on
dilatancy. When the stress ratio is high, the influence of material properties on stress
and strain is not obvious, the stress and strain naturally tend to be coaxial, and the
influence on dilatancy is weakened. The experimental results verify the effectiveness
of the proposed dilatancy equation.

Author Contributions: Conceptualization, X.L. and H.Z.; methodology, X.L. and H.Z.; software, X.L.
and H.Z.; validation, Q.Y.; formal analysis, H.Z. and Q.Y.; investigation, H.Z. and Q.Y.; resources, Q.Y.;
data curation, Q.Y.; writing—original draft preparation, H.Z. and Q.Y.; writing—review and editing,
X.L. and H.Z.; visualization, H.Z. and Q.Y.; supervision, X.L.; project administration, X.L.; funding
acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Projects for Leading Talents of Science and Technol-
ogy Innovation of Ningxia (No. KJT2019001), the National Natural Science Foundation of China
(No. 12162028), and the innovation team for multi-scale mechanics and its engineering applications
of Ningxia Hui Autonomous Region (2021).

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rowe, P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. 1962,

269, 500–527.
2. Li, X.S.; Dafalias, Y.F.; Wang, Z.L. State-dependant dilatancy in critical-state constitutive modelling of sand. Can. Geotech. J. 1999,

36, 599–611. [CrossRef]
3. Nova, R.; Wood, D.M. A constitutive model for sand intriaxial compression. Int. J. Numer. Anal. Methods Geomech. 1979, 3, 255–278.

[CrossRef]
4. Jefferies, M.G. Nor-Sand: A simple critical state for sand. Geotechnique 1993, 43, 91–103. [CrossRef]
5. Wood, D.M.; Belkheir, K.; Liu, D.F. Strain softening and state parameter for sand modeling. Geotechnique 1994, 44, 335–339.

[CrossRef]
6. Ueng, T.S.; Chen, T.J. Energy aspects of particle breakage in drained shear of sands. Geotechnique 2000, 50, 65–72. [CrossRef]
7. Guo, W.L.; Zhu, J.G. Particle breakage energy and stress dilatancy in drained shear of rockfills. Géotech. Lett. 2017, 7, 304–308.

[CrossRef]
8. Salim, W.; Indraratna, B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.

Can. Geotech. J. 2004, 41, 657–671. [CrossRef]
9. De Josselin de Jong, G. Statics and Kinematics in the Failable Zone of a Granular Material. Ph.D. Thesis, Technische Universiteit

Delft, Delft, The Netherlands, 1959.
10. Spencer, A.J.M. Theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids 1964, 12, 337–351.

[CrossRef]
11. Tsutsumi, S.; Hashiguchi, K. General non-proportional loading behavior of soils. Int. J. Plast. 2005, 21, 1941–1969. [CrossRef]
12. Roscoe, K.H. The influence of strains in soil mechanics. Géotechnique 1970, 20, 129–170. [CrossRef]

https://doi.org/10.1139/t99-029
https://doi.org/10.1002/nag.1610030305
https://doi.org/10.1680/geot.1993.43.1.91
https://doi.org/10.1680/geot.1994.44.2.335
https://doi.org/10.1680/geot.2000.50.1.65
https://doi.org/10.1680/jgele.17.00099
https://doi.org/10.1139/t04-025
https://doi.org/10.1016/0022-5096(64)90029-8
https://doi.org/10.1016/j.ijplas.2005.01.001
https://doi.org/10.1680/geot.1970.20.2.129


Fractal Fract. 2023, 7, 824 11 of 11

13. Oda, M.; Konishi, J. Microscopic deformation mechanism of granular material in simple shear. Soils Found. 1974, 14, 25–38.
[CrossRef] [PubMed]

14. Lade, P.V.; Duncan, J.M. Cubical triaxial tests on cohesionless soil. J. Soil Mech. Found. Div. 1973, 99, 793–812. [CrossRef]
15. Li, K.F.; Li, X.F.; Chen, Q.S.; Nimbalkar, S. Laboratory Analyses of Non-coaxiality and Anisotropy of Spherical Granular Media

under True Triaxial State. Int. J. Geomech. 2023, 23, 04023150. [CrossRef]
16. Xiong, H.; Guo, L.; Cai, Y.Q. Effect of non-coaxiality on dilatancy of sand involving principal stress axes rotation. Rock Soil Mech.

2017, 38, 133–140.
17. Gutierrez, M.; Ishihara, K. Non-coaxiality and energy dissipation in granular materials. Soils Found. 2000, 40, 49–59. [CrossRef]

[PubMed]
18. Rudnicki, J.W.; Rice, J.R. Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys.

Solids 1975, 23, 371–394. [CrossRef]
19. Lashkari, A.; Latifi, M. A non-coaxial constitutive model for sand deformation under rotation of principal stress axes. Int. J.

Numer. Anal. Methods Geomech. 2008, 32, 1051–1086. [CrossRef]
20. Gutierrez, M.; Ishihara, K.; Towhata, I. Flow theory for sand during rotation of principal stress direction. Soils Found. 1991,

31, 121–132. [CrossRef]
21. Tsegaye, A.B.; Benz, T.; Nordal, S. Formulation of non-coaxial plastic dissipation and stress-dilatancy relations for geomaterials.

Acta Geotech. Int. J. Geoengin. 2020, 15, 2727–2739. [CrossRef]
22. Pouragha, M.; Kruyt, N.P.; Wan, R. Non-coaxial Plastic Flow of Granular Materials through Stress Probing Analysis. Int. J. Solids

Struct. 2021, 222–223, 111015. [CrossRef]
23. Tian, Y.; Yao, Y.P.; Luo, T. Explanation and modeling of non-coaxiality of soils from anisotropy. Rock Soil Mech. 2018, 39, 2035–2042.
24. Oda, M. Initial fabrics and their relations to mechanical properties of granular materials. Soils Found. 1972, 12, 17–36. [CrossRef]
25. Wong, R.K.S.; Arthur, J.R.F. Sand sheared by stresses with cyclic variation in direction. Géotechnique 1986, 2, 215–226. [CrossRef]
26. Li, X.S.; Dafalias, Y.F. Constitutive Modeling of Inherently Anisotropic Sand Behavior. J. Geotech. Geoenviron. Eng. 2002,

128, 868–880. [CrossRef]
27. Tyler, S.W.; Wheatcraft, S.W. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 1992,

56, 362–369. [CrossRef]
28. Hou, H.; Pan, Z.; Jiang, P. Double Yield Surface Model of Calcareous Sand Considering Particle Breakage. Adv. Eng. Sci. 2021,

53, 132–141.
29. Xue, L.; Jiankun, L.; Jinze, L. Fractal dimension, particle shape, and particle breakage analysis for calcareous sand. Bull. Eng. Geol.

Environ. 2022, 81, 106.
30. Li, X.F.; Huang, M.S.; Qian, J.G. Failure criterion of anisotropic sand with method of macro-meso incorporation. Chin. J. Rock

Mech. Eng. 2010, 29, 1885–1892.
31. Li, X.F.; Huang, M.S.; Qian, J.G. Analysis of non-coaxial characters of sand for simple shear test with the method of macro-meso-

incorporation. Rock Soil Mech. 2013, 34, 3417–3424.
32. Li, X.F.; Kong, L.; Huang, M.S. Property-dependent plastic potential theory for geomaterials. Chin. J. Geotech. Eng. 2013,

35, 1722–1729.
33. Li, X.F.; Wang, Q.; Liu, J.; Wu, W.; Meng, F. Quantitative Description of microscopic Fabric Based on Sand Particle Shapes. China J.

Highw. Transp. 2016, 29, 29–36.
34. Cole, E. The Behaviour of Soils in the Simple-Shear Apparatus. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1967.
35. Xiong, H. Experimental Study on the Static and Dynamic Behavior of Anisotropic Sands Involving Rotation of Principal Stress

Axes. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2015.
36. Yamada, Y.; Ishihara, K. Anisotropic Deformation Characteristics of Sand Under Three Dimensional Stress Conditions—

ScienceDirect. Soils Found. 1979, 19, 79–94. [CrossRef] [PubMed]
37. Abelev, A.V.; Lade, P.V. Effects of cross anisotropy on three-dimensional behavior of sand. i: Stress—Strain behavior and shear

banding. J. Eng. Mech. 2003, 129, 160–166. [CrossRef]
38. Lade, P.V.; Abelev, A.V. Effects of cross anisotropy on three-dimensional behavior of sand. ii: Volume change behavior and failure.

J. Eng. Mech. 2003, 129, 167–174. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3208/sandf1972.14.4_25
https://www.ncbi.nlm.nih.gov/pubmed/37919820
https://doi.org/10.1061/JSFEAQ.0001934
https://doi.org/10.1061/IJGNAI.GMENG-8309
https://doi.org/10.3208/sandf.40.2_49
https://www.ncbi.nlm.nih.gov/pubmed/37954922
https://doi.org/10.1016/0022-5096(75)90001-0
https://doi.org/10.1002/nag.659
https://doi.org/10.3208/sandf1972.31.4_121
https://doi.org/10.1007/s11440-020-00968-y
https://doi.org/10.1016/j.ijsolstr.2021.03.002
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.1680/geot.1986.36.2.215
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.2136/sssaj1992.03615995005600020005x
https://doi.org/10.3208/sandf1972.19.2_79
https://www.ncbi.nlm.nih.gov/pubmed/37954031
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(160)
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(167)

	Introduction 
	Dilatancy Equation Based on the Potential Theory 
	Establishment Method 
	Description of Dilatancy under Plane Stress State 

	Model Verification 
	Noncoaxiality Verification 
	Verification of Dilatancy 

	Conclusions 
	References

