Next Article in Journal
The Generalized Discrete Proportional Derivative and Its Applications
Next Article in Special Issue
A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory
Previous Article in Journal
Uncertainty Observer-Based Control for a Class of Fractional- Order Non-Linear Systems with Non-Linear Control Inputs
Previous Article in Special Issue
Fractional Simpson-like Inequalities with Parameter for Differential s-tgs-Convex Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions

1
Department of Mathematics, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
2
Department of Basic Sciences and Humanities, CECOS University of IT and Emerging Sciences, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
3
Department of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
4
Faculty of Mathematics and Computer Science, Transilvania University of Brasov, Iuliu Maniu Street 50, 500091 Brasov, Romania
5
Faculty of Science and Arts, Mohail Asser, King Khalid University, Abha 62529, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2023, 7(12), 837; https://doi.org/10.3390/fractalfract7120837
Submission received: 8 November 2023 / Revised: 20 November 2023 / Accepted: 22 November 2023 / Published: 25 November 2023

Abstract

:
In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ -Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.

1. Introduction

Higher-order derivatives and n-fold integrals in ordinary calculus are considered only for the particular case when the order belongs to a set of natural numbers. Integrations and derivatives of any real number α > 0 are discussed in fractional calculus, in which the ordinary definitions of derivatives and integrals are considered as special cases, i.e., for when α belongs to a set of natural numbers. Fractional calculus has become increasingly significant owing to its wide-ranging uses in science. In the literature, there are more precise and mathematical representations of a range of phenomena modeled with the help of fractional derivatives [1,2,3]. Among the different qualitative properties of Fractional Differential Equations (FDEs), researchers investigated the existence of unique solutions to and stability analyses of FDEs under different conditions [4,5,6,7,8].
The Langevin equation is a great method for describing phenomena related to Brownian motion, and it may be used to successfully describe processes by economists, engineers, doctors, and other professionals. It was discovered that the Langevin equation, which was initially formulated by Langevin in 1908, is a useful tool for accurately describing the evolution of physical processes, including stochastic difficulties in various disciplines, including mechanical and electrical engineering, chemistry, physics, military systems, image processing, and astronomy. When the random oscillation force is assumed to be Gaussian, it is also utilized to characterize Brownian motion. For more details, see other studies [9,10,11]. Coupled system of FDEs are used in a variety of physical and practical models, including those that simulate diseases [12,13], the environment [14], chaotic systems [15], and many more. Ahmad et al. discussed basic applications of slit strip conditions in imaging and acoustics using strip detectors [16,17].
The authors of [18] investigated the existence of a unique solution to the following problem:
c D 0 + α ( σ ) = f ( σ , ( σ ) , c D 0 + β ( σ ) ) , σ [ 0 , 1 ] , ( 0 ) = 0 , ( 0 ) = 0 , , n 2 ( 0 ) = 0 , ( 0 ) + ( 0 ) = χ ( ) , 0 1 ( σ ) d σ = m ,
where c D 0 + α and c D 0 + β are Caputo Fractional Derivatives (CFDs) of order α with n 1 < α < n ( n 2 ) and 0 < β < 1 , respectively. m R and f : [ 0 , 1 ] × R 2 R , χ : C ( [ 0 , 1 ] , R ) R are continuous functions.
A coupled system of nonlinear FDEs was studied by Ahmad et al. [19],
c D 0 α 1 ( σ ) = h 1 ( σ , 1 ( σ ) , 2 ( σ ) ) , σ [ 0 , 1 ] , 1 < α 2 , c D 0 β 2 ( σ ) = h 2 ( σ , 1 ( σ ) , 2 ( σ ) ) , σ [ 0 , 1 ] , 1 < β 2 ,
with the coupled and uncoupled boundary conditions of the type:
1 ( 0 ) = 0 , 1 ( ν ) = d 1 0 μ 2 ( s ) d s + d 2 ν 1 1 2 ( s ) d s , 0 < μ < ν < ν 1 < 1 , 2 ( 0 ) = 0 , 2 ( ν ) = d 1 0 μ 1 ( s ) d s + d 2 ν 1 1 1 ( s ) d s , 0 < μ < ν < ν 1 < 1 , 1 ( 0 ) = 0 , 1 ( ν ) = d 1 0 μ 1 ( s ) d s + d 2 ν 1 1 1 ( s ) d s , 0 < μ < ν < ν 1 < 1 , 2 ( 0 ) = 0 , 2 ( ν ) = d 1 0 μ 2 ( s ) d s + d 2 ν 1 1 2 ( s ) d s , 0 < μ < ν < ν 1 < 1 ,
where c D 0 α and c D 0 β are CFDs of order α , β , respectively. h 1 , h 2 : [ 0 , 1 ] × R 2 R are given continuous functions and d 1 , d 2 R .
A coupled system of hybrid nonlinear FDEs was investigated by Ahmad et al. [20].
c D 0 α [ 1 ( σ ) h 1 ( σ , 1 ( σ ) , 2 ( σ ) ) ] = θ 1 ( σ , 1 ( σ ) , 2 ( σ ) ) , σ [ 0 , 1 ] , 1 < α 2 , c D 0 β [ 2 ( σ ) h 2 ( σ , 1 ( σ ) , 2 ( σ ) ) ] = θ 2 ( σ , 1 ( σ ) , 2 ( σ ) ) , σ [ 0 , 1 ] , 1 < β 2 ,
with coupled slit-strip-type integral boundary conditions:
1 ( 0 ) = 0 , 1 ( μ ) = d 1 0 ν 1 2 ( s ) d s + d 2 ν 2 1 2 ( s ) d s , 0 < ν 1 < μ < ν 2 < 1 , 2 ( 0 ) = 0 , 2 ( μ ) = d 1 0 ν 1 1 ( s ) d s + d 2 ν 2 1 1 ( s ) d s , 0 < ν 1 < μ < ν 2 < 1 ,
where c D 0 α with order α and c D 0 β with order β are CFDs. θ i , h i : [ 0 , 1 ] × R 2 R are continuous functions such that h i ( 0 , 1 ( 0 ) , 2 ( 0 ) ) = 0 , i = 1 , 2 and d 1 , d 2 R .
In 2022, Zhiwei et al. [21] studied the following coupled system:
c D σ k , σ α ; ψ [ 1 ( σ ) h 1 ( σ , 1 ( σ ) , c D σ k , σ α ; ψ 1 ( σ ) ) ] = j 1 ( σ , 1 ( σ ) , c D σ k , σ α ; ψ 1 ( σ ) ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , c D σ k , σ β ; ψ [ 2 ( σ ) h 2 ( σ , 2 ( σ ) , c D σ k , σ β ; ψ 2 ( σ ) ) ] = j 2 ( σ , 2 ( σ ) , c D σ k , σ β ; ψ 2 ( σ ) ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , 1 ( 0 ) = 0 , 1 ( η ) = a 1 σ k δ 2 k 1 ( σ ) d σ + a 2 δ 2 k + 1 σ k + 1 1 ( σ ) d σ , σ k < δ 2 k < η < δ 2 k + 1 < σ k + 1 , 2 ( 0 ) = 0 , 2 ( η ) = a 1 σ k δ 2 k 2 ( σ ) d σ + a 2 δ 2 k + 1 σ k + 1 2 ( σ ) d σ , σ k < δ 2 k < η < δ 2 k + 1 < σ k + 1 , Δ 1 ( σ k ) = 1 ( σ k + ) 1 ( σ k ) = I k ( 1 ( σ k ) ) , Δ 1 ( σ k ) = 1 ( σ k + ) 1 ( σ k ) = J k ( 1 ( σ k ) ) , k = 1 , 2 , , p , Δ 2 ( σ k ) = 2 ( σ k + ) 2 ( σ k ) = I k * ( 2 ( σ k ) ) , Δ 2 ( σ k ) = 2 ( σ k + ) 2 ( σ k ) = J k * ( 2 ( σ k ) ) , k = 1 , 2 , , p ,
where c D σ k , σ α ; ψ and c D σ k , σ β ; ψ denote the ψ -CFD of order α , β ( 1 , 2 ] , and J = [ 0 , R ] with R > 0 , h 1 , j 1 , h 2 , j 2 : J × R × R R are given continuous functions with h 1 ( 0 , 1 ( 0 ) , c D σ k , σ α ; ψ 1 ( 0 ) ) = 0 = h 2 ( 0 , 2 ( 0 ) , c D σ k , σ β ; ψ 2 ( 0 ) ) and a i are real constants for i = 1 , 2 .
In [22], Almaghamsi et al. investigated the following system:
c D γ i , μ ( c D σ i , μ + α i ) φ i ( t ) = Ξ i ( t , φ 1 ( t ) , φ 2 ( t ) ) , t [ a , b ] , i = 1 , 2 .
with boundary conditions
φ i ( a ) = 0 , I ϑ i , μ φ i ( b ) = 0 , c D σ 1 , μ φ 1 ( a ) = κ a ζ φ 2 ( s ) d s .
where for i = 1 , 2 , c D γ i , μ and c D σ i , μ are μ - CFD, 0 < σ i , γ 2 < 1 , 1 < γ 1 2 , α i , κ R .
In this paper, we investigate the coupled system of Langevin fractional problems of ψ -CFDs with generalized slit-strip-type integral boundary conditions and impulses:
c D σ k , σ γ 1 ; ψ ( c D σ k , σ β 1 ; ψ + α 1 ) ( σ ) = F 1 ( σ , ( σ ) , ( σ ) ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , c D σ k , σ γ 2 ; ψ ( c D σ k , σ β 2 ; ψ + α 2 ) ( t ) = F 2 ( σ , ( σ ) , ( σ ) ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , ( 0 ) = 0 , ( η ) = a 1 σ k δ 2 k ( τ ) d τ + a 2 δ 2 k + 1 σ k + 1 ( τ ) d τ , σ k < δ 2 k < η < δ 2 k + 1 < σ k + 1 , ( 0 ) = 0 , ( η ) = a 1 σ k δ 2 k ( τ ) d τ + a 2 δ 2 k + 1 σ k + 1 ( τ ) d τ , σ k < δ 2 k < η < δ 2 k + 1 < σ k + 1 , Δ ( σ k ) = ( σ k + ) ( σ k ) = I k ( ( σ k ) ) , Δ ( σ k ) = ( σ k + ) ( σ k ) = J k ( ( σ k ) ) , k = 1 , 2 , , p , Δ ( σ k ) = ( σ k + ) ( σ k ) = I k * ( ( σ k ) ) , Δ ( σ k ) = ( σ k + ) ( σ k ) = J k * ( ( σ k ) ) , k = 1 , 2 , , p ,
where c D σ k , σ γ i ; ψ and c D σ k , σ β i ; ψ denote the ψ -CFD with β i ( 0 , 1 ] , γ i ( 1 , 2 ] . J = [ 0 , T ] with T > 0 , F 1 , F 2 : J × R × R R are given continuous functions and a 1 , a 2 are real constants.
The subsequent sections of the paper are structured as follows: Section 2 presents some basic materials relevant to our results. The proof of a lemma that characterizes the solution of our problem is found in Section 3. In Section 4, the Shaefer fixed point theorem and the Banach contraction principle are applied to prove the existence and uniqueness of the problem, while Section 5 presents Ulam–Hyers stability for problem (1) and Section 6 provide examples, demonstrating our findings.

2. Preliminaries and Notations

Several definitions and results from this section are required later.
Definition 1 
([23]). Let F : [ 0 , 1 ] R be an integrable function and ψ : [ a 0 , b 0 ] R be an increasing and differentiable function such that ψ ( σ ) 0 for all σ [ a 0 , b 0 ] . Then, the left-sided ψ Riemann–Liouville (RL) fractional integral of order ( α > 0 ) is defined by
I a 0 + α ; ψ F ( σ ) = 1 Γ ( α ) a 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) α 1 F ( r ) d r ,
where Γ denotes the Euler Gamma function.
Definition 2 
([23]). Let F and ψ∈ C n ( [ a 0 , b 0 ] , R ) ( n N ) be functions where ψ ( σ ) is increasing and ψ ( σ ) 0 for all σ [ a 0 , b 0 ] . Then, the left-sided ψ-RL fractional derivative of order α of a function F is defined by
D a 0 + α ; ψ F ( σ ) = 1 ψ ( σ ) d d σ n I a 0 + n α ; ψ F ( σ ) = 1 Γ ( n α ) 1 ψ ( σ ) d d σ n a 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) n α 1 F ( r ) d r ,
where n = [ α ] + 1 and [ α ] denotes the integer part of the real number α.
Definition 3 
([23]). Let F and ψ∈ C n ( [ a 0 , b 0 ] , R ) ( n N ) be functions where ψ ( σ ) is increasing and ψ ( σ ) 0 for all σ [ a 0 , b 0 ] . Then, the left-sided ψ-CFD of order α ( α ( n 1 , n ) ) of a function F is defined by
c D a 0 + α ; ψ F ( σ ) = D a 0 + α ; ψ [ F ( σ ) l = 0 n 1 F ψ [ l ] ( a 0 ) l ! ( ψ ( σ ) ψ ( a 0 ) ) l ] ,
where F ψ [ l ] ( σ ) = ( 1 ψ ( σ ) d d σ ) l F ( σ ) and n = [ α ] + 1 for α N , n = α for α N .
Further, if F∈ C n ( [ a 0 , b 0 ] , R ) and α N , then
c D a 0 + α ; ψ F ( σ ) = I a 0 + n α ; ψ 1 ψ ( σ ) d d σ n F ( σ ) = 1 Γ ( n α ) a 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) n α 1 F ψ [ n ] ( r ) d r .
Thus, if α = n N , then c D a 0 + α ; ψ F ( σ ) = F ψ [ n ] ( σ ) .
Lemma 1 
([23]). For α > 0 ,
If F C ( [ a 0 , b 0 ] , R ) , then c D a 0 + α ; ψ I a 0 + α ; ψ F ( σ ) = F ( σ ) , σ [ a 0 , b 0 ] .
If F∈ C n ( [ a 0 , b 0 ] , R ) , n 1 < α < n , then
I a 0 + α ; ψ c D a 0 + α ; ψ F ( σ ) = F ( σ ) l = 0 n 1 c l ( ψ ( σ ) ψ ( a 0 ) ) l , σ [ a 0 , b 0 ] ,
where c l = F ψ [ l ] ( a 0 ) l ! .
Lemma 2 
(Contraction theorem [24]). Let a metric space X be complete and P : X X be a contraction on X. Then, P has unique fixed point.
Lemma 3 
(Arzela–Ascoli theorem [24]). Assume that X is a compact set in R n , n 1 . Then, a set S C ( X ) is relatively compact in C ( X ) if and only if the functions in S are uniformly bounded and equicontinuous on X.
Lemma 4 
(Schaefer’s fixed point theorem [24]). Let P : X × Y X × Y be a completely continuous operator. Consider a set G ( P ) = { ( , ) X × Y ; ( , ) = λ P ( , ) ; 0 < λ < 1 } . Then, either P has at least one fixed point or the set G ( P ) is unbounded.

3. Main Results

For σ k J k such that 0 = σ 0 < σ 1 < σ 2 < < σ p = T and J = J 0 J 1 J p , where J 0 = ( 0 , σ 1 ] , J 1 = ( σ 1 , σ 2 ] , , J p = ( σ p , σ p + 1 ] and J = J { σ 0 , σ 1 , , σ p } , we define the space X = { : J R | P C ( [ J , R ] ) , such that the right limits ( σ k + ) , ( σ k + ) and left limits ( σ k ) , ( σ k ) exist and Δ ( σ k ) = ( σ k + ) ( σ k ) , Δ ( σ k ) = ( σ k + ) ( σ k ) , k = 1 , 2 , , p }. Then, clearly, X is a Banach space equipped with the norm | | ( σ ) | | = max σ J | ( σ ) | . Similarly, define the space Y = { : J R | P C ( [ J , R ] ) , the right limits ( σ k + ) , ( σ k + ) and left limits ( σ k ) , ( σ k ) exist and Δ ( σ k ) = ( σ k + ) ( σ k ) , Δ ( σ k ) = ( σ k + ) ( σ k ) , k = 1 , 2 , , p }. Then, clearly, Y is a Banach space equipped with the norm | | ( t ) | | = max σ J | ( σ ) | .
Lemma 5. 
Let F 1 , F 2 be real-valued continuous functions on J . Then, the coupled system:
c D σ k , σ γ 1 ; ψ ( c D σ k , σ β 1 ; ψ + α 1 ) ( σ ) = F 1 ( σ ) , σ J , σ σ k , k = 0 , 1 , , p , c D σ k , σ γ 2 ; ψ ( c D σ k , σ β 2 ; ψ + α 2 ) ( σ ) = F 2 ( σ ) , σ J , σ σ k , k = 0 , 1 , , p ,
equipped with the boundary conditions given in (1) only has one solution, which is given by
( σ ) = 1 Γ ( γ 1 + β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) × 1 Δ [ 1 Γ ( γ 1 + β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i ( ( σ i ) ) ) a 1 σ k δ 2 k { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + I i ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i ( ( σ i ) ) ) } d τ a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + I i ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i ( ( σ i ) ) ) } d τ ] + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) J i ( ( σ i ) ) ) ,
( σ ) = 1 Γ ( γ 2 + β 2 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r α 2 Γ ( β 2 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 2 1 ( r ) d r + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) · 1 Δ [ 1 Γ ( γ 2 + β 2 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r α 2 Γ ( β 2 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 2 + β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r ) d r α 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 2 ( r ) d r + I i * ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i * ( ( σ i ) ) ) a 1 σ k δ 2 k { 1 Γ ( γ 2 + β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r α 2 Γ ( β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r ) d r α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + I i * ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i * ( ( σ i ) ) ) } d τ a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 2 + β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r α 2 Γ ( β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r ) d r α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + I i * ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i * ( ( σ i ) ) ) } d τ ] + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r ) d r α 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 2 ( r ) d r + I i * ( ( σ i ) ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) J i * ( ( σ i ) ) ) ,
where
Δ = a 1 σ k δ 2 k ( ( ψ ( τ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) d τ + a 2 δ 2 k + 1 σ k + 1 ( ( ψ ( τ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) d τ ( ( ψ ( η ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) ,
and it is assumed that
Δ 0 .
Proof. 
Let
c D σ k , σ γ 1 ; ψ ( c D σ k , σ β 1 ; ψ + α 1 ) ( σ ) = F 1 ( σ ) .
Then, using Lemma 1 in the differential Equation (2), for any σ J 0 , there exist constants c 0 , c 1 R , such that:
( σ ) = I γ 1 + β 1 ; ψ F 1 ( σ ) α 1 I β 1 ; ψ ( σ ) + c 0 + c 1 ( ψ ( σ ) ψ ( σ 0 ) ) .
( σ ) = 1 Γ ( γ 1 + β 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + c 0 + c 1 ( ψ ( σ ) ψ ( σ 0 ) ) ,
Using the initial condition ( 0 ) = 0 , we get c 0 = 0 , so
( σ ) = 1 Γ ( γ 1 + β 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + c 1 ( ψ ( σ ) ψ ( σ 0 ) ) .
Furthermore, we obtain
( σ ) = 1 Γ ( γ 1 + β 1 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 Γ ( β 1 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 2 ( r ) d r + c 1 ψ ( σ ) .
For σ J 1 , there are d 0 , d 1 R such that
( σ ) = 1 Γ ( γ 1 + β 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + d 0 + d 1 ( ψ ( σ ) ψ ( σ 0 ) ) .
( σ ) = 1 Γ ( γ 1 + β 1 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 Γ ( β 1 1 ) σ 0 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 2 ( r ) d r + d 1 ψ ( σ ) .
Hence, it follows that
( σ 1 ) = 1 Γ ( γ 1 + β 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) β 1 1 ( r ) d r + c 1 ( ψ ( σ 1 ) ψ ( σ 0 ) ) ,
( σ 1 + ) = d 0 ,
( σ 1 ) = 1 Γ ( γ 1 + β 1 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 Γ ( β 1 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) β 1 2 ( r ) d r + c 1 ψ ( σ 1 ) ,
( σ 1 + ) = d 1 ψ ( σ 1 ) .
Using
Δ ( σ 1 ) = ( σ 1 + ) ( σ 1 ) = I 1 ( ( σ 1 ) ) , Δ ( σ 1 ) = ( σ 1 + ) ( σ 1 ) = J 1 ( ( σ 1 ) ) .
we obtain
d 0 = 1 Γ ( γ 1 + β 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) β 1 1 ( r ) d r + c 1 ( ψ ( σ 1 ) ψ ( σ 0 ) ) + I 1 ( ( σ 1 ) ) , d 1 = 1 ψ ( σ 1 ) Γ ( γ 1 + β 1 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 ψ ( σ 1 ) Γ ( β 1 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) β 1 2 ( r ) d r + c 1 + 1 ψ ( σ 1 ) J 1 ( ( σ 1 ) ) .
Thus,
( σ ) = 1 Γ ( γ 1 + β 1 ) σ 1 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ 1 σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + 1 Γ ( γ 1 + β 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) β 1 1 ( r ) d r + c 1 ( ψ ( σ 1 ) ψ ( σ 0 ) ) + I 1 ( ( σ 1 ) ) + c 1 ( ψ ( σ ) ψ ( σ 1 ) ) + ( ψ ( σ ) ψ ( σ 1 ) ) ψ ( σ 1 ) Γ ( γ 1 + β 1 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 ( ψ ( σ ) ψ ( σ 1 ) ) ψ ( σ 1 ) Γ ( β 1 1 ) σ 0 σ 1 ψ ( r ) ( ψ ( σ 1 ) ψ ( r ) ) β 1 2 ( r ) d r + ( ψ ( σ ) ψ ( σ 1 ) ) ψ ( σ 1 ) J 1 ( ( σ 1 ) ) , σ J 1 .
Similarly, for σ J k , k = 1 , 2 , , p , we have
( σ ) = 1 Γ ( γ 1 + β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + c 1 ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) + i = 1 p 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + i = 1 p α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r i = 1 p α 1 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + i = 1 p I i ( ( σ i ) ) + i = 1 p ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) J i ( ( σ i ) ) .
Finally, applying ( η ) = a 1 σ k δ 2 k ( τ ) d τ + a 2 δ 2 k + 1 σ k + 1 ( τ ) d τ , we get the value of c 1 as
c 1 = 1 Δ [ 1 Γ ( γ 1 + β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) J i ( ( σ i ) ) ) a 1 σ k δ 2 k { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) J i ( ( σ i ) ) ) } d τ a 2 δ 2 k + 1 σ k + 1 { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r ) d r α 1 ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) J i ( ( σ i ) ) ) } d τ ] .
Putting (7) in (6), we obtain our required result (3) and similarly, we get (4). The converse of the lemma follows by direct computation. This concludes the proof. □

4. Existence Results for the Problem (1)

Here, we consider some hypotheses.
Hypothesis 1. 
For each σ J and 1 , 2 X , 1 , 2 Y , there exist positive constants M f 1 > 0 , N f 1 > 0 , such that
| F 1 ( σ , 1 ( σ ) , 1 ( σ ) ) F 1 ( σ , 2 ( σ ) , 2 ( σ ) ) | M f 1 | 1 ( σ ) 2 ( σ ) | + N f 1 | 1 ( σ ) 2 ( σ ) | .
Hypothesis 2. 
For each σ J and 1 , 2 X , 1 , 2 Y , there exist positive constants M f 2 > 0 , N f 2 > 0 , such that
| F 2 ( σ , 1 ( σ ) , 1 ( σ ) ) F 2 ( σ , 2 ( σ ) , 2 ( σ ) ) | M f 2 | 1 ( σ ) 2 ( σ ) | + N f 2 | 1 ( σ ) 2 ( σ ) | .
Hypothesis 3. 
For every 1 , 2 X and 1 , 2 Y , there exist constants A 1 , A 2 , A 3 , A 4 > 0 such that
| I k ( 1 ( σ k ) ) I k ( 2 ( σ k ) ) | A 1 | 1 ( σ k ) 2 ( σ k ) | ,
| J k ( 1 ( σ k ) ) J k ( 2 ( σ k ) ) | A 2 | 1 ( σ k ) 2 ( σ k ) | ,
| I k * ( 1 ( σ k ) ) I k * ( 2 ( σ k ) ) | A 3 | 1 ( σ k ) 2 ( σ k ) | ,
| J k * ( 1 ( σ k ) ) J k * ( 2 ( σ k ) ) | A 4 | 1 ( σ k ) 2 ( σ k ) | .
Hypothesis 4. 
There exist constants θ 0 , θ 1 and θ 2 such that
| F 1 ( σ , ( σ ) , ( σ ) ) | < θ 0 ( σ ) + θ 1 ( σ ) | ( σ ) | + θ 2 ( σ ) | ( σ ) | ,
with sup σ J θ 0 ( σ ) = θ 0 * , sup σ J θ 1 ( σ ) = θ 1 * , sup σ J θ 2 ( σ ) = θ 2 * .
There exist constants θ 3 , θ 4 and θ 5 such that
| F 2 ( σ , ( σ ) , ( σ ) ) | < θ 3 ( σ ) + θ 4 ( σ ) | ( σ ) | + θ 5 ( σ ) | ( σ ) | ,
with sup σ J θ 3 ( σ ) = θ 3 * , sup σ J θ 4 ( σ ) = θ 4 * , sup σ J θ 5 ( σ ) = θ 5 * .
Hypothesis 5. 
For each ( σ ) X , ( σ ) Y , there exist constants A 5 , A 6 , A 7 , A 8 , N 1 , N 2 , N 3 , N 4 > 0 such that the functions I k , J k , I k * , J k * : R R are continuous and satisfy the inequalities:
| I k ( ( σ k ) ) | A 5 | ( σ ) | + N 1 , | J k ( ( σ k ) ) | A 6 | ( σ ) | + N 2 ,
| I k * ( ( σ k ) ) | A 7 | ( σ ) | + N 3 , | J k * ( ( σ k ) ) | A 8 | ( σ ) | + N 4 ,
for k = 1, 2, …, p.
Let us define an operator P : X × Y X × Y such that
P ( , ) ( σ ) = ( P 1 ( , ) ( σ ) , P 2 ( , ) ( σ ) ) ,
where
P 1 ( , ) ( σ ) = 1 Γ ( γ 1 + β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r α 1 Γ ( β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) . 1 Δ [ 1 Γ ( γ 1 + β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r α 1 Γ ( β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r , ( r ) , ( r ) ) d r α 1 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i ( ( σ i ) ) ) a 1 σ k δ 2 k { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r , ( r ) , ( r ) ) d r α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + I i ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i ( ( σ i ) ) ) } d τ a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r , ( r ) , ( r ) ) d r α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + I i ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i ( ( σ i ) ) ) } d τ ] + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r , ( r ) , ( r ) ) d r α 1 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) J i ( ( σ i ) ) ) ,
P 2 ( , ) ( σ ) = 1 Γ ( γ 2 + β 2 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r α 2 Γ ( β 2 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) . 1 Δ [ 1 Γ ( γ 2 + β 2 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r α 2 Γ ( β 2 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( σ ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 2 + β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r , ( r ) , ( r ) ) d r α 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 2 ( r ) d r + I i * ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i * ( ( σ i ) ) ) a 1 σ k δ 2 k { 1 Γ ( γ 2 + β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r α 2 Γ ( β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r , ( r ) , ( r ) ) d r α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + I i * ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i * ( ( σ i ) ) ) } d τ a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 2 + β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r α 2 Γ ( β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r , ( r ) , ( r ) ) d r α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + I i * ( ( σ i ) ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) J i * ( ( σ i ) ) ) } d τ ] + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 F 2 ( r , ( r ) , ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 F 2 ( r , ( r ) , ( r ) ) d r α 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 2 ( r ) d r + I i * ( ( σ i ) ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) J i * ( ( σ i ) ) ) .
Our first result is stated as follows.
Theorem 1. 
Assume that the conditions ( H 1 ) and ( H 2 ) are satisfied, and
Ω = max { Ω 1 , Ω 2 , Ω 3 , Ω 4 } < 1 ,
where the proof includes Ω 1 , Ω 2 , Ω 3 , and Ω 4 . Then, (1) has a unique solution.
Proof. 
Let ( , ) , ( ¯ , ¯ )   X × Y . Then,
| P 1 ( , ) ( σ ) P 1 ( ¯ , ¯ ) ( σ ) | 1 Γ ( γ 1 + β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) 1 Δ [ 1 Γ ( γ 1 + β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 | ( r ) ¯ ( r ) | d r + | I i ( ( σ i ) ) I i ( ¯ ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) J i ( ¯ ( σ i ) ) | ) + a 1 σ k δ 2 k { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + | I i ( ( σ i ) ) I i ( ¯ ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) J i ( ¯ ( σ i ) ) | ) } d τ + a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + | I i ( ( σ i ) ) I i ( ¯ ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) J i ( ¯ ( σ i ) ) | ) } d τ ] + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d s + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) ¯ ( r ) | d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) F 1 ( r , ¯ ( r ) , ¯ ( r ) ) | d r + α 1 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 | ( r ) ¯ ( r ) | d r + | I i ( ( σ i ) ) I i ( ¯ ( σ i ) ) | + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) | J i ( ( σ i ) ) J i ( ¯ ( σ i ) ) | ) .
| P 1 ( , ) ( σ ) P 1 ( ¯ , ¯ ) ( σ ) | ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | [ ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( M f 1 | | ¯ | | + N f 1 | | ¯ | | ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | | ¯ | + A 1 | | ¯ | | + A 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) | | ¯ | | ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) M f 1 | | ¯ | | + M f 1 | | ¯ | | + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) | | ¯ | | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) | | ¯ | | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) | | ¯ | | + A 1 | | ¯ | | ( δ 2 k σ k ) + A 2 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) | | ¯ | | ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) | | ¯ | | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) | | ¯ | | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) | | ¯ | | + A 1 | | ¯ | | ( σ k + 1 δ 2 k + 1 ) + A 2 | | ¯ | | ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) ] + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | | ¯ | | + A 1 | | ¯ | | + A 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) | | ¯ | | ) .
| P 1 ( , ) ( σ ) P 1 ( ¯ , ¯ ) ( σ ) | [ M f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) 1 | Δ | { M f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 1 + A 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 M f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) + A 1 ( δ 2 k σ k ) + A 2 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 M f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 1 ( σ k + 1 δ 2 k + 1 ) + A 2 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 1 + A 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) ] | | ¯ | | + [ N f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) 1 | Δ | { N f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ) + a 1 N f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) ) + a 2 N f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ) ] | | ¯ | | .
Let
Ω 1 = [ M f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { M f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 1 + A 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 M f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) + A 1 ( δ 2 k σ k ) + A 2 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 M f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 1 ( σ k + 1 δ 2 k + 1 ) + A 2 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 1 + A 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) ] ,
Ω 2 = [ N f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { N f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ) + a 1 N f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + i = 1 p N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + a 2 N f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ] .
Then,
| P 1 ( , ) ( σ ) P 1 ( ¯ , ¯ ) ( σ ) | Ω 1 | | ¯ | | + Ω 2 | | ¯ | | .
Similarly,
| P 2 ( , ) ( σ ) P 2 ( ¯ , ¯ ) ( σ ) | Ω 3 | | ¯ | | + Ω 4 | | ¯ | | ,
where
Ω 3 = [ M f 2 ( ψ ( σ ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ ) ψ ( σ k ) ) β 2 Γ ( β 2 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { M f 2 ( ψ ( η ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 2 + 1 ) + i = 1 p ( M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) + M f 2 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ψ ( σ i ) Γ ( β 2 ) + A 3 + A 4 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 M f 2 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 2 + β 2 + 1 ψ ( δ 2 k ) Γ ( γ 2 + β 2 + 2 ) + α 2 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 2 + 1 ψ ( δ 2 k ) Γ ( β 2 + 2 ) + i = 1 p ( M f 2 ( δ 2 k σ k ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) ( δ 2 k σ k ) + M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 2 ) + A 3 ( δ 2 k σ k ) + A 4 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 M f 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 Γ ( γ 2 + β 2 + 2 ) + α 2 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 2 + 1 ) Γ ( β 2 + 2 ) + i = 1 p ( M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 Γ ( γ 2 + β 2 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 Γ ( β 2 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 3 ( σ k + 1 δ 2 k + 1 ) + A 4 ψ ( σ i ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } ) } + i = 1 p ( M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) + M f 2 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ψ ( σ i ) Γ ( β 2 ) + A 3 + A 4 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) ] ,
Ω 4 = [ N f 2 ( ψ ( σ ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) × 1 | Δ | { N f 2 ( ψ ( η ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + i = 1 p ( N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + N f 2 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) ) + a 1 N f 2 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 2 + β 2 + 1 ψ ( δ 2 k ) Γ ( γ 2 + β 2 + 2 ) + i = 1 p N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( δ 2 k σ k ) + N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 2 + β 2 ) + a 2 N f 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 Γ ( γ 2 + β 2 + 2 ) + i = 1 p ( N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 Γ ( γ 2 + β 2 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + N f 2 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) ) ] .
As it is assumed that
max { Ω 1 , Ω 2 , Ω 3 , Ω 4 } = Ω < 1 .
we have
| P ( , ) ( σ ) P ( ¯ , ¯ ) ( σ ) | Ω ( | | ¯ | | + | | ¯ | | ) .
Then, from the above inequality we get that P is a contraction mapping and by the contraction principle P it has a unique fixed point. □
Theorem 2. 
Assume that the conditions ( H 1 ) ( H 5 ) are satisfied, then the coupled system (1) has at least one solution.
Proof. 
To prove that the coupled system (1) has at least one solution, we use Schaefer’s fixed point theorem. As F 1 , I and J are continuous functions, so P 1 is continuous. Furthermore, from the continuity of F 2 , I * , J * , the operator P 2 is continuous. This shows that P is continuous. Consider a set:
Q s = { ( , ) X × Y : | | ( , ) | | s } .
For any σ [ 0 , T ] , we have
| P 1 ( , ) ( σ ) | 1 Γ ( γ 1 + β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 | ( r ) | d r + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 Δ [ 1 Γ ( γ 1 + β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 1 1 | ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 | ( r ) | d r + | I i ( ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) | ) + a 1 σ k δ 2 k { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 | ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + | I i ( ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) | ) } d τ + a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 | ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + | I i ( ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) | ) } d τ ] + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) | d s + α 1 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 | ( r ) | d r + | I i ( ( σ i ) ) | + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) | J i ( ( σ i ) ) | ) .
| P 1 ( , ) ( σ ) | ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) 1 | Δ | [ ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | ( r ) | + A 5 | ( σ ) | + N 1 + ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ( A 6 | ( σ ) | + N 2 ) ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) | ( r ) | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) | ( r ) | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) | ( r ) | + ( A 5 | ( r ) | + N 1 ) ( δ 2 k σ k ) + ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ( A 6 | ( r ) | + N 2 ) ) + a 2 ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) | ( r ) | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) | ( r ) | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) | ( r ) | + ( A 5 | ( r ) | + N 1 ) ( σ k + 1 δ 2 k + 1 ) + ( A 6 | ( r ) | + N 2 ) ( ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) ] + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 0 ( r ) + θ 1 ( r ) | ( r ) | + θ 2 ( r ) | ( r ) | ) + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | ( r ) | + ( A 5 | ( r ) | + N 1 ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ( A 6 | ( r ) | + N 2 ) ) .
Let | ( r ) | s 1 and | ( r ) | s 2 ; then, we get
| P 1 ( , ) ( σ ) | ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + s 1 α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) 1 | Δ | [ ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + s 1 α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + s 1 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + s 1 α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 5 s 1 + N 1 + ( A 6 s 1 + N 2 ) ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + r 1 α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + r 1 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + r 1 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) + ( A 5 s 1 + N 1 ) ( δ 2 k σ k ) + ( A 6 s 1 + N 2 ) ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + r 1 α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + s 1 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + s 1 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + ( A 5 s 1 + N 1 ) ( σ k + 1 δ 2 k + 1 ) + ( A 6 s 1 + N 2 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) ] + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + s 1 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 1 * s 1 + θ 2 * s 2 ) + s 1 α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + ( A 5 s 1 + N 1 ) + ( A 6 s 1 + N 2 ) ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) = F 1 .
| P 1 ( , ) ( σ ) | F 1 .
Similarly,
| P 2 ( , ) ( σ ) | F 2 ,
where
F 2 = ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) 1 | Δ | [ ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 7 s 2 + N 3 + ( A 8 s 2 + N 4 ) ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) + ( A 7 s 2 + N 3 ) ( δ 2 k σ k ) + ( A 8 s 2 + N 4 ) ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + ( A 7 s 2 + N 3 ) ( σ k + 1 δ 2 k + 1 ) + ( A 8 s 2 + N 4 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) ] + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 3 * + θ 4 * s 1 + θ 5 * s 2 ) + s 2 α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + ( A 7 s 2 + N 3 ) + ( A 8 s 2 + N 4 ) ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) .
Now, let max { F 1 , F 2 } = F . Then, we have
| | P ( , ) | | X × Y F .
The aforementioned inequality indicates the boundedness of the operator P . The operator P must then be demonstrated to be equicontinuous. For this, let ω 1 , ω 2 J k such that ω 1 < ω 2 , where k = 0 , 1 , , p .
Let ( , ) Q s ; then, we have
| P 1 ( , ) ( ω 2 ) P 1 ( , ) ( ω 1 ) | 1 Γ ( γ 1 + β 1 ) | σ k ω 2 ψ ( r ) ( ψ ( ω 2 ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r σ k ω 1 ψ ( r ) ( ψ ( ω 1 ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r | + α 1 Γ ( β 1 ) | σ k ω 2 ψ ( r ) ( ψ ( ω 2 ) ψ ( r ) ) β 1 1 ( r ) d r σ k ω 1 ψ ( r ) ( ψ ( ω 1 ) ψ ( r ) ) β 1 1 ( r ) d r | + { ( ψ ( ω 2 ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ( ψ ( ω 1 ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) } 1 | Δ | [ 1 Γ ( γ 1 + β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 1 1 | ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 | ( r ) | d r + | I i ( ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) | ) + a 1 σ k δ 2 k { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 | ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + | I i ( ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) | ) } d τ + a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 | ( r ) | d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 | F 1 ( r , ( r ) , ( r ) ) | d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 | ( r ) | d r + | I i ( ( σ i ) ) | + ψ ( η ) ψ ( σ i ) ψ ( σ i ) | J i ( ( σ i ) ) | ) } d τ ] + | i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 F 1 ( r , ( r ) , ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( ω 2 ) ψ ( σ i ) ) ( ψ ( ω 1 ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 F 1 ( r , ( r ) , ( r ) ) d r + α 1 ψ ( σ i ) Γ ( β 1 1 ) ( ( ψ ( ω 2 ) ψ ( σ i ) ) ( ψ ( ω 1 ) ψ ( σ i ) ) ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) I i ( ( σ i ) ) + ( ψ ( ω 2 ) ψ ( σ i ) ) ( ψ ( ω 1 ) ψ ( σ i ) ) ψ ( σ i ) J i ( ( σ i ) ) | .
From above inequality, if ω 1 ω 2 , we can deduce that
| P 1 ( , ) ( ω 2 ) P 1 ( , ) ( ω 1 ) | 0 .
In the same way, we can prove that
| P 2 ( , ) ( ω 2 ) P 2 ( , ) ( ω 1 ) | 0 .
Therefore, P 1 and P 2 are completely continuous according to the Arzila–Ascoli theorem. Thus, P is completely continuous.
Now, let us define a set:
G = { ( , ) X × Y ; ( , ) = λ P ( , ) ; 0 < λ < 1 } .
We need to prove that the set G is bounded. For σ J and ( , ) G , then ( , ) = λ P ( , ) , i.e.,
( σ ) = λ P 1 ( , ) and ( σ ) = λ P 2 ( , ) . Now,
| ( σ ) | = | λ P 1 ( , ) | .
| ( σ ) | λ [ ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + ( ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) ) 1 | Δ | { ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | ( r ) | + A 5 | ( σ ) | + N 1 + ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ( A 6 | ( σ ) | + N 2 ) ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) | ( r ) | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) | ( r ) | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) | ( r ) | + ( A 5 | ( r ) | + N 1 ) ( δ 2 k σ k ) + ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ( A 6 | ( r ) | + N 2 ) ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) | ( r ) | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) | ( r ) | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) | ( r ) | + ( A 5 | ( r ) | + N 1 ) ( σ k + 1 δ 2 k + 1 ) + ( A 6 | ( r ) | + N 2 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | ( r ) | + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 1 * | ( r ) | + θ 2 * | ( r ) | ) + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | ( r ) | + ( A 5 | ( r ) | + N 1 ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ( A 6 | ( r ) | + N 2 ) ) .
Let
M * = λ [ θ 1 * ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { θ 1 * ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ( θ 1 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + θ 1 * ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 5 + A 6 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 θ 1 * ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) + i = 1 p ( θ 1 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) + θ 1 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) + A 5 ( δ 2 k σ k ) + A 6 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 θ 1 * ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) + i = 1 p ( θ 1 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + θ 1 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 5 ( σ k + 1 δ 2 k + 1 ) + A 6 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( θ 1 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + θ 1 * ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 5 + A 6 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) .
| ( σ ) | λ 1 M * [ ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + N 1 + N 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) ( θ 0 * + θ 2 * | ( r ) | ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) ( θ 0 * + θ 2 * | ( r ) | ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + N 1 ( δ 2 k σ k ) + N 2 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) ( θ 0 * + θ 2 * | ( r ) | ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + N 1 ( σ k + 1 δ 2 k + 1 ) + N 2 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ( θ 0 * + θ 2 * | ( r ) | ) + N 1 + N 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) = Z 1 .
Thus, there exists a positive constant Z 1 , such that | | | | X Z 1 .
Similarly, there exists Z 2 such that | | | | Y Z 2 , where
Z 2 = λ 1 N * [ ( ψ ( σ ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( θ 3 * + θ 4 * | ( r ) | ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) × 1 | Δ | { ( θ 3 * + θ 4 * | ( r ) | ) ( ψ ( η ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( θ 3 * + θ 4 * | ( r ) | ) + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) ( θ 3 * + θ 4 * | ( r ) | ) + N 3 + N 4 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 2 + β 2 + 1 ψ ( δ 2 k ) Γ ( γ 2 + β 2 + 2 ) ( θ 3 * + θ 4 * | ( r ) | ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( δ 2 k σ k ) ( θ 3 * + θ 4 * | ( r ) | ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 2 + β 2 ) ( θ 3 * + θ 4 * | ( r ) | ) + N 3 ( δ 2 k σ k ) + N 4 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 Γ ( γ 2 + β 2 + 2 ) ( θ 3 * + θ 4 * | ( r ) | ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) ( θ 3 * + θ 4 * | ( r ) | ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 Γ ( γ 2 + β 2 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ( θ 3 * + θ 4 * | ( r ) | ) + N 3 ( σ k + 1 δ 2 k + 1 ) + N 4 ψ ( σ i ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } ) } + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( θ 3 * + θ 4 * | ( r ) | ) + ( θ 3 * + θ 4 * | ( r ) | ) ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + N 3 + N 4 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) .
and
N * = λ [ θ 5 * ( ψ ( σ ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ ) ψ ( σ k ) ) β 2 Γ ( β 2 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { θ 5 * ( ψ ( η ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( η ) ψ ( σ k ) ) β 2 Γ ( β 2 + 1 ) + i = 1 p ( θ 5 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) + θ 5 * ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ψ ( σ i ) Γ ( β 2 ) + A 7 + A 8 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 θ 5 * ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 2 + β 2 + 1 ψ ( δ 2 k ) Γ ( γ 2 + β 2 + 2 ) + α 2 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 2 + 1 ψ ( δ 2 k ) Γ ( β 2 + 2 ) + i = 1 p ( θ 5 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( δ 2 k σ k ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) ( δ 2 k σ k ) + θ 5 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 2 ) + A 7 ( δ 2 k σ k ) + A 8 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 θ 5 * ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 Γ ( γ 2 + β 2 + 2 ) + α 2 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 2 + 1 ) Γ ( β 2 + 2 ) + i = 1 p ( θ 5 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + θ 5 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 Γ ( γ 2 + β 2 ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 Γ ( β 2 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 7 ( σ k + 1 δ 2 k + 1 ) + A 8 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( θ 5 * ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) + θ 5 * ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ψ ( σ i ) Γ ( β 2 ) + A 7 + A 8 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) .
Let max { Z 1 , Z 2 } = Z . Then, we have | | ( , ) | | X × Y Z .
Thus, the set G is bounded, and the operator P has at least one fixed point according to Schaefer’s fixed point theorem., i.e., the problem (1) has at least one solution. □

5. Ulam’s Stability Results

This section is concerned with the Ulam–Hyers stability of problem (1). First, we present some definitions introduced in [25].
Definition 4. 
For ϵ = max { ϵ 1 , ϵ 2 } , consider the system of inequalities
| c D σ k , σ γ 1 ; ψ ( c D σ k , σ β 1 ; ψ + α 1 ) ( σ ) F 1 ( σ , ( σ ) , ( σ ) ) | < ϵ 1 , σ ( σ k , σ k + 1 ] , | Δ ( σ k ) I k ( ( σ k ) ) | < ϵ 1 , k = 1 , 2 , , p , | Δ ( σ k ) J k ( ( σ k ) ) | < ϵ 1 . | c D σ k , σ γ 2 ; ψ ( c D σ k , σ β 2 ; ψ + α 2 ) ( σ ) F 2 ( σ , ( σ ) , ( σ ) ) | < ϵ 2 , σ ( σ k , σ k + 1 ] , | Δ ( σ k ) I k * ( ( σ k ) ) | < ϵ 1 , k = 1 , 2 , , p , | Δ ( σ k ) J k * ( ( σ k ) ) | < ϵ 1 .
The system (1) is called Ulam–Hyers stable if we can find ϑ > 0 such that, for each solution ( ¯ , ¯ ) X × Y of ( 9 ) , there exists a solution ( , ) X × Y of the system ( 1 ) satisfying | | ( ¯ , ¯ ) ( , ) | | ϑ ϵ .
Remark 1. 
( ¯ , ¯ ) X × Y is a solution of the system of inequalities (9) if and only if there exist functions ϕ , ϕ * C ( ( σ k , σ k + 1 ] , R ) such that | ϕ | ϵ 1 and | ϕ * | ϵ 2 , σ ( σ k , σ k + 1 ] and
c D σ k , σ γ 1 ; ψ ( c D σ k , σ β 1 ; ψ + α 1 ) ( σ ) = F 1 ( σ , ( σ ) , ( σ ) ) + ϕ ( σ ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , Δ ( σ k ) = I k ( ( σ k ) ) + ϕ k ( σ ) , k = 1 , 2 , , p , Δ ( σ k ) = J k ( ( σ k ) ) + ϕ k ( σ ) . c D σ k , σ γ 2 ; ψ ( c D σ k , σ β 2 ; ψ + α 2 ) ( σ ) = F 2 ( σ , ( σ ) , ( σ ) ) + ϕ * ( σ ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , Δ ( σ k ) = I k * ( ( σ k ) ) + ϕ k * ( σ ) , k = 1 , 2 , , p , Δ y ( σ k ) = J k * ( ( σ k ) ) + ϕ k * ( σ ) .
Theorem 3. 
System ((1)) is Ulam–Hyers stable if ( H 1 ) and ( H 2 ) are met.
Proof. 
Suppose that ( ¯ , ¯ ) X × Y is the solution of the following inequality:
| c D σ k , σ γ 1 ; ψ ( c D σ k , σ β 1 ; ψ + α 1 ) ( σ ) F 1 ( σ , ( σ ) , ( σ ) ) | < ϵ 1 , σ ( σ k , σ k + 1 ] , | Δ ( σ k ) I k ( ( σ k ) ) | < ϵ 1 , k = 1 , 2 , , p , | Δ ( σ k ) J k ( ( σ k ) ) | < ϵ 1 . | c D σ k , σ γ 2 ; ψ ( c D σ k , σ β 2 ; ψ + α 2 ) ( σ ) F 2 ( σ , ( σ ) , ( σ ) ) | < ϵ 2 , σ ( σ k , σ k + 1 ] , | Δ ( σ k ) I k * ( ( σ k ) ) | < ϵ 1 , k = 1 , 2 , , p , | Δ ( σ k ) J k * ( ( σ k ) ) | < ϵ 1 .
From inequality (11)
c D σ k , σ γ 1 ; ψ ( c D σ k , σ β 1 ; ψ + α 1 ) ( σ ) = F 1 ( σ , ( σ ) , ( σ ) ) + ϕ ( σ ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , Δ ( σ k ) = I k ( ( σ k ) ) + ϕ k ( σ ) , k = 1 , 2 , , p , Δ ( σ k ) = J k ( ( σ k ) ) + ϕ k ( σ ) . c D σ k , σ γ 2 ; ψ ( c D σ k , σ β 2 ; ψ + α 2 ) ( σ ) = F 2 ( σ , ( σ ) , ( σ ) ) + ϕ * ( σ ) , σ ( σ k , σ k + 1 ] , k = 0 , 1 , , p , Δ ( σ k ) = I k * ( ( σ k ) ) + ϕ k * ( σ ) , k = 1 , 2 , , p , Δ ( σ k ) = J k * ( ( σ k ) ) + ϕ k * ( σ ) .
Using Lemma 1, we get:
¯ ( σ ) = 1 Γ ( γ 1 + β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 Γ ( β 1 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) . 1 Δ [ 1 Γ ( γ 1 + β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 Γ ( β 1 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ϕ i ( σ i ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) ( J i ( ( σ i ) ) + ϕ i ( σ i ) ) ) a 1 σ k δ 2 k { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + I i ( ( σ i ) ) + ϕ i ( σ i ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) ( J i ( ( σ i ) ) + ϕ i ( σ i ) ) } d τ a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 1 + β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 Γ ( β 1 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 1 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + I i ( ( σ i ) ) + ϕ i ( σ i ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) ( J i ( ( σ i ) ) + ϕ i ( σ i ) ) ) } d τ ] + i = 1 p ( 1 Γ ( γ 1 + β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 1 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r + α 1 Γ ( β 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 1 ( r ) d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 1 + β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 1 + β 1 2 ( F 1 ( r , ( r ) , ( r ) ) + ϕ ( r ) ) d r α 1 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 1 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 1 2 ( r ) d r + I i ( ( σ i ) ) + ϕ i ( σ i ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ( J i ( ( σ i ) ) + ϕ i ( σ i ) ) ,
¯ ( σ ) = 1 Γ ( γ 2 + β 2 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 Γ ( β 2 ) σ k σ ψ ( r ) ( ψ ( σ ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) . 1 Δ [ 1 Γ ( γ 2 + β 2 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 Γ ( β 2 ) σ k η ψ ( r ) ( ψ ( η ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ψ ( η ) ψ ( σ i ) ψ ( σ i ) Γ ( γ 2 + β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 2 ( r ) d r + I i * ( ( σ i ) ) + ϕ i * ( σ i ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) ( J i * ( ( σ i ) ) + ϕ i * ( σ i ) ) a 1 σ k δ 2 k { 1 Γ ( γ 2 + β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 Γ ( β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + I i * ( ( σ i ) ) + ϕ i * ( σ i ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) ( J i * ( ( σ i ) ) + ϕ i * ( σ i ) ) } d τ a 2 δ 2 k + σ k + 1 { 1 Γ ( γ 2 + β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 Γ ( β 2 ) σ k τ ψ ( r ) ( ψ ( τ ) ψ ( r ) ) β 2 1 ( r ) d r + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( τ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + I i * ( ( σ i ) ) + ϕ i * ( σ i ) + ψ ( η ) ψ ( σ i ) ψ ( σ i ) ( J i * ( ( σ i ) ) + ϕ i * ( σ i ) ) } d τ ] + i = 1 p ( 1 Γ ( γ 2 + β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 1 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r + α 2 Γ ( β 2 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 1 ( r ) d r + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( γ 2 + β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) γ 2 + β 2 2 ( F 2 ( r , ( r ) , ( r ) ) + ϕ * ( r ) ) d r α 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) Γ ( β 2 1 ) σ i 1 σ i ψ ( r ) ( ψ ( σ i ) ψ ( r ) ) β 2 2 ( r ) d r + I i * ( ( σ i ) ) + ϕ i * ( σ i ) + ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ( J i * ( ( σ i ) ) + ϕ i * ( σ i ) ) .
Now, as ( , ) is the solution of ( 1 ) and ( ¯ , ¯ ) is the solution of ( 11 ) . Then,
| ( σ ) ¯ ( σ ) | ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | [ ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | | ¯ | + A 1 | | ¯ | | + A 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) | | ¯ | | ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) | | ¯ | | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) | | ¯ | | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) | | ¯ | | + A 1 | | ¯ | | ( δ 2 k σ k ) + A 2 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) | | ¯ | | ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) | | ¯ | | + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) | | ¯ | | + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) | | ¯ | | + A 1 | | ¯ | | ( σ k + 1 δ 2 k + 1 ) + A 2 | | ¯ | | ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) ] + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) | | ¯ | | + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) M f 1 | | ¯ | | + N f 1 | | ¯ | | + | ϕ ( r ) | + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) | | ¯ | | + A 1 | | ¯ | | + A 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) | | ¯ | | ) .
| ( σ ) ¯ ( σ ) | [ M f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { M f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + A 1 + A 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) ) + a 1 M f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) + A 1 ( δ 2 k σ k ) + A 2 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 M f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 1 ( σ k + 1 δ 2 k + 1 ) + A 2 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 1 + A 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) ] | | x x ¯ | | + [ N f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { N f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ) + a 1 N f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + i = 1 p N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + a 2 N f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ] | | y y ¯ | | + [ ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ] ϵ 1 .
Let
ω 1 = [ M f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { M f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( η ) ψ ( σ k ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 1 + A 2 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 M f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + α 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 1 + 1 ψ ( δ 2 k ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( δ 2 k σ k ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 1 ) + A 1 ( δ 2 k σ k ) + A 2 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 M f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + α 1 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 1 + 1 ) Γ ( β 1 + 2 ) + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 Γ ( β 1 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 1 ( σ k + 1 δ 2 k + 1 ) + A 2 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( M f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + α 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 Γ ( β 1 + 1 ) + M f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + α 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 1 1 ψ ( σ i ) Γ ( β 1 ) + A 1 + A 2 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) ] ,
ω 2 = [ N f 1 ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { N f 1 ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + i = 1 p N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + a 1 N f 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) ) + a 2 N f 1 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } ) } + i = 1 p N f 1 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + N f 1 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ] ,
ω 3 = [ ( ψ ( σ ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { ( ψ ( η ) ψ ( σ k ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 1 + β 1 + 1 ψ ( δ 2 k ) Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( δ 2 k σ k ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 1 + β 1 ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 1 + β 1 + 1 Γ ( γ 1 + β 1 + 2 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) ( σ k + 1 δ 2 k + 1 ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 Γ ( γ 1 + β 1 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 Γ ( γ 1 + β 1 + 1 ) + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 1 + β 1 1 ψ ( σ i ) Γ ( γ 1 + β 1 ) ) ] .
Then,
| | ¯ | | ω 1 | | ¯ | | + ω 2 | | ¯ | | + ω 3 ϵ 1 .
Similarly,
| | ¯ | | ω 4 | | ¯ | | + ω 5 | | ¯ | | + ω 6 ϵ 2 ,
where
ω 4 = [ M f 2 ( ψ ( σ ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ ) ψ ( σ k ) ) β 2 Γ ( β 2 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { M f 2 ( ψ ( η ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( η ) ψ ( σ k ) ) β 2 Γ ( β 2 + 1 ) + i = 1 p ( M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) + M f 2 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ψ ( σ i ) Γ ( β 2 ) + A 3 + A 4 ( ψ ( η ) ψ ( σ i ) ) ψ ( σ i ) ) + a 1 M f 2 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 2 + β 2 + 1 ψ ( δ 2 k ) Γ ( γ 2 + β 2 + 2 ) + α 2 ( ψ ( δ 2 k ) ψ ( σ k ) ) β 2 + 1 ψ ( δ 2 k ) Γ ( β 2 + 2 ) + i = 1 p ( M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( δ 2 k σ k ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) ( δ 2 k σ k ) + M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( β 2 ) + A 3 ( δ 2 k σ k ) + A 4 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) ) + a 2 M f 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 Γ ( γ 2 + β 2 + 2 ) + α 2 ( ( ψ ( σ k + 1 ) ψ ( σ k ) ) β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) β 2 + 1 ) Γ ( β 2 + 2 ) + i = 1 p ( M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 Γ ( γ 2 + β 2 ) { ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) } + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 Γ ( β 2 ) ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) + A 3 ( σ k + 1 δ 2 k + 1 ) + A 4 ψ ( σ i ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( M f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + α 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 Γ ( β 2 + 1 ) + M f 2 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + α 2 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) β 2 1 ψ ( σ i ) Γ ( β 2 ) + A 3 + A 4 ( ψ ( σ ) ψ ( σ i ) ) ψ ( σ i ) ) ] ,
ω 5 = [ N f 2 ( ψ ( σ ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { N f 2 ( ψ ( η ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + i = 1 p ( N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + N f 2 ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) ) + a 1 N f 2 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 2 + β 2 + 1 ψ ( δ 2 k ) Γ ( γ 2 + β 2 + 2 ) + i = 1 p N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( δ 2 k σ k ) + N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 1 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 2 + β 2 ) + a 2 N f 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 Γ ( γ 2 + β 2 + 2 ) + i = 1 p ( N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 Γ ( γ 2 + β 2 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p N f 2 ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + N f 2 ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) ] ,
ω 6 = [ ( ψ ( σ ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + ( ψ ( σ ) ψ ( σ k ) ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) 1 | Δ | { ( ψ ( η ) ψ ( σ k ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + ( ψ ( η ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) + a 1 ( ψ ( δ 2 k ) ψ ( σ k ) ) γ 2 + β 2 + 1 ψ ( δ 2 k ) Γ ( γ 2 + β 2 + 2 ) + i = 1 p ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( δ 2 k σ k ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ( ψ ( δ 2 k ) ψ ( σ i ) ) 2 ψ ( σ i ) ψ ( δ 2 k ) Γ ( γ 2 + β 2 ) + a 2 ( ψ ( σ k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 ( ψ ( δ 2 k + 1 ) ψ ( σ k ) ) γ 2 + β 2 + 1 Γ ( γ 2 + β 2 + 2 ) + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) ( σ k + 1 δ 2 k + 1 ) + ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 Γ ( γ 2 + β 2 ) ( ψ ( σ k + 1 ) ψ ( σ i ) ) 2 ψ ( σ k + 1 ) ( ψ ( δ 2 k + 1 ) ψ ( σ i ) ) 2 ψ ( δ 2 k + 1 ) ) } + i = 1 p ( ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 Γ ( γ 2 + β 2 + 1 ) + ( ψ ( σ ) ψ ( σ i ) ) ( ψ ( σ i ) ψ ( σ i 1 ) ) γ 2 + β 2 1 ψ ( σ i ) Γ ( γ 2 + β 2 ) ) ] .
Now, let max { ϵ 1 , ϵ 2 } = ϵ and max { ω 1 , ω 2 , ω 4 , ω 5 } = ω . Then,
| | ¯ | | + | | ¯ | | ω ( | | ¯ | | + | | ¯ | | ) + ( ω 3 + ω 6 ) ϵ .
| | ¯ | | + | | ¯ | | ω 3 + ω 6 1 ω ϵ .
Let
ϑ = ω 3 + ω 6 1 ω .
Hence, we have
| | ( , ) ( ¯ , ¯ ) | | X × Y ϑ ϵ .
Thus, system ( 1 ) is UH stable. □

6. Example

Example 1. 
c D 5 3 ; ( c D 1 3 ; + 1 130 ) ( σ ) = 220 ( 1 + ( σ ) ) , σ [ 0 , 1 ] , σ 2 3 , c D 7 5 ; ( c D 1 3 ; + 1 310 ) ( σ ) = cos ( σ ) 330 ( 1 + ) , σ [ 0 , 1 ] , σ 2 3 , I 1 ( 2 3 ) = ( σ ) 150 + ( | ( σ ) | ) , J 1 ( 2 3 ) = ( σ ) 160 + ( | ( σ ) | ) , I 1 * ( 2 3 ) = 1 170 + | ( σ ) | , J 1 * ( 2 3 ) = 1 180 + | ( σ ) | , ( 0 ) = 0 , ( 9 10 ) = 1 2 0 2 5 ( τ ) d τ + 9 10 3 5 7 10 ( τ ) d τ , ( 0 ) = 0 , ( 1 2 ) = 9 10 0 2 5 ( τ ) d τ + 9 10 3 5 7 10 ( τ ) d τ .
We see in the proposed problem that β 1 = β 2 = 1 3 , γ 1 = 5 3 , γ 2 = 7 5 , η = 1 2 and a 1 = a 2 = 9 10 .
| F 1 ( σ , ( σ ) , ( σ ) ) F 1 ( σ , ¯ ( σ ) , ¯ ( σ ) ) | 1 220 | ( σ ) ¯ ( σ ) | + 1 220 | ( σ ) ¯ ( σ ) | , σ [ 0 , e ] , | F 2 ( σ , ( σ ) , ( σ ) ) F 2 ( σ , ¯ ( σ ) , ¯ ( σ ) ) | π 330 | ( σ ) ¯ ( σ ) | + 1 330 | ( σ ) ¯ ( σ ) | , | I 1 ( 3 5 ) I 1 ¯ ( 3 5 ) | 1 150 | ( σ ) ¯ ( σ ) | , | J 1 ( 3 5 ) J 1 ¯ ( 3 5 ) | 1 160 | ( σ ) ¯ ( σ ) | , | I 1 * ( 3 5 ) I 1 * ¯ ( 3 5 ) | 1 170 | ( σ ) ¯ ( σ ) | , | J 1 * ( 3 5 ) J 1 * ¯ ( 3 5 ) | 1 180 | ( σ ) ¯ ( σ ) | .
From the above inequalities, we obtain that M F 1 = 1 220 , N F 1 = 1 220 , M F 2 = π 330 , N F 2 = π 330 , A 1 = 1 150 , A 2 = 1 160 , A 3 = 1 170 , A 4 = 1 180 . On calculating Ω 1 , Ω 2 , Ω 3 and Ω 4 , we have Ω 1 = 0.268317 < 1 , Ω 2 = 0.173521 < 1 , Ω 3 = 0.321975 < 1 and Ω 4 = 0.576319 < 1 . Then, max { Ω 1 , Ω 2 , Ω 3 , Ω 4 } < 1 , and the coupled system (1) has a unique solution.
Furthermore, on calculating ϑ = 47.29356436833 and ϵ = 0.01276 , we get ϑ ϵ = 0.60346588134 > 0 . Therefore, the coupled system (1) is Ulam–Hyers stable.
Example 2. 
c D 4 3 ; e ( c D 1 2 ; e + 1 110 ) ( σ ) = s i n ( + ) 360 ( l n ( σ ) + 1 ) , σ [ 0 , 1 ] , σ 3 5 , c D 5 4 ; e ( c D 1 2 ; e + 1 210 ) ( σ ) = a r c t a n ( σ ) 450 + | + | , σ [ 0 , 1 ] , σ 3 5 , I 1 ( 3 5 ) = 1 420 + | ( σ ) | , J 1 ( 3 5 ) = 1 550 + | ( σ ) | , I 1 * ( 3 5 ) = 1 880 + | ( σ ) | , J 1 * ( 3 5 ) = 1 910 + | ( σ ) | , ( 0 ) = 0 , ( 1 3 ) = 0 1 4 ( τ ) d τ + 1 2 2 3 ( τ ) d τ , ( 0 ) = 0 , ( 1 3 ) = 0 1 4 ( τ ) d τ + 1 2 2 3 ( τ ) d τ .
We see in the proposed problem that β 1 = β 2 = 1 2 , γ 1 = 4 3 , γ 2 = 5 4 , η = 1 3 and a 1 = a 2 = 1 .
| F 1 ( σ , ( σ ) , ( σ ) ) F 1 ( σ , ¯ ( σ ) , ¯ ( σ ) ) | 1 360 | ( σ ) ¯ ( σ ) | + 1 360 | ( σ ) ¯ ( σ ) | , σ [ 0 , e ] , | F 2 ( σ , ( σ ) , ( σ ) ) F 2 ( σ , ¯ ( σ ) , ¯ ( σ ) ) | π 450 | ( σ ) ¯ ( σ ) | + π 450 | ( σ ) ¯ ( σ ) | , | I 1 ( 3 5 ) I 1 ¯ ( 3 5 ) | 1 420 | ( σ ) ¯ ( σ ) | , | J 1 ( 3 5 ) J 1 ¯ ( 3 5 ) | 1 550 | ( σ ) ¯ ( σ ) | , | I 1 * ( 3 5 ) I 1 * ¯ ( 3 5 ) | 1 880 | ( σ ) ¯ ( σ ) | , | J 1 * ( 3 5 ) J 1 * ¯ ( 3 5 ) | 1 910 | ( σ ) ¯ ( σ ) | .
From the above inequalities, we obtain that M F 1 = 1 360 , N F 1 = 1 360 , M F 2 = π 450 , N F 2 = π 450 , A 1 = 1 420 , A 2 = 1 550 , A 3 = 1 880 , A 4 = 1 910 . On calculating Ω 1 , Ω 2 , Ω 3 and Ω 4 , we have Ω 1 = 0.177405 < 1 , Ω 2 = 0.04251 < 1 , Ω 3 = 0.169955 < 1 and Ω 4 = 0.09639 < 1 . Then, max { Ω 1 , Ω 2 , Ω 3 , Ω 4 } < 1 , and the coupled system (1) has a unique solution.
Furthermore, on calculating ϑ = 32.71784770711 and ϵ = 0.002385 , we get ϑ ϵ = 0.07803206678 > 0 . Therefore, the coupled system (1) is Ulam–Hyers stable.

7. Conclusions

The existence of a unique solution to a coupled system of Langevin fractional problems of ψ -Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses was examined. We have used Schaefer’s fixed point theorem for the existence of at least one solution to our proposed problem. We applied the Banach contraction principle to ensure that the solution of the proposed problem was unique. Additionally, we investigated the Ulam–Hyers stability of the suggested problem. The Ulam–Hyers stability guarantees that we can achieve an exact distinction for any approximation in a given region, allowing us to use the results in approximation theory and numerical analyses of related problems. Lastly, we presented illustrations to support the results.

Author Contributions

Conceptualization, H.N.A.K., A.Z., I.-L.P. and S.B.M.; Methodology, H.N.A.K., A.Z., I.-L.P. and S.B.M.; Formal analysis, I.-L.P. and S.B.M.; Investigation, H.N.A.K., A.Z. and I.-L.P.; Resources, I.-L.P. and S.B.M.; Writing—original draft, H.N.A.K., A.Z., I.-L.P. and S.B.M.; Supervision, I.-L.P. and A.Z. All authors have read and approved the final version of the manuscript.

Funding

Sana Ben Moussa extends her appreciation to the Deanship of Scientific Research at King Khalid University through the large group Research Project under grant number RGP2/47/44.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Debnath, L. A brief historical introduction to fractional calculus. Internat. J. Math. Ed. Sci. Tec. 2004, 35, 487–501. [Google Scholar] [CrossRef]
  2. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  3. Kilbas, A.A.; Trujillo, J.J. Differential equations of fractional order, methods, results and problem. Appl. Anal. 2013, 78, 153–192. [Google Scholar] [CrossRef]
  4. Rizwan, R.; Zada, A.; Wang, U. Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses. Adv. Differ. Equ. 2019, 85, 85. [Google Scholar] [CrossRef]
  5. Wang, G.; Ahmad, B.; Zhang, L. Impulsive anti–periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74, 792–804. [Google Scholar] [CrossRef]
  6. Wang, J.; Zada, A.; Li, W. Ulams–Type Stability of First–Order Impulsive Differential Equations with Variable Delay in Quasi–Banach Spaces. Int. J. Non. Sci. Num. Sim. 2018, 19, 553–560. [Google Scholar] [CrossRef]
  7. Zada, A.; Ali, W.; Farina, S. Ulam–Hyers stability of nonlinear differential equations with fractional integrable impulsis. Math. Meth. Appl. Sci. 2017, 40, 5502–5514. [Google Scholar] [CrossRef]
  8. Zada, A.; Ali, S.; Li, Y. Ulam–type stability for a class of implicit fractional differential equations with non–instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, 2017, 317. [Google Scholar] [CrossRef]
  9. Lim, S.C.; Li, M.; Teo, L.P. Langevin equation with two fractional orders. Phys. Lett. A 2008, 372, 6309–6320. [Google Scholar] [CrossRef]
  10. Mainardi, F.; Pironi, P. The fractional Langevin equation: Brownian motion revisited. Extracta Math. 1996, 11, 140–154. [Google Scholar]
  11. Wang, W.; Khalid, K.H.; Zada, A.; Ben Moussa, S.; Ye, J. q-Fractional Langevin Differential Equation with q-Fractional Integral Conditions. Mathematics 2023, 11, 2132. [Google Scholar] [CrossRef]
  12. Carvalho, A.; Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Cont. 2017, 5, 168–186. [Google Scholar] [CrossRef]
  13. Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Cont. Syst. Technol. 2012, 20, 763–769. [Google Scholar] [CrossRef]
  14. Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-touic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
  15. Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D. LMI-based stabilization of a class of fractional order chaotic systems. Nonlin. Dynam. 2013, 72, 301–309. [Google Scholar] [CrossRef]
  16. Lundqvist, M. Silicon Strip Detectors for Scanned Multi-Slit u-Ray Imaging; Kungl Tekniska Hogskolan: Stockholm, Sweden, 2003. [Google Scholar]
  17. Mellow, T.; Karkkainen, L. On the sound fields of infinitely long strips. J. Acoust. Soc. Am. 2011, 130, 153–167. [Google Scholar] [CrossRef] [PubMed]
  18. Yan, R.; Sun, S.; Lu, H.; Zhao, Y. Existence of Solutions for Fractional Differential Equations with Integral Boundary Condition. Adv. Differ. Equ. 2014, 2014, 25–38. [Google Scholar] [CrossRef]
  19. Ahmad, B.; Ntouyas, S.K. A coupled system of nonlocal fractional differential equations with coupled and uncoupled slit-strips type integral boundary conditions. J. Math. Sci. 2017, 226, 175–196. [Google Scholar] [CrossRef]
  20. Ahmad, B.; Kerthikeyan, P.; Buvaneswari, K. Fractional differential equations with coupled slit-strips type integral boundary conditions. Aims Math. 2019, 4, 1596–1609. [Google Scholar] [CrossRef]
  21. Lv, Z.; Ahmad, I.; Xu, J.; Zada, A. Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Dervatives with Generalized Slit-Strips Type Integral Boundary Conditions and Impulses. Discret. Dyn. Nat. Soc. 2020, 6, 618–669. [Google Scholar]
  22. Almaghamsi, L.; Alruwaily, Y.; Karthikeyan, K.; El-hady, E.-S. On Coupled System of Langevin Fractional Problems with Different Orders of μ-Caputo Fractional Derivatives. Discret. Dyn. Nat. Soc. 2020, 2020, 337. [Google Scholar] [CrossRef]
  23. Almeida, R. A caputo fractional derivative of a function with respect to another function. Common. Nonlinear Sci. Numer. Sumer. 2014, 44, 460–481. [Google Scholar] [CrossRef]
  24. Zeidler, E. Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  25. Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ali Khan, H.N.; Zada, A.; Popa, I.-L.; Ben Moussa, S. The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions. Fractal Fract. 2023, 7, 837. https://doi.org/10.3390/fractalfract7120837

AMA Style

Ali Khan HN, Zada A, Popa I-L, Ben Moussa S. The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions. Fractal and Fractional. 2023; 7(12):837. https://doi.org/10.3390/fractalfract7120837

Chicago/Turabian Style

Ali Khan, Haroon Niaz, Akbar Zada, Ioan-Lucian Popa, and Sana Ben Moussa. 2023. "The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions" Fractal and Fractional 7, no. 12: 837. https://doi.org/10.3390/fractalfract7120837

APA Style

Ali Khan, H. N., Zada, A., Popa, I. -L., & Ben Moussa, S. (2023). The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions. Fractal and Fractional, 7(12), 837. https://doi.org/10.3390/fractalfract7120837

Article Metrics

Back to TopTop