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Abstract: This manuscript investigates a constrained problem of an arbitrary (fractional) order
quadratic functional integro-differential equation with a quadratic functional integro-differential
constraint. We demonstrate that there is at least one solution x ∈ C[0, T] to the problem. Moreover, we
outline the necessary demands for the solution’s uniqueness. In addition, the continuous dependence
of the solution and the Hyers–Ulam stability of the problem are analyzed. In order to illustrate our
results, we provide some particular cases and instances.
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1. Introduction

Fractional-order differential and integral equations have a wide range of applications
across various fields with examples in physics, engineering, and biomedical engineering.
The nonlocal conditions are often encountered in mathematical and physical problems,
where the behavior of a system depends on different factors or parameters; see [1–10].

In recent years, several scholars have concentrated their efforts on constrained integral
equations. Their findings about functional integral equations have been expanded to
include a particular set of constrained integral equations on a bounded interval (see [11–13])
and unbounded intervals (see [14]). Constrained problems are essential in the mathematical
depiction of real-world situations, where such problems are transformed into mathematical
models [15–17]. The relevance of handling constraints or control variables arises from
the unanticipated elements that persistently disrupt biological systems in the real world;
biological traits like survival rates might change as a result. The question of whether an
ecosystem can survive those erratic, disruptive occurrences that happen for a short while is
of practical significance to ecology. The disturbance functions are what we refer to as control
variables in the context of control variables. Numerous papers address this type of problem;
for instance, in [18], the authors discussed a nonlinear constrained problem involving a
nonlinear functional integral equation. They also examined the appropriate conditions
for the solution’s uniqueness and its continuous dependence on certain parameters. The
authors applied Schauder’s fixed-point theorem to prove the existence of solutions. In [14],
the authors studied the solvability of a constrained problem involving a nonlinear-delay
functional equation subject to a quadratic functional integral constraint. By applying the
De Blasi measure of noncompactness, they studied nondecreasing solutions in the bounded
interval L1[0, T] and nonincreasing solutions in the unbounded interval L1(R+).

Problems with a feedback control or control variable have great importance in numer-
ous fields due to unforeseen factors that disrupt ecosystems in the real world. It could
lead to changes in biological characteristics like survival rates; see [19–22]. Furthermore,
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ecology faces a practical challenge in determining whether an ecosystem can withstand
unpredictable, disruptive events; see [15,23–25]. In addition, feedback control problems are
crucial to establishing the solutions to delay population models; see [26–29]. In [23], the
authors investigated the effect of feedback control on chemostat models; they studied a
sufficient condition for the existence of a positive periodic solution tp the model. In [30],
the author discussed a positive periodic solution to a nonlinear neutral delay population
equation with feedback control. In [12], the authors studied fractional-order models of
thermostats; they proved the existence of a solution and the continuous dependence of the
unique solution on the control variable. In [13], the author investigated the solvability and
the asymptotic stability of a class of nonlinear functional-integral equations with feedback
control. For further relevant works, see [12,31–35].
Fixed-point theorems are a great tool for discussing the solvability of differential equation problems
that have been studied in a number of monographs and publications; see [6,31,36–40].

Inspired by the above, we consider the constrained problem

dx
dt

= f
(

t, g1(t, Dζ x(t)) ·
∫ ϑ(t)

0
g2(s, Dγx(s))ds

)
, ζ, γ ∈ (0, 1), t ∈ (0, T] (1)

with the quadratic functional integro-differential constrained

x(τ) = x0 +
∫ T−τ

0
h
(
s, x(s) · Dη x(s)

)
ds, η ∈ (0, 1), τ ∈ [0, T]. (2)

Our aim in this paper is to examine the existence of a solution x ∈ C(0, T] to the
constrained problems (1) and (2). A sufficient hypothesis for the solution’s uniqueness will
be given. Furthermore, we prove the Hyers–Ulam stability of the problem. The continuous
dependence of the solution on the fractional-order derivative Dζ x(t), the parameter x0,
and the function h will be studied. To highlight our results, we present several examples
and special cases. This study establishes conditions for the existence and uniqueness of the
solution according to Schauder’s fixed-point theorem.

2. Main Result
2.1. Formulation of the Problem

Consider the constrained problem (1) and (2) under the next hypothesis. Let I = [0, T].

(i) ϑ : I → I is continuous function such that ϑ(t) ≤ t.
(ii) f , h and gi, i = 1, 2 :I × R→ R are Caratheodry functions [41]. There exist bounded

measurable functions [42] a and ai : I → R and a positive constants b and bi such that

| f (t, x)| ≤ |a(t)|+ b|x| ≤ a∗ + b|x|, a∗ = sup
t∈I
|a(t)|.

|gi(t, x)| ≤ |ai(t)|+ bi|x| ≤ a∗i + bi|x|, a∗i = sup
t∈I
|ai(t)|, i = 1, 2.

|h(t, x)| ≤ |a3(t)|+ b3|x|, sup
s∈I

∫ T−τ

0
|a3(s)|ds ≤ N.

(iii) The following algebraic equation has a real positive root r1.

bb1b2T2−γr2
1 +

(
a∗b2T2−γ + ba∗1b2T2−γ + bb1a∗2 T2−ζ − 1

)
r1 + a∗a∗2 T2−ζ + ba∗1 a∗2 T2−ζ = 0.

(iv) r1b3Tζ−η+1 < 1.

The next lemma demonstrates the equivalence between the constrained problem (1)
and (2) and its corresponding integral equations.
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Lemma 1. If the solution to (1) and (2) exists, then it can be expressed by

x(t) = x0 +
∫ T−τ

0

(
h(s, x(s) · Iζ−ηy(s))

)
ds− Iζy(τ) + Iζ y(t) (3)

and

y(t) = I1−ζ f
(

t, g1(t, y(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy(s))ds

)
. (4)

Proof. Let x be the solution to (1) and (2). Operating by I1−ζ in on both sides of (1),
we obtain

Dζ x(t) = I1−ζ dx
dt

= I1−ζ

(
f (t, g1(t, Dζ x(t)) ·

∫ ϑ(t)

0
g2(s, Dγx(s))ds

)
.

Taking Dζ x(t) = y(t), then,

x(t) = x(0) + Iζ y(t). (5)

And we can deduce that

Iζ−γy(t) = Iζ−γDζ x(t) = Iζ−γ I1−ζ dx
dt

= I1−γ dx
dt

= Dγx(t), (6)

and similarly,

Iζ−ηy(t) = Iζ−η Dζ x(t) = Iζ−η I1−ζ dx
dt

= I1−η dx
dt

= Dη x(t). (7)

Substituting from (5)–(7) in (1) and (2), we obtain (4) and (3). Conversely, let x be a
solution to (3). Differentiating (3), we obtain

dx
dt

=
d
dt
[x0 +

∫ T−τ

0

(
h(s, x(s) · Iζ−ηy(s))

)
ds− Iζ y(τ) + Iζ y(t)].

=
d
dt

Iζy =
d
dt

Iζ I1−ζ f (t, g1(t, Dζ x(t)) ·
∫ ϑ(t)

0
g2(s, Dγx(s))ds

= f (t, g1(t, Dζ x(t)) ·
∫ ϑ(t)

0
g2(s, Dγx(s))ds

This proves the equivalence between the two systems (1) and (2) and (3) to (4).

2.2. Existence of the Solution

Here, we prove the existence of the continuous solution x ∈ C(I) of (1) and (2). For
this purpose, we present the next theorem.

Theorem 1. Assume that the hypotheses (i)–(iv) are satisfied; then, the solution x ∈ C(I) of (1)
and (2) exists.

Proof. Define the closed sphere Qr1 and the operator F1 with

Qr1 = {y ∈ C(I) : ‖y‖ ≤ r1}.
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and

F1y(t) = I1−ζ f
(

t, g1(t, y(s)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy2(s))ds

)
.

Let y ∈ Qr1 ; then, for t ∈ [0, T], and assumptions (i)–(ii), we obtain

|F1y(t)| =

∣∣∣∣I1−ζ f
(

t, g1(t, y(s)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy2(s))ds

)∣∣∣∣
≤ I1−ζ

(
a∗ + b(a∗1 + b1|y(s)|) ·

∫ t

0
(a∗2 + b2 Iζ−γ|y(s)|)ds

)
≤ (a∗ + b(a∗1 + b1r1))(I2−ζ a∗2 + I2−γb2r1)

≤ (a∗ + b(a∗1 + b1r1))

(
a∗2t2−ζ

Γ(3− ζ)
+

b2r1t2−γ

Γ(3− γ)

)
≤ (a∗ + b(a∗1 + b1r1))(a∗2 T2−ζ + b2r1T2−γ) = r1.

From assumption (iii), we obtain

‖F1y‖ ≤ (a∗ + b(a∗1 + b1r1))(a∗2 T2−ζ + b2r1T2−γ) = r1.

This proves that {F1 y} is uniformly bounded on Qr1 . Let y ∈ Qr1 , t1, t2 ∈ I such that
t2 > t1 and | t1 − t2 |≤ δ. By using assumption (ii), then,

|F1y(t2)− F1y(t1)| =

∣∣∣∣ ∫ t2

0

(t2 − s)−ζ

Γ(1− ζ)

(
f (s, g1(s, y(s)) ·

∫ ϑ(s)

0
g2(θ, Iζ−γy(θ))dθ

)
ds

−
∫ t1

0

(t1 − s)−ζ

Γ(1− ζ)

(
f (s, g1(s, y(s)) ·

∫ ϑ(s)

0
g2(θ, Iζ−γy(θ))dθ

)
ds
∣∣∣∣

≤
∣∣∣∣ ∫ t1

0

(t2 − s)−ζ

Γ(1− ζ)

(
f (s, g1(s, y(s)) ·

∫ ϑ(s)

0
g2(θ, Iζ−γy(θ))dθ

)
ds

+
∫ t2

t1

(t2 − s)−ζ

Γ(1− ζ)

(
f (s, g1(s, y(s)) ·

∫ ϑ(s)

0
g2(θ, Iζ−γy(θ))dθ

)
ds

−
∫ t1

0

(t1 − s)−ζ

Γ(1− ζ)

(
f (s, g1(s, y(s)) ·

∫ ϑ(s)

0
g2(θ, Iζ−γy(θ))dθ

)
ds
∣∣∣∣

≤
∣∣∣∣ ∫ t1

0

(t2 − s)−ζ

Γ(1− ζ)
− (t1 − s)−ζ

Γ(1− ζ)
(a∗ + b(a∗1 + b1r1))(a∗2 T2−ζ + b2r1T2−γ))ds

+
∫ t2

t1

1
Γ(1− ζ)(t2 − s)ζ

(a∗ + b(a∗1 + b1r1))(a∗2 T2−ζ + b2r1T2−γ))ds
∣∣∣∣

≤
∫ t1

0
| (t2 − s)ζ − (t1 − s)ζ

Γ(1− ζ)(t1 − s)ζ(t2 − s)ζ
|(a∗ + b(a∗1 + b1r1))(a∗2 T2−ζ + b2r1T2−γ))ds

+
∫ t2

t1

1
Γ(1− ζ)(t2 − s)ζ

(a∗ + b(a∗1 + b1r1))(a∗2 T2−ζ + b2r1T2−γ))ds.
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This proves that F1 : Qr1 → Qr1 and that {F1y} is equi-continuous on Qr1 . From [41],
{F1y} is relatively compact. Hence, the operator F1 is compact.
Let {yn} ⊂ Qr1 be such that yn → y; then,

F1yn(t) = I1−ζ f
(

t, g1(t, yn(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γyn(s))ds

)
,

Thus, by taking the limits for both sides and in view of Lebesgues dominated convergence
Theorem [41] and assumption (ii), we obtain

lim
n→∞

F1yn(t) = lim
n→∞

I1−ζ f
(

t, g1(t, yn(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γyn(s))ds

)
= I1−ζ f

(
t, g1(t, lim

n→∞
yn(t)) ·

∫ ϑ(t)

0
g2(s, Iζ−γ lim

n→∞
yn(s))ds

)
= I1−ζ f

(
t, g1(t, y(t)) ·

∫ ϑ(t)

0
g2(s, Iζ−γy(s))ds

)
= F1y(t),

Hence, F1 is continuous and the solution to (4) exists.
Now, for the validity of solutions x ∈ C(I) of (3), let the assumptions (i)–(iv) be

satisfied. Define Qr2 as the closed sphere

Qr2 = {x ∈ C(I) : ‖x‖ ≤ r2}, r2 =
|x0|+ N + 2r1Tζ

1− b3r1Tζ−η+1

and define the operator F2 as

F2x(t) = x0 +
∫ T−τ

0

(
h(s, x(s) · Iζ−ηy(s))

)
ds− Iζ y(τ) + Iζ y(t).

Let x ∈ Qr2 ; then, by using assumption (ii), we obtain

|F2x(t)| =

∣∣∣∣x0 +
∫ T−τ

0
h
(
s, x(s) · Iζ−ηy(s)

)
ds− Iζ y(τ) + Iζ y(t)

∣∣∣∣
≤ |x0|+

∫ T−τ

0
|h(s, x(s) · Iζ−ηy(s)|ds + Iζ |y(τ)|+ Iζ |y(t)|

≤ |x0|+
∫ T−τ

0

(
|a3(s)|+ b3(|x(s)Iζ−ηy(s)|

)
ds + 2r1 Iζ

≤ |x0|+
∫ T−τ

0

(
a3 + b3r1r2

Tζ−η

Γ(ζ − η + 1)

)
ds +

2r1Tζ

Γ(ζ + 1)

≤ |x0|+ N +
r1r2b3Tζ−η

Γ(ζ − η + 1)
+

2r1Tζ

Γ(ζ + 1)

and from assumption (iv), we obtain

‖F2x‖ ≤ |x0|+ N + r1r2b3Tζ−η + 2r1Tζ = r2.
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This shows that {F2 x} is uniformly bounded on Qr2 . Now, for x ∈ Qr2 and t1, t2 ∈ I,
where t2 > t1 and | t1 − t2 |≤ δ, we obtain

|F2x(t2)− F2x(t1)| =

∣∣∣∣x0 +
∫ T−τ

0
h
(
s, x(s) · Iζ−ηy(s)

)
ds− Iζ y(τ) + Iζ y(t2)

− x0 +
∫ T−τ

0
h
(
s, x(s) · Iζ−ηy(s)

)
ds− Iζy(τ) + Iζ y(t1)

∣∣∣∣
≤

∫ t2

0
| f
(

s, g1(s, y(s)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy(s))ds

)
|ds

−
∫ t1

0
| f
(

s, g1(s, y(s)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy(s))ds

)
|ds

≤
∫ t2

t1

| f
(

s, g1(s, y(s)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy(s))ds

)
|ds.

This means that F2 : Qr2 → Qr2 and that {F2x} is equi-continuous on Qr2 . From [41],
{F2x} is relatively compact. Hence, F2 is compact.
Assuming that {xn} ⊂ Qr2 , where xn → x, then,

F2xn(t) = x0 +
∫ T−τ

0
h
(
s, xn(s) · Iζ−ηy(s)

)
ds− Iζy(τ) + Iζ y(t)

and by passing the limit, we have

lim
n→∞

F2xn(t) = lim
n→∞

(
x0 +

∫ T−τ

0
h
(
s, xn(s) · Iζ−ηy(s)

)
ds− Iζy(τ) + Iζ y(t)

)
Applying the Lebesgue dominated convergence Theorem [41], then,

lim
n→∞

F2xn(t) = x0 +
∫ T−τ

0
h
(
s, lim

n→∞
x(s) · Iζ−ηy(s)

)
ds− Iζy(τ) + Iζ y(t)

= x0 +
∫ T−τ

0
h
(
s, x(s) · Iζ−ηy(s)

)
ds− Iζ y(τ) + Iζ y(t) = F2x(t).

This means that F2xn(t)→ F2x(t). Therefore, F2 is continuous. From [41], the solution
x ∈ C(I) of (3) exists. As a result, the solution x ∈ C[0, T] to Problem (1) and (2) exists.

3. Uniqueness of the Solution

Consider the next additional hypothesis:

(i)∗ f , h and gi :I × R → R are measurable in t ∈ I, ∀x ∈ R and satisfy the Lipschitz
condition [43]

| f (t, x)− f (t, y)| ≤ b|x− y|,
|gi(t, x)− gi(t, y)| ≤ bi|x− y|
|h(t, x)− h(t, y)| ≤ b3|x− y|

with Lipschitz constants b, bi, b3 > 0 and t ∈ I, x, y ∈ R, i = 1, 2.

Remark 1. From assumption (i)∗, we deduce assumption (ii) as follows:

| f (t, x)| ≤ | f (t, 0)|+ b|x|,

| f (t, x)| ≤ a + b|x|, where a = sup
t∈I
| f (t, 0)|.
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Also,
|gi(t, x)| ≤ |gi(t, 0)|+ bi|x|,

|gi(t, x)| ≤ ai + bi|x|, where ai = sup
t∈I
|gi(t, 0)|, i = 1, 2.

and
|h(t, x)| ≤ |h(t, 0)|+ b3|x|,

|h(t, x)| ≤ a3 + b3|x|, where a3 = sup
t∈I
|h(t, 0)|.

Theorem 2. Let the hypotheses (i)–(iv) and (i*) be valid. If

(a∗b2 + bb2(a∗1 + b1r1))T2−γ + bb1(a∗2 T2−ζ + r1b2T2−γ) < 1,

Hence, the solution to (1) and (2) is unique.

Proof. It is clear that all hypotheses of Theorem 1 are valid, and thus, the solution to (4)
exists. Now, assume that y1, y2 are two solutions of (4); then,

|y2(t)− y1(t)|

=

∣∣∣∣I1−ζ f
(

t, g1(t, y2(s)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy2(s))ds

)
− I1−ζ f

(
t, g1(t, y1(s)) ·

∫ ϑ(t)

0
g2(s, Iζ−γy1(s))ds

)∣∣∣∣
=

∣∣∣∣I1−ζ f
(

t, g1(t, y2(s)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy2(s))ds

)
− I1−ζ f

(
t, g1(t, y2(s)) ·

∫ ϑ(t)

0
g2(s, Iζ−γy1(s))ds

)
+ I1−ζ f

(
t, g1(t, y2(s)) ·

∫ ϑ(t)

0
g2(s, Iζ−γy1(s))ds

)
− I1−ζ f

(
t, g1(t, y1(s)) ·

∫ ϑ(t)

0
g2(s, Iζ−γy1(s))ds

)∣∣∣∣
≤ I1−ζ | f (t, g1(t, y2(t))| ·

∫ ϑ(t)

0
|g2(s, Iζ−γy2(s))− g2(s, Iζ−γy1(s))|ds

+ I1−ζ

(
| f (t, g1(t, y2(t))− f (t, g1(t, y1(t))|

)
·
∫ ϑ(t)

0
|g2(s, Iζ−γy1(s))|ds

≤ I1−ζ(a∗ + b(a∗1 + b1r1)) · b2

∫ t

0
Iζ−γ|y2(s)− y1(s)|ds

+ I1−ζ

(
bb1|y2(s)− y1(s)|

∫ t

0
(a∗2 + b2 Iζ−γ|y(s)|)ds

)
≤ (a∗ + b(a∗1 + b1r1)) · b2 I2−γ‖y2 − y1‖ + bb1(a∗2 T2−ζ + r1b2T2−γ)‖y2 − y1‖.

Hence,

‖y2 − y1‖
(

1−
[
(a∗b2 + bb2(a∗1 + b1r1))T2−γ + bb1(a∗2 T2−ζ + r1b2T2−γ)

])
≤ 0.

Since
(a∗b2 + bb2(a∗1 + b1r1))T2−γ + bb1(a∗2 T2−ζ + r1b2T2−γ) < 1.

Then, the solution of (4) is unique.
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Now, for every solution y ∈ C(I) to (4), there exists a unique solution x ∈ C(I) of (3).
Let y ∈ C(I) be a solution to (4), and let x1, x2 be two solutions to Equation (3); then,

|x2(t)− x1(t)| =

∣∣∣∣x0 +
∫ T−τ

0
h
(
s, x2(s) · Iζ−ηy(s)

)
ds− Iζ y(τ) + Iζ y(t)

− x0 −
∫ T−τ

0
h
(
s, x1(s) · Iζ−ηy(s)

)
ds + Iζ y(τ)− Iζ y(t)

∣∣∣∣.
≤

∫ T−τ

0

∣∣∣∣h(s, x2(s) · Iζ−ηy(s))− h(s, x1(s).Iζ−ηy(s))
∣∣∣∣ds

≤ r1b3

∫ T−τ

0
|x2(s)− x1(s)| Iζ−ηds,

≤ r1b3‖x2 − x1‖
Tζ−η+1

Γ(1 + ζ − η)
,

from assumption (iv), we obtain

‖x2 − x1‖(1− (
r1b3Tζ−η+1

Γ(1 + ζ − η)
)) ≤ 0.

Thus, there is only one solution to (3). As a result, there is only one solution to (1)
and (2).

4. Hyers–Ulam Stability

Definition 1. [44] Let the solution to (1) and (2) exist. The constrained problem (1) and (2) is
Hyers–Ulam-stable if ∀ε > 0, ∃ δ(ε) > 0 such that, for any solution xs ∈ C[0, T] of (1) and
(2) satisfying ∣∣∣∣dxs

dt
− f (t, g1(t, Dζ xs(t)) ·

∫ ϑ(t)

0
g2(s, Dγxs(s)))

∣∣∣∣ ≤ δ. (8)

Then

‖x− xs‖c ≤ ε.

Theorem 3. Assume that the hypothesis of Theorem 2 is satisfied; then, problem (1) and (2)
is Hyers–Ulam-stable.

Proof. Let the condition of Equation (8) be satisfied; then, we have

−δ ≤ dxs(t)
dt
− f (t, g1(t, Dζ xs(t)) ·

∫ ϑ(t)

0
g2(s, Dγxs(s))ds) ≤ δ,

− T1−ζ δ
Γ(2−ζ)

≤ I1−ζ dxs(t)
dt
− I1−ζ f (t, g1(t, Dζ xs(t)) ·

∫ ϑ(t)

0
g2(s, Dγxs(s))ds) ≤ T1−ζδ

Γ(2− ζ)
,

−δ1 ≤ ys(t)− I1−ζ f (t, g1(t, ys(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γys(s))ds) ≤ δ1.
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Now,

|y(t)− ys(t)| =

∣∣∣∣I1−ζ f (t, g1(t, y(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy(s))ds)− ys(t)

− I1−ζ f (t, g1(t, ys(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γys(s))ds)

+ I1−ζ f (t, g1(t, ys(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γys(s))ds)

∣∣∣∣
≤

∣∣∣∣I1−ζ f (t, g1(t, y(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy(s))ds)

− I1−ζ f (t, g1(t, ys(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γys(s))ds)

∣∣∣∣
+

∣∣∣∣I1−ζ f (t, g1(t, ys(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γys(s))ds)− ys(t)

∣∣∣∣
≤ I1−ζ

∣∣ f (t, g1(t, y(t))
∣∣ · ∫ ϑ(t)

0
|g2(s, Iζ−γy(s))− g2(s, Iζ−γys(s)))|ds

+ I1−ζ
∣∣ f (t, g1(t, y(t))− f (t, g1(t, ys(t))

∣∣ · ∫ ϑ(t)

0
|g2(s, Iζ−γys(s))|ds + δ1

≤ I1−ζ(a∗ + b(a∗1 + b1r1)) · b2

∫ t

0
Iζ−γ|y(s)− ys(s)|ds.

+ I1−ζ bb1|y(s)− ys(s)| ·
∫ t

0
(a∗2 + b2 Iζ−γ|ys|)ds + δ1

≤ (a∗ + b(a∗1 + b1r1)) · b2T2−γ‖y− ys‖+ b1b(a∗2 T2−ζ + r1.b2T2−γ)‖y− ys‖+ δ1.

Hence,

‖y− ys‖
(

1−
[
(a∗ + b(a∗1 + b1r1)) · b2T2−γ + b1b(a∗2 T2−ζ + r1 · b2T2−γ)

])
≤ δ1

and

‖y− ys‖ ≤
δ1

1−
[
(a∗ + b(a∗1 + b1r1)) · b2T2−γ + b1b(a∗2 T2−ζ + r1 · b2T2−γ)

] .

Since

(a∗ + b(a∗1 + b1r1)) · b2T2−γ + b1b(a∗2 T2−ζ + r1 · b2T2−γ) < 1,

then

‖y− ys‖ < ε.

Also, using assumption (iv), we obtain
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|x(t)− xs(t)| =

∣∣∣∣x0 +
∫ T−τ

0
h(s, x(s) · Iζ−ηy(s))ds− Iζ y(τ) + Iζy(t)

− x0 −
∫ T−τ

0
h(s, xs(s) · Iζ−ηys(s))ds + Iζ ys(τ)− Iζys(t)

∣∣∣∣
≤

∫ T−τ

0

∣∣h(s, x(s) · Iζ−ηy(s))− h(s, xs(s) · Iζ−ηys(s))
∣∣ds + 2Iζ‖y− ys‖

≤ b3

∫ T−τ

0
(|x(s)− xs(s)| Iζ−η |y(s)|+ Iζ−η |y(s)− ys(s)| |xs|)ds +

2Tζ

Γ(ζ + 1)
ε

≤ r1b3Tζ−η+1

Γ(ζ − η + 1)
‖x− xs‖+

r2b3Tζ−η+1

Γ(ζ − η + 1)
ε +

2Tζ

Γ(ζ + 1)
ε,

‖x− x∗‖ ≤
( r2b3Tζ−η+1

Γ(ζ−η+1) + 2Tζ

Γ(ζ+1) )ε

1− ( r1b3Tζ−η+1

Γ(ζ−η+1) )
.

Since

r1b3Tζ−η+1

Γ(ζ − η + 1)
< 1,

thus,

‖x− x∗‖ ≤ ε.

Then, the problem (1) and (2) is Hyers–Ulam-stable.

5. Continuous Dependence

Definition 2. The solution to (1) and (2) depends continuously on y = Dζ x, h and x0, and if
∀ ε > 0, ∃ δ(ε) > 0 such that

max{‖y− y̌‖, ‖h− ȟ‖, |x0 − x̌0| ≤ δ} ⇒ ‖x− x̌‖ ≤ ε,

where x̌ and y̌ are the solutions to

x̌(t) = x̌0 +
∫ T−τ

0
ȟ(s, x̌(s) · Iζ−η y̌(s))ds− Iζ y̌(τ) + Iζ y̌(t), (9)

y̌(t) = I1−ζ f
(

t, g1(t, y̌(t)) ·
∫ ϑ(t)

0
g2(s, Iζ−γy̌(s))ds

)
. (10)

Theorem 4. Suppose that the hypotheses of Theorem 2 are satisfied; then, the solution to (1) and (2)
depends continuously on y, h, and x0.
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Proof. If x(t) and x̌(t) are the solutions to (3) and (9), respectively, using assumption (i)∗,
we obtain

|x(t)− x̌(t)|

=

∣∣∣∣x0 +
∫ T−τ

0
h(s, x(s) · Iζ−ηy(s))ds− Iζ y(τ) + Iζ y(t)

− x̌0 −
∫ T−τ

0
ȟ(s, x̌(s)Iζ−η y̌(s))ds + Iζ y̌(τ)− Iζ y̌(t)

∣∣∣∣
≤ |x− x̌0|+

∣∣∣∣ ∫ T−τ

0

(
h(s, x(s) · Iζ−ηy(s))− ȟ(s, x̌(s) · Iζ−η y̌(s))ds

)
ds

+ Iζ(y(τ)− y̌(τ)) + Iζ(y(t)− y̌(t))
∣∣∣∣

≤ |x− x̌0|+
∫ T−τ

0

∣∣∣∣h(s, x(s) · Iζ−ηy(s))− h(s, x̌(s) · Iζ−η y̌(s))

+ h(s, x̌(s) · Iζ−η y̌(s))− ȟ(s, x̌(s) · Iζ−η y̌(s))
∣∣∣∣ds + 2Iζ‖y− y̌‖

≤ |x− x̌0|+ b3

∫ T−τ

0
|x(s)Iζ−ηy(s)− x̌(s)Iζ−η y̌(s)|ds

+ b3

∫ T−τ

0
‖h− ȟ‖ds + 2Iζ‖y− y̌‖

≤ |x− x̌0|+ b3

∫ T−τ

0
|x(s)Iζ−ηy(s)− x(s)Iζ−η y̌(s)

+ x(s)Iζ−η y̌(s)− x̌(s)Iζ−η y̌(s)|ds + b3‖h− ȟ‖T + ‖y− y̌‖ 2Tζ

Γ(ζ + 1)

≤ δ + b3

∫ T−τ

0
|x(s)|Iζ−η |y(s)− y̌(s)|ds

+ b3

∫ T−τ

0
|x(s)− x̌(s)|Iζ−η |y̌(s)|ds + b3Tδ +

2Tζδ

Γ(ζ + 1)

≤ δ + b3 r2‖y− y̌‖ Tζ−η+1

Γ(ζ − η + 1)
+ b3 r1‖x− x̌‖ Tζ−η+1

Γ(ζ − η + 1)
+ b3 Tδ +

2δTζ

Γ(ζ + 1)

≤ δ + b3 r2δ
Tζ−η+1

Γ(ζ − η + 1)
+ b3 r1‖x− x̌‖ Tζ−η+1

Γ(ζ − η + 1)
+ b3 Tδ +

2δTζ

Γ(ζ + 1)
.

Hence,

‖x− x̌‖(1− r1b3Tζ−η+1

Γ(ζ − η + 1)
) ≤

(
1 +

r2b3Tζ−η+1

Γ(ζ − η + 1)
+

2Tζ

Γ(ζ + 1)
+ b3T

)
δ

and

‖x− x̌‖ =

(
1 + r2b3Tζ−η+1

Γ(ζ−η+1) + 2Tζ

Γ(ζ+1) + b3T
)

δ

1− r1b3Tζ−η+1

Γ(ζ−η+1)

= ε.

Since r1b3Tζ−η+1

Γ(ζ−η+1) < 1, therefore, the solution to (3) depends continuously on y, h, x0.
Consequently, the solution x ∈ C[0, T] of (1) and (2) depends continuously on y, h, x0.
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6. Special Cases and Examples

Corollary 1. Let the hypothesis of Theorem 1 be valid; if we put τ = T in (2), then the
backward problem

dx
dt

= f (t, g1(t, Dζ x(t))
∫ ϑ(t)

0
g2(s, Dγx(s)ds)), ζ, γ ∈ (0, 1), t ∈ (0, T],

x(T) = x0,

has a solution x ∈ C[0, T]. Consequently, if the hypotheses of Theorem 2 are valid, it has a unique
solution x ∈ C[0, T].

Corollary 2. Let the hypothesis of Corollary 1 be valid. If τ = T, γ = 1 − ζ, then the
backward problem

dx
dt

= f (t, g1(t, Dζ x(t))
∫ ϑ(t)

0
g2(s, D1−ζ x(s)ds)), ζ ∈ (

1
2

, 1), t ∈ (0, T],

x(T) = x0.

has a solution x ∈ C[0, T]. Consequently, if the hypotheses of Theorem 2 are valid, it
has a unique solution x ∈ C[0, T].

Example 1. Consider the next problem,

dx
dt

=
1
2
(

e−t

1 + e−t ) +
1
8
( t2

2
+

1
6

D
1
2 x(t)

)
·
∫ ρt

0

( s3

4
+

1
3

D
1
2 x(s)

)
ds, t ∈ (0, 1], (11)

x(τ) =
1
4
+
∫ 1−τ

0
(

sins
6

+
1
2

x(s) · D
1
2 x(s))ds, (12)

where

ζ = η = γ =
1
2

, ρ ∈ (0, 1), x(0) =
1
4

.

Then

f
(

t, g1(t, Dζ x(t)) ·
∫ ϑ(t)

0
g2(s, Dγx(s)ds)

)
=

1
2
(

e−t

1 + e−t ) +
1
8

(
t2

2
+

1
6

D
1
2 x(t)

)
·
∫ ρt

0
(

s3

4
+

1
3

D
1
2 x(s))ds.

Set

g1(t, Dζ x(t)) =
t2

2
+

1
6

D
1
2 x(t)

g2(t, Dγx(t)) =
t3

4
+

1
3

D
1
2 x(t)

h(t, x(t) · Dη x(t)) =
sint

6
+

1
2

x(t) · D
1
2 x(t).

Here, we have

a∗ = a∗1 =
1
2

, a∗2 =
1
4

, b =
1
8

, b1 =
1
6

, b2 =
1
3

, b3 =
1
2

N =
1
6

, r1 ≈ 0.2, and r2 ≈ 0.9.
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It is obvious that all the hypotheses of Theorem 1 are valid. Hence there exists at least one
solution x ∈ [0, 1] of (15)–(12). Moreover, we have

a∗b2 + bb2(a∗1 + b1r1)T2−γ + bb1(a∗2 T2−ζ + r1b2T2−γ) = 0.1950 < 1.

Thus, all the hypotheses of Theorem 2 are valid, so the solution of Problem (15)–(12) is unique.

Example 2. Consider the problem

dx
dt

=
1
4

e−t2
cos(2t) +

1
3

(
1
3
(

1
5− t

+ D
1
3 x(t)) ·

∫ 1
2 t

0

1
5
(

e−s

s + 2
+ D

1
4 x(s))ds

)
t ∈ [0, 1], (13)

x(τ) =
1
5
+
∫ 1−τ

0

(
1

18
s2(sin(2s + 1)) +

1
6

x(s)D
1
5 x(s)

)
ds, (14)

where

ζ =
1
3

, η =
1
5

, γ =
1
4

, t ∈ (0, 1], x(0) =
1
5

.

Then,

f (t, g1(t, Dζ x(t))
∫ ϑ(t)

0
g2(s, Dγx(s)ds))

=
1
4

e−t2
cos(2t) +

1
3
(

1
3

1
5− t

+ D
1
3 x(t)) ·

∫ 1
2 t

0

1
5
(

e−s

s + 2
+ D

1
4 x(s))ds.

Set

g1(t, Dζ x(t)) =
1
3
(

1
5− t

+ D
1
3 x(t))

g2(t, Dγx(t)) =
1
5
(

e−t

t + 2
+ D

1
4 x(t))

h(t, x(t) · Dη x(t)) =
1
6
(

1
3

t2(sin(2t + 1)) + x(t)D
1
5 x(t)).

Here, we have

a∗ =
1
4

, a∗1 =
1

12
, a∗2 =

1
10

, b = b1 =
1
3

, b2 =
1
5

, b3 =
1
6

,

N =
1
18

, r1 = 0.3, r2 = 0.05.

It is obvious that all the hypotheses of Theorem 1 are valid. Hence the solution x ∈ [0, T]
of (13) and (14) exists. Moreover, we have

a∗b2 + bb2(a∗ + b1r1)t2−γ + bb1(a∗2t2−γ + r1b2t2−γ) = 0.2314 < 1,

Thus, all the hypotheses of Theorem 2 are valid, and then the solution to (13)–(14) is unique.

Example 3. Consider the next problem

dx
dt

=
1
4
(

t
t3 + 1

) +
1
3
(7 + 3t

16
+

ln(1 + |D 1
5 x(t)|)

5t + 7
)
·
∫ t4

0

( 1
9− s

+
(D

1
7 x(s))2

6(1 + |D 1
7 x(s)|)

)
ds,

t ∈ (0,
1
3
], (15)
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x(τ) =
1
4
+
∫ 1

3−τ

0
(

s2

s2 + 1
+

ln(1 + |x(s) · D 1
4 x(s)|)

8 + s2 )ds. (16)

Here, we have

x0 =
1
4

, ζ =
1
5

, η =
1
7

, γ =
1
4

, ϑ(t) = t4,

and

f
(

t, g1(t, Dζ x(t)) ·
∫ ϑ(t)

0
g2(s, Dη x(s)ds)

)
=

1
4
(

t
t3 + 1

) +
1
3
(7 + 3t

16
+

ln(1 + |D 1
5 x(t)|)

5t + 7
)
·
∫ t4

0

( 1
9− s

+
(D

1
7 x(s))2

6(1 + |D 1
7 x(s)|)

)
ds.

Set

ϑ(t) = t4,

g1(t, Dζ x(t)) =
7 + 3t

16
+

ln(1 + |D 1
5 x(t)|)

5t + 7
,

g2(t, Dγx(t)) =
1

9− s
+

(D
1
7 x(s))2

6(1 + |D 1
7 x(s)|)

,

h(t, x(t) · Dη x(t)) =
t2

t2 + 1
+

ln(1 + |x(t) · D 1
4 x(t)|)

8 + t2 .

Thus, we obtain

a∗ =
1
12

, a∗1 =
1
2

, a∗2 =
3
26

, N =
1
9

, b =
1
3

, b1 =
1
7

, b2 =
1
6

, b3 =
1
8

,

r1 ≈ 0.03, and r2 ≈ 0.42.

It is clear that all assumptions of Theorem 1 are satisfied. Hence, there exists at least one
solution x ∈ [0, T] of (12)–(15). Moreover, we have

a∗b2 + bb2(a∗1 + b1r1)t2−γ + bb1(a∗2t2−γ + r1b2t2−γ) = 0.043 < 1.

Thus, all assumptions of Theorem 2 are satisfied, and then the solution of the problem (12)–(15)
is unique.

7. Conclusions

In this manuscript, we considered the constrained problem of the fractional-order
integro-differential equation (1) under the quadratic functional integro-differential con-
straint (2). We proved the existence of solutions to the problem (1) and (2). The sufficient
conditions for the uniqueness of the solution have been presented. The Hyers–Ulam stabil-
ity of the problem (1) and (2) has been analyzed. The continuous dependence of the unique
solution on its fractional-order derivative Dζ x(t), the parameter x0, and the function h has
been studied. We introduced several examples and special cases.
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