

Article Radial Basis Functions Approximation Method for Time-Fractional FitzHugh–Nagumo Equation

Mehboob Alam ^{1,*}, Sirajul Haq ¹, Ihteram Ali ², M. J. Ebadi ^{3,*} and Soheil Salahshour ^{4,5,6}

- ¹ Faculty of Engineering Sciences, GIK Institute, Topi 23640, Pakistan; siraj@giki.edu.pk
- ² Department of Mathematics and Statistics, Women University, Swabi 23430, Pakistan; ihteramali60@gmail.com
- Department of Mathematics, Chabahar Maritime University, Chabahar 9971756499, Iran
- ⁴ Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
- ⁵ Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34353, Turkey
- ⁶ Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon; soheil.salahshour@okan.edu.tr
- * Correspondence: mehboobalam.ma92@gmail.com (M.A.); ebadi@cmu.ac.ir (M.J.E.)

Abstract: In this paper, a numerical approach employing radial basis functions has been applied to solve time-fractional FitzHugh–Nagumo equation. Spatial approximation is achieved by combining radial basis functions with the collocation method, while temporal discretization is accomplished using a finite difference scheme. To evaluate the effectiveness of this method, we first conduct an eigenvalue stability analysis and then validate the results with numerical examples, varying the shape parameter c of the radial basis functions. Notably, this method offers the advantage of being meshfree, which reduces computational overhead and eliminates the need for complex mesh generation processes. To assess the method's performance, we subject it to examples. The simulated results demonstrate a high level of agreement with exact solutions and previous research. The accuracy and efficiency of this method are evaluated using discrete error norms, including L_2 , L_{∞} , and L_{rms} .

Keywords: fractional differential equation; meshless method; radial basis functions; FitzHugh–Nagumo equation; stability

1. Introduction

In recent years, the FitzHugh–Nagumo equation has garnered significant attention among physicists and mathematicians due to its critical role in mathematical physics. This equation finds applications in diverse fields, such as flame propagation, logistic population growth, neurophysiology, branching Brownian motion processes, autocatalytic chemical reactions, and nuclear reactor theory [1]. The FitzHugh–Nagumo equation is a nonlinear reaction–diffusion equation given by

$$u_t = u_{xx} + u(u - \beta)(1 - u), \quad t > 0, \ x \in \Omega.$$
 (1)

In the context of modeling nerve-impulse propagation [2,3], u represents the electrical potential transmission across the cell membrane. This equation elegantly combines diffusion and nonlinearity, with the behavior governed by the term $u(u - \beta)(1 - u)$.

Many researchers have extensively investigated FitzHugh–Nagumo Equation (1). Notably, Shih et al. [4] explored this equation, revealing its applications in the domains of population dynamics and circuit theory. Kawahara and Tanaka [5] obtained solutions for the FitzHugh–Nagumo equation through the Hirota method. Nucci and Clarkson [6] derived solutions employing Jacobi elliptic functions. Li and Guo [7] conducted an examination and discovered a novel series of exact solutions using the first integral technique. Furthermore, Abbasbandy [8] determined soliton solutions through the homotopy analysis scheme. The FitzHugh–Nagumo equation attracted the attention of Kakiuchi and

Citation: Alam, M.; Haq, S.; Ali, I.; Ebadi, M.J.; Salahshour, S. Radial Basis Functions Approximation Method for Time-Fractional FitzHugh–Nagumo Equation. *Fractal Fract.* 2023, *7*, 882. https://doi.org/ 10.3390/fractalfract7120882

Academic Editor: Rajarama Mohan Jena, Snehashish Chakraverty and Stanislaw Migorski

Received: 27 October 2023 Revised: 17 November 2023 Accepted: 6 December 2023 Published: 13 December 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Tchizawa [9], who obtained an explicit duck solution and delay. Schonbek [10] delved into FitzHugh–Nagumo equation in the context of boundary value problems. Yanagida [11] studied the equation's stability concerning traveling front solutions. Jackson [12] explored semidiscrete estimates for the FitzHugh–Nagumo equation. Additionally, Gao and Wang [13] discussed the existence of wavefronts and impulses in FitzHugh–Nagumo models. Employing the pseudo-spectral technique, Olmos and Shizgal [14] examined the FitzHugh–Nagumo equation. Dehghan et al. [15] investigated the FitzHugh–Nagumo equation using semianalytical techniques. The trajectory of arbitrary (real or complex) ordered derivatives exhibits nonlocal behavior when interpreted as fractional derivatives with memory indices [16,17]. This finding implies that when modeling real-world problems using fractional-order derivatives and integrals, there is a memory effect. In other

words, the future state of a system not solely is determined by its current state but also takes into account its past states [18,19]. Consequently, FitzHugh–Nagumo Equation (1), which deals with arbitrary-order derivatives, can be seen as an extension of the traditional FitzHugh–Nagumo Equation (1).

Numerous authors have highlighted the practicality and significance of fractionalorder derivatives and integrals in mathematical modeling within various scientific and engineering domains [20–23]. Given the ongoing research in this field and its importance in scientific applications, we now consider the fractional extension of Equation (1). The fractional version of the FitzHugh–Nagumo equation is derived from the well-known equation by replacing the first-order time derivative with an arbitrary-order derivative in the Caputo sense. This fractional model of FitzHugh–Nagumo Equation (1) can be expressed as follows:

$$u_t^{\alpha} = u_{xx} + u(u - \beta)(1 - u), \quad t > 0, \ x \in \Omega,$$
 (2)

with initial conditions (ICs) and boundary conditions (BCs)

$$\begin{cases} u(0,x) = u_0(x), & x \in \Omega, \\ u(t,a) = u_1(t), & \text{and} & u(t,b) = u_2(t), & x \in \partial\Omega, & t > 0, \end{cases}$$
(3)

where u is a function of both t and x, i.e., u = u(t, x); β is an arbitrary constant; Ω represents the domain; and $\partial\Omega$ denotes the boundary of the domain. The time domain is defined as $t \in [0, t_{max}]$, where t_{max} is a finite real number representing the final time. The functions $u_0(x)$, $u_1(t)$, and $u_2(t)$ are known continuous functions. From Equation (2), it is important to observe that

1. When $\beta = -1$, then Equation (2) converts into the well-known Newell–Whitehead equation

$$u_t^{\alpha} = u_{xx} + u(u+1)(1-u), \quad t > 0, \ x \in \Omega.$$
(4)

2. When $\beta = 1$, then Equation (2) converts into the nonlinear FitzHugh–Nagumo equation

$$u_t^{\alpha} = u_{xx} + u(u-1)(1-u), \quad t > 0, \ x \in \Omega.$$
 (5)

3. When $\beta = 0$, then Equation (2) converts into Fisher's equation

$$u_t^{\alpha} = u_{xx} + u^2(1-u), \quad t > 0, \ x \in \Omega.$$
 (6)

Recent scientific research has involved a comprehensive exploration of the FitzHugh– Nagumo equation, employing a variety of analytical, numerical, and semianalytical methods to obtain both exact and approximate solutions. For instance, Kumar et al. [24] conducted a numerical investigation of the FitzHugh–Nagumo equation, utilizing a combination of the q-homotopy analysis approach and the Laplace transform method. Patel and Patel [25] examined the FitzHugh–Nagumo equation by applying the fractional reduced differential transform method (FRDTM). Abdel-Aty et al. [26] studied the time-fractional FitzHugh–Nagumo equation, both computationally and numerically, employing the improved Riccati expansion method and the B-spline method with a focus on the Atangana– Baleanu derivative. Additionally, Prakash and Kaur [27] explored the fractional model of the FitzHugh–Nagumo equation, which is relevant to the transmission of nerve impulses. They developed a reliable and computationally effective numerical scheme that combines the homotopy perturbation method with the Laplace transform approach. Lastly, Deniz [28] investigated the modified fractional version of the FitzHugh–Nagumo equation using the optimal perturbation iteration method.

Over the past decade, mesh-free methods using radial basis functions (RBFs) have gained significant prominence. This surge in interest is attributed to the challenges associated with classical numerical methods, such as the finite difference method, finite element method, and finite volume method, especially when dealing with two- or three-dimensional problems that require mesh generation. In 1990, Kansa introduced a technique for solving PDEs through the collocation method employing RBFs [29]. This approach involves approximating the solution using RBFs, and the collocation method is used to compute the unknown coefficients. The RBFs commonly used in the literature for solving PDEs include Hardy's multiquadric (MQ), Duchon's thin plate splines (TPSs), Gaussians (GS), inverse multiquadric (IMQ), and inverse quadric (IQ). The existence, uniqueness, and convergence of the RBF-based technique have been discussed by Franke and Schaback [30], Madych and Nelson [31], and Micchelli [32]. Kansa presented the initial concept of using RBFs to solve PDEs, and Golberg et al. [33] later refined it. In the context of solving PDEs, these RBFs have a shape parameter that can be adjusted to produce the best accurate results.

One of the main challenges associated with the RBF collocation method, as reported in the literature, is the dense and ill-conditioned nature of the system matrix that arises during the collocation process. This ill conditioning typically arises from a large number of nodes or an inappropriate choice of the shape parameter. However, various remedies for this issue have been proposed, including the contour-Padé algorithm, RBF-QR algorithm, extended precision arithmetic, and Hilbert–Schmidt decomposition, among others [34–36].

The main objective of this study is to compute a numerical solution for FitzHugh– Nagumo Equations (2) and (3) using the RBF collocation method. The structure of the paper is as follows: The methodology and stability analysis for Equations (2) and (3) are described in Section 2. Section 3 presents a number of examples and related discussions in order to validate the suggested methodology. Finally, in Section 4, a brief conclusion summarizes the study's important findings and contributions.

2. Methodology

The suggested meshless technique for solving FitzHugh–Nagumo Equations (2) and (3) will be discussed in this part along with its methodology. We present the notation to streamline our conversation: $u^n = u(t_n, x)$, where $t_n = n\delta t|_{n=0}^M$. Here, $\delta t = t_{max}/M$ represents the time-step size, and h = 1/N is the space-step size, where N and M are the number of points in the intervals [a, b] and [0, t_{max}], respectively.

The time-fractional derivative in Equation (2) uses the Caputo fractional partial derivative of order $\alpha \in (0, 1)$, defined as [16]

$$\frac{\partial^{\alpha} \mathbf{u}}{\partial \mathbf{t}^{\alpha}} = \frac{1}{\Gamma(1-\alpha)} \int_0^{\mathbf{t}} \frac{\partial \mathbf{u}}{\partial \mathbf{s}} (\mathbf{t}-\mathbf{s})^{-\alpha} d\mathbf{s}.$$

2.1. Time-Fractional Derivative Approximation

In Equation (2), the temporal part is discretized using the method described in [37] as follows:

$$\begin{aligned} \frac{\partial^{\alpha} \mathbf{u}^{n+1}}{\partial t^{\alpha}} &= \frac{\left(\delta \mathbf{t}\right)^{-\alpha}}{\Gamma(2-\alpha)} \sum_{k=0}^{n} \left(\mathbf{u}^{n+1-k} - \mathbf{u}^{n-k} \right) \left((k+1)^{1-\alpha} - (k)^{1-\alpha} \right) + \mathcal{O}(\delta \mathbf{t}^{2-\alpha}) \\ &= \ell_{\alpha}^{*} \left(\mathbf{u}^{n+1} - \mathbf{u}^{n} \right) + \mathfrak{B}^{n} + \mathcal{O}(\delta \mathbf{t}^{2-\alpha}), \end{aligned}$$

where

$$\mathfrak{B}^n = \ell_{\alpha}^* \sum_{k=1}^n \ell_{\alpha}^{**}(k) \left(\mathbf{u}^{n+1-k} - \mathbf{u}^{n-k} \right)$$

and

$$\ell_{\alpha}^{*} = \frac{(\delta \mathbf{t})^{-\alpha}}{\Gamma(2-\alpha)}, \quad \ell_{\alpha}^{**}(k) = (k+1)^{1-\alpha} - (k)^{1-\alpha}$$

It is important to observe that $\mathfrak{B}^n = 0$ whenever n = 0. With this consideration, the discretization formula can be expressed as follows:

$$\frac{\partial^{\alpha} \mathbf{u}^{n+1}}{\partial t^{\alpha}} = \begin{cases} \ell_{\alpha}^{*} \left(\mathbf{u}^{n+1} - \mathbf{u}^{n} \right) + \mathfrak{B}^{n} + \mathcal{O}(\delta t^{2-\alpha}), & \alpha \in (0,1), \\ \frac{\mathbf{u}^{n+1} - \mathbf{u}^{n}}{\delta t} + \mathcal{O}(\delta t), & \alpha = 1. \end{cases}$$
(7)

2.2. The θ -Weighted Scheme

Utilizing Equation (7) in conjunction with the θ -weighted scheme and neglecting the error term, we can express Equation (2) in their time-discretized form as follows:

$$\ell_{\alpha}^{*}\mathbf{u}^{n+1} - \theta \left(\mathbf{u}_{xx}^{n+1} - \left(\mathbf{u}^{n+1}\right)^{3} + (1+\beta)\left(\mathbf{u}^{n+1}\right)^{2} - \beta \mathbf{u}^{n+1}\right) \\ = \ell_{\alpha}^{*}\mathbf{u}^{n} - (\theta - 1)\left(\mathbf{u}_{xx}^{n} - (\mathbf{u}^{n})^{3} + (1+\beta)(\mathbf{u}^{n})^{2} - \beta \mathbf{u}^{n}\right) - \mathfrak{B}^{n}.$$
(8)

The nonlinear terms in Equation (8) can be linearized using the following approach:

$$\begin{cases} \left(u^{n+1}\right)^3 = 3(u^n)^2 u^{n+1} - 2(u^n)^3, \\ \left(u^{n+1}\right)^2 = 2u^n u^{n+1} - (u^n)^2. \end{cases}$$
(9)

By substituting the values from Equation (9) into Equation (8), the following expressions can be obtained after simplification:

$$\nu_1^n u^{n+1} - \theta u_{xx}^{n+1} = \nu_2^n u^n + (1-\theta) u_{xx}^n - \mathfrak{B}^n,$$
(10)

where

$$\nu_1^n = \ell_{\alpha}^* + \theta \Big(\beta - 2(1+\beta)u^n + 3(u^n)^2\Big) \quad \text{and} \quad \nu_2^n = \ell_{\alpha}^* + \beta(\theta-1) + (3\theta-1)(u^n)^2 + (1+\beta-2\theta(1+\beta))u^n.$$

2.3. Radial Basis Function Approximation Scheme

Now, we move on to approximating the spatial component using RBFs and the collocation method. To do this, the collocation points are taken as $\{x_i\}_{i=1}^N$. Consequently, we can represent the solution at interior points by employing RBFs denoted as $\phi_{ij} = \phi(\|x_i - x_j\|)$ in the following manner:

$$\mathbf{u}^{n+1} = \sum_{j=1}^{N} \lambda_j^{n+1} \phi_{ij} = \Phi \mathsf{T}^{n+1}, \quad i = 2, \dots, N-1,$$
(11)

where $\exists^{n+1} = [\lambda_1^{n+1}, \dots, \lambda_N^{n+1}]^T$ represents a vector of unknown coefficients at the $(n+1)^{th}$ time level. $\Phi = [\phi_{ij}]_{1 \le i,j \le N}$ is the matrix of RBFs, and $\|\cdot\|$ denotes the Euclidean norm. The boundary conditions (3) are approximated as follows:

$$\sum_{j=1}^{N} \lambda_j^{n+1} \phi_{1j} = \mathbf{u}_1^{n+1} \quad \text{and} \quad \sum_{j=1}^{N} \lambda_j^{n+1} \phi_{Nj} = \mathbf{u}_2^{n+1}.$$
(12)

Furthermore, the spatial derivative at the interior points $x \in \Omega$ are given as follows:

$$\mathbf{u}_{\mathbf{x}\mathbf{x}}^{n+1} = \Phi_{\mathbf{x}\mathbf{x}} \mathsf{T}^{n+1}. \tag{13}$$

By substituting Equations (11)–(13) into Equation (10) and performing simplifications, we arrive at the following equation:

$$\mathbf{A}\mathbf{n}^{n+1} = \mathbf{B}\mathbf{n}^n + \mathbf{Z}^{n+1},\tag{14}$$

where

$$\mathbf{A} = \begin{cases} \nu_1^n [\Phi]_{ij} - \theta [\Phi_{xx}]_{ij}, & x_i \in \Omega, \\ [\Phi]_{ij}, & x_i \in \partial\Omega, \end{cases}$$
$$\mathbf{B} = \begin{cases} \nu_2^n [\Phi]_{ij} + (1-\theta) [\Phi_{xx}]_{ij}, & x_i \in \Omega, \\ 0, & x_i \in \partial\Omega, \end{cases}$$
$$\mathbf{Z} = \begin{cases} -\mathfrak{B}^n, & x_i \in \Omega, \\ \mathfrak{C}^{n+1}, & x_i \in \partial\Omega, \end{cases}$$

where $\mathfrak{C}^{n+1} = [\mathfrak{u}_1^{n+1}, 0, \cdots, 0, \mathfrak{u}_2^{n+1}]^T$. Now Equation (14) implies that

$$\mathbf{\bar{n}}^{n+1} = \mathbf{A}^{-1}\mathbf{B}\mathbf{\bar{n}}^n + \mathbf{A}^{-1}\mathbf{Z}^{n+1}.$$
 (15)

From Equations (11) and (15), it follows that

$$\mathbf{u}^{n+1} = \mathbf{\Phi}\mathbf{A}^{-1}\mathbf{B}\mathbf{\Phi}^{-1}\mathbf{u}^n + \mathbf{\Phi}\mathbf{A}^{-1}\mathbf{Z}^{n+1}.$$
 (16)

The numerical solution at any given time level *n* using scheme (16) can be obtained. We initialize the initial value u^0 by incorporating the initial condition $u(0, x) = u_0(x)$. In the subsequent section, stability analysis of scheme (16) will be discussed.

2.4. Stability

To examine stability, we employ an approach outlined in [38]. For the error vector \mathbb{E} defined as

$$\mathbb{E} = \mathbf{u}_{exact} - \mathbf{u}_{approx}$$

the relation in (16) can be expressed as

$$\mathbb{E}^{n+1} = \wp \mathbb{E}^n$$

where $\wp = \Phi \mathbf{A}^{-1} \mathbf{B} \Phi^{-1}$ represents the amplification matrix. According to the Lax–Richtmyer criterion of stability, the present method can be considered stable if

$$\|\wp\| \leq 1.$$

It is important to note that the inequality

$$\rho(\wp) \leq \|\wp\|$$

always holds, where $\rho(\wp)$ represents the spectral radius of the matrix \wp .

3. Computational Results and Discussion

In this section, the implementation of the method for solving FitzHugh–Nagumo Equations (2) and (3) has been presented. Computer simulations have been carried out via MATLAB R2020a on a PC with the following configuration: processor: Intel (R) Core (TM) i7-4790 CPU @ 3.60 GHz 3.60 GHz, RAM 8.00 GB, and system type: 64-bit operating system, x64-based processor. The accuracy and efficiency of the method are assessed using the following error norms:

$$\begin{split} \mathbf{L}_{2} &= \left[\mathbf{h} \sum_{i=1}^{N} \left(\mathbf{u}_{exact} - \mathbf{u}_{approx} \right)^{2} \right]^{1/2}, \quad \mathbf{L}_{\infty} = \max_{i} |\mathbf{u}_{exact} - \mathbf{u}_{approx}|, \\ \mathbf{L}_{rms} &= \left[\frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{u}_{exact} - \mathbf{u}_{approx} \right)^{2} \right]^{1/2}, \quad \text{Absolute error} = |\mathbf{u}_{exact} - \mathbf{u}_{approx}|. \end{split}$$

For the solution of FitzHugh–Nagumo Equations (2) and (3), the following RBFs have been used:

- $MQ: \phi_{ij} = \sqrt{r_{ij}^2 + c^2};$ •
- $IMQ: \phi_{ij} = \left(r_{ij}^2 + c^2\right)^{-1/2};$
- $IQ: \phi_{ij} = (r_{ij}^2 + c^2)^{-1};$ $GS: \phi_{ij} = \exp(-c^2 r_{ij}^2),$

where c > 0 represents the shape parameter and $r_{ij} = |\mathbf{x}_i - \mathbf{x}_j|_{1 \le i,j \le N}$.

Selection of Shape Parameter

Determining the optimal value for the shape parameter c can be a challenging task. The random selection of c can be a limitation since many researchers choose c using suboptimal criteria. Therefore, in this study, we employ the extended Rippa algorithm to select the optimal shape parameter. Rippa's algorithm, as described by Rippa [39], estimates the cost function based on the norm of the error vector, which can be either the L_2 or L_{∞} norm. The parameter c that minimizes this cost function is deemed satisfactory, as it results in an approximation quality comparable to that achieved with the optimal c. We also provide plots illustrating the best-suited values of c obtained using this algorithm.

Example 1. Let us consider FitzHugh–Nagumo Equations (2) and (3) with $\beta = 1$. The exact solution is given by [25]

$$u(t,x) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\sqrt{2}x - t}{4}\right).$$

The ICs and BCs are derived from the exact solution within the domain $x \in [0, 1]$. The approximate solution is obtained using various RBFs, such as MQ, IMQ, IQ, and GS, with parameters N = 10 and $\delta t = 0.1$ for different values of α (0.25, 0.5, 0.75, and 1). The present method *is examined, and the results are recorded in Tables 1 and 2 for various nodal points* (x_i, t_n) *. The* results are then compared with FRDTM. The comparison reveals that the present method produces good accuracy, specially for fractional order with the best results obtained using GS, MQ, IMQ, and *IQ. Additionally, error norms at various time levels using the mentioned RBFs are dispatched in* Tables 3 and 4.

Furthermore, stability and error norm plots are displayed in Figure 1 for MQ, IMQ, IQ, and GS RBFs against the shape parameter. These plots clearly demonstrate that the present method fully satisfies the Lax–Richtmyer stability criterion. Surface plots in Figure 2 illustrate that the computed solutions using these RBFs closely match the exact solution. Absolute errors at various time levels for $\alpha = 1$ are shown in Figure 3, indicating reasonable accuracy. A comparison between the exact and computed solutions at the final time level is presented in Figure 4, confirming the high accuracy of the present method. Finally, in Figures 5–8, absolute errors for different values of α 's at various time levels are shown using MQ, IMQ, IQ, and GS, respectively.

Table 1. Comparison of computed values of the present method solution with FRDTM using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.25, 0.5, \beta = 1, N = 10, \theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 1.

				$\alpha = 0.25$					$\alpha = 0.5$		
(x, t)	Exact	[25]	MQ	IMQ	IQ	GS	[25]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GS		
		[23]	c = 6.824741	c = 8.12967	c = 5.34901	c = 0.251637	[23]	c = 5.8659	c = 6.88885	c = 5.18412	c = 0.25937
(0.1, 0.2)	0.492678	0.427418	0.492029	0.492126	0.492364	0.492466	0.454935	0.492344	0.492386	0.492489	0.492564
(0.1, 0.4)	0.467723	0.411555	0.467129	0.467083	0.467582	0.467632	0.429688	0.467279	0.467401	0.467571	0.467645
(0.1, 0.6)	0.442927	0.401291	0.443115	0.442313	0.442917	0.442952	0.410894	0.442364	0.442535	0.442858	0.442910
(0.1, 0.8)	0.418414	0.393583	0.418856	0.418114	0.418463	0.418448	0.395550	0.418125	0.418259	0.418442	0.418426
(0.3, 0.2)	0.528004	0.461640	0.526474	0.526698	0.527298	0.527493	0.489905	0.527223	0.527325	0.527585	0.527735
(0.3, 0.4)	0.503033	0.445267	0.501595	0.501492	0.502762	0.502797	0.464133	0.501982	0.502252	0.502729	0.502842
(0.3, 0.6)	0.478047	0.434619	0.478461	0.476553	0.478071	0.478089	0.444777	0.476697	0.477079	0.477948	0.477992
(0.3, 0.8)	0.453171	0.426595	0.454236	0.452429	0.453300	0.453249	0.428860	0.452424	0.452737	0.453293	0.453186
(0.5, 0.2)	0.563051	0.496159	0.561223	0.561488	0.562257	0.562434	0.524966	0.562128	0.562253	0.562589	0.562736
(0.5, 0.4)	0.538313	0.479367	0.536561	0.536435	0.538071	0.538014	0.498899	0.537055	0.537363	0.538023	0.538083
(0.5, 0.6)	0.513385	0.468375	0.513874	0.511551	0.513484	0.513427	0.479131	0.511752	0.512181	0.513354	0.513312
(0.5, 0.8)	0.488390	0.460051	0.489708	0.487477	0.488573	0.488485	0.462744	0.487455	0.487818	0.488617	0.488400
(0.7, 0.2)	0.597480	0.530655	0.595947	0.596167	0.596862	0.596963	0.559780	0.596717	0.596823	0.597129	0.597225
(0.7, 0.4)	0.573214	0.513551	0.571727	0.571609	0.573089	0.572956	0.533657	0.572160	0.572409	0.573040	0.573026
(0.7, 0.6)	0.548590	0.502269	0.549021	0.547016	0.548741	0.548627	0.513645	0.547210	0.547543	0.548648	0.548530
(0.7, 0.8)	0.523726	0.493674	0.524882	0.522951	0.523912	0.523812	0.496910	0.522935	0.523224	0.523996	0.523734
(0.9, 0.2)	0.630974	0.564813	0.630322	0.630415	0.630735	0.630756	0.594013	0.630655	0.630700	0.630843	0.630870
(0.9, 0.4)	0.607400	0.547522	0.606766	0.606706	0.607385	0.607291	0.568079	0.606954	0.607057	0.607361	0.607325
(0.9, 0.6)	0.583315	0.536019	0.583518	0.582633	0.583413	0.583335	0.548003	0.582725	0.582855	0.583381	0.583293
(0.9, 0.8)	0.558825	0.527198	0.559346	0.558498	0.558922	0.558867	0.531062	0.558499	0.558612	0.558979	0.558831

Table 2. Comparison of computed values of the present method solution with FRDTM using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.75$, 1, $\beta = 1$, N = 10, $\theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 1.

				$\alpha = 0.75$					$\alpha = 1$		
(x, t)	Exact	[25]	MQ	IMQ	IQ	GS	[25]	MQ	IMQ	IQ 3 $c = 7.88039$ $c =$ 0.492674 0 0.467707 0 0.442905 0 0.418399 0 0.527994 0 0.502999 0 0.477996 0 0.453136 0 0.538274 0 0.513326 0 0.488348 0 0.573181 0 0.548541 0 0.523691 0 0.607386 0 0.583294 0 0.558811 0	GS
		[23]	c = 5.80145	c = 4.48635	c = 5.38471	c = 0.26237	[23]	c = 6.78326	c = 7.23608	c = 7.88039	c = 0.16625
(0.1, 0.2)	0.492678	0.477029	0.492540	0.492594	0.492594	0.492630	0.492678	0.492674	0.492676	0.492674	0.492666
(0.1, 0.4)	0.467723	0.449555	0.467487	0.467619	0.467623	0.467672	0.467722	0.467706	0.467716	0.467707	0.467642
(0.1, 0.6)	0.442927	0.425857	0.442690	0.442835	0.442856	0.442912	0.442927	0.442909	0.442918	0.442905	0.442841
(0.1, 0.8)	0.418414	0.404564	0.418328	0.418368	0.418407	0.418433	0.418416	0.418407	0.418406	0.418399	0.418391
(0.3, 0.2)	0.528004	0.512307	0.527682	0.527809	0.527819	0.527892	0.528003	0.527996	0.528000	0.527994	0.527975
(0.3, 0.4)	0.503033	0.484582	0.502475	0.502807	0.502828	0.502912	0.503030	0.502996	0.503019	0.502999	0.502881
(0.3, 0.6)	0.478047	0.460446	0.477457	0.477869	0.477926	0.478004	0.478035	0.478003	0.478026	0.477996	0.477887
(0.3, 0.8)	0.453171	0.438573	0.452937	0.453093	0.453193	0.453211	0.453136	0.453156	0.453153	0.453136	0.453114
(0.5, 0.2)	0.563051	0.547464	0.562671	0.562826	0.562848	0.562922	0.563051	0.563043	0.563047	0.563041	0.563015
(0.5, 0.4)	0.538313	0.519760	0.537643	0.538070	0.53811	0.538172	0.538308	0.53827	0.538298	0.538274	0.538165
(0.5, 0.6)	0.513385	0.495415	0.512658	0.513228	0.513305	0.513335	0.513362	0.513331	0.513361	0.513326	0.513249
(0.5, 0.8)	0.488390	0.473159	0.488089	0.488345	0.488474	0.488438	0.488322	0.488375	0.488370	0.488348	0.488328
(0.7, 0.2)	0.597480	0.582153	0.597165	0.597300	0.597326	0.597377	0.597479	0.597474	0.597477	0.597471	0.597446
(0.7, 0.4)	0.573214	0.554743	0.572650	0.573038	0.573084	0.573102	0.573207	0.573178	0.573202	0.573181	0.573113
(0.7, 0.6)	0.548590	0.530429	0.547972	0.548512	0.548585	0.548554	0.548558	0.548544	0.548571	0.548541	0.548522
(0.7, 0.8)	0.523726	0.508002	0.523469	0.523735	0.523852	0.523770	0.523629	0.523715	0.523709	0.523691	0.523680
(0.9, 0.2)	0.630974	0.616050	0.630841	0.630902	0.630917	0.630933	0.630973	0.630971	0.630972	0.630970	0.630957
(0.9, 0.4)	0.607400	0.589194	0.607160	0.607341	0.607365	0.607357	0.607392	0.607384	0.607395	0.607386	0.607368
(0.9, 0.6)	0.583315	0.565149	0.583053	0.583308	0.583343	0.583305	0.583277	0.583296	0.583307	0.583294	0.583305
(0.9, 0.8)	0.558825	0.542773	0.558721	0.558852	0.558906	0.558848	0.558707	0.558822	0.558818	0.558811	0.558809

RBFe	+		$\alpha = 0.25$			$\alpha = 0.5$	
KD15	ı	L2	L∞	L _{rms}	L2	L∞	L _{rms}
			c = 6.824741			c = 5.8659	
	0.2	1.331×10^{-3}	$1.828 imes 10^{-3}$	1.270×10^{-3}	$6.715 imes10^{-4}$	$9.231 imes 10^{-4}$	$6.402 imes 10^{-4}$
МО	0.4	$1.272 imes10^{-3}$	$1.752 imes 10^{-3}$	$1.213 imes10^{-3}$	$9.153 imes10^{-4}$	$1.259 imes 10^{-3}$	$8.727 imes10^{-4}$
~	0.6	$3.663 imes10^{-4}$	$4.893 imes10^{-4}$	$3.493 imes10^{-4}$	$1.187 imes10^{-3}$	$1.633 imes 10^{-3}$	$1.132 imes 10^{-3}$
	0.8	$9.663 imes10^{-4}$	$1.318 imes 10^{-3}$	$9.214 imes10^{-4}$	$6.701 imes 10^{-4}$	9.350×10^{-4}	$6.389 imes 10^{-4}$
	1	4.238×10^{-6}	7.006×10^{-6}	4.041×10^{-6}	7.414×10^{-6}	1.297×10^{-5}	7.069×10^{-6}
			c = 8.12967			c = 6.88885	
	0.2	$1.138 imes 10^{-3}$	$1.563 imes 10^{-3}$	$1.085 imes 10^{-3}$	$5.811 imes10^{-4}$	$7.983 imes10^{-4}$	$5.541 imes 10^{-4}$
IMQ	0.4	$1.368 imes10^{-3}$	$1.879 imes10^{-3}$	$1.304 imes10^{-3}$	$6.897 imes10^{-4}$	$9.504 imes10^{-4}$	$6.576 imes10^{-4}$
	0.6	$1.334 imes10^{-3}$	$1.835 imes 10^{-3}$	$1.272 imes 10^{-3}$	$8.769 imes10^{-4}$	$1.204 imes 10^{-3}$	$8.360 imes 10^{-4}$
	0.8	$6.601 imes10^{-4}$	$9.134 imes10^{-4}$	$6.294 imes10^{-4}$	$4.089 imes10^{-4}$	$5.721 imes 10^{-4}$	$3.899 imes 10^{-4}$
	1	$1.199 imes10^{-6}$	1.851×10^{-6}	$1.143 imes 10^{-6}$	$5.718 imes 10^{-6}$	9.971×10^{-6}	5.452×10^{-6}
			c = 5.34901			c = 5.18412	
	0.2	$5.766 imes10^{-4}$	$7.940 imes10^{-4}$	$5.498 imes 10^{-4}$	$3.359 imes10^{-4}$	$4.623 imes 10^{-4}$	$3.202 imes 10^{-4}$
IQ	0.4	$1.825 imes10^{-4}$	$2.724 imes10^{-4}$	$1.740 imes10^{-4}$	$2.147 imes10^{-4}$	$3.145 imes 10^{-4}$	$2.047 imes10^{-4}$
	0.6	$9.193 imes10^{-5}$	$1.510 imes10^{-4}$	$8.765 imes 10^{-5}$	$6.746 imes 10^{-5}$	$1.006 imes 10^{-4}$	$6.432 imes 10^{-5}$
	0.8	$1.387 imes10^{-4}$	$1.929 imes10^{-4}$	$1.322 imes 10^{-4}$	$1.804 imes10^{-4}$	$2.700 imes 10^{-4}$	$1.720 imes 10^{-4}$
	1	$5.465 imes 10^{-6}$	$8.804 imes 10^{-6}$	$5.211 imes 10^{-6}$	$3.988 imes 10^{-6}$	6.707×10^{-6}	3.803×10^{-6}
			c = 0.251637			c = 0.25937	
	0.2	$4.473 imes10^{-4}$	$6.166 imes 10^{-4}$	4.265×10^{-4}	$2.279 imes10^{-4}$	$3.146 imes 10^{-4}$	$2.173 imes 10^{-4}$
GS	0.4	$2.152 imes10^{-4}$	$2.992 imes 10^{-4}$	$2.052 imes10^{-4}$	$1.651 imes10^{-4}$	$2.302 imes 10^{-4}$	$1.574 imes10^{-4}$
	0.6	$3.447 imes10^{-5}$	$4.323 imes 10^{-5}$	3.286×10^{-5}	$5.054 imes10^{-5}$	$7.298 imes 10^{-5}$	$4.819 imes 10^{-5}$
	0.8	$7.107 imes10^{-5}$	$9.455 imes10^{-5}$	$6.776 imes 10^{-5}$	$1.058 imes10^{-5}$	$1.617 imes10^{-5}$	$1.009 imes 10^{-5}$
	1	4.706×10^{-6}	7.906×10^{-6}	4.487×10^{-6}	$4.625 imes 10^{-6}$	8.048×10^{-6}	4.410×10^{-6}

Table 3. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.25, 0.5, \beta = 1$, N = 10, $\theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 1.

Table 4. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.75, 1, \beta = 1$, N = 10, $\theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 1.

RBFe	ŧ		$\alpha = 0.75$			$\alpha = 1$			
KDI 5	ı	L2	L∞	L _{rms}	L ₂	L∞	L _{rms}		
			c = 5.80145			c = 6.78326			
	0.2	$2.769 imes10^{-4}$	$3.802 imes 10^{-4}$	$2.640 imes10^{-4}$	5.932×10^{-6}	$8.084 imes 10^{-6}$	5.656×10^{-6}		
МО	0.4	$4.878 imes10^{-4}$	$6.702 imes10^{-4}$	$4.651 imes10^{-4}$	$3.153 imes10^{-5}$	$4.263 imes10^{-5}$	$3.006 imes 10^{-5}$		
~	0.6	$5.258 imes10^{-4}$	$7.275 imes10^{-4}$	$5.013 imes10^{-4}$	$3.904 imes10^{-5}$	$5.393 imes10^{-5}$	3.722×10^{-5}		
	0.8	$2.143 imes 10^{-4}$	$3.014 imes10^{-4}$	$2.044 imes10^{-4}$	$1.143 imes10^{-5}$	$1.609 imes 10^{-5}$	$1.090 imes 10^{-5}$		
	1	$4.401 imes 10^{-6}$	$6.944 imes 10^{-6}$	$4.196 imes10^{-6}$	$7.107 imes10^{-7}$	$1.410 imes 10^{-6}$	$6.776 imes10^{-7}$		
			c = 4.48635			c = 7.23608			
	0.2	$1.630 imes 10^{-4}$	$2.249 imes 10^{-4}$	$1.554 imes 10^{-4}$	$2.886 imes 10^{-6}$	$3.898 imes 10^{-6}$	2.751×10^{-6}		
IMO	0.4	$1.759 imes10^{-4}$	$2.466 imes10^{-4}$	$1.678 imes10^{-4}$	$1.103 imes10^{-5}$	$1.490 imes10^{-5}$	$1.052 imes 10^{-5}$		
~	0.6	$1.191 imes 10^{-4}$	$1.785 imes10^{-4}$	$1.135 imes10^{-4}$	$1.739 imes10^{-5}$	$2.373 imes10^{-5}$	$1.658 imes10^{-5}$		
	0.8	$4.659 imes10^{-5}$	$7.766 imes10^{-5}$	$4.442 imes10^{-5}$	$1.510 imes10^{-5}$	$2.085 imes 10^{-5}$	$1.440 imes10^{-5}$		
	1	4.166×10^{-6}	$6.616 imes 10^{-6}$	3.972×10^{-6}	4.264×10^{-7}	$6.996 imes 10^{-7}$	$4.065 imes 10^{-7}$		

		Table 4. Cont.							
RBFs	t		$\alpha = 0.75$		$\alpha = 1$				
KDI 5	ť	L2	L∞	L _{rms}	L ₂	L∞	L _{rms}		
			c = 5.38471			c = 7.88039			
	0.2	$1.476 imes10^{-4}$	$2.032 imes 10^{-4}$	$1.407 imes 10^{-4}$	$7.689 imes10^{-6}$	$1.021 imes 10^{-5}$	$7.331 imes 10^{-6}$		
IQ	0.4	$1.489 imes10^{-4}$	$2.155 imes10^{-4}$	$1.420 imes10^{-4}$	$2.877 imes10^{-5}$	$3.894 imes10^{-5}$	$2.743 imes10^{-5}$		
~	0.6	$7.313 imes10^{-5}$	$1.212 imes 10^{-4}$	$6.972 imes10^{-5}$	$4.352 imes 10^{-5}$	$5.947 imes10^{-5}$	$4.149 imes10^{-5}$		
	0.8	$7.707 imes 10^{-5}$	$1.263 imes10^{-4}$	$7.349 imes10^{-5}$	$3.045 imes10^{-5}$	$4.238 imes10^{-5}$	$2.903 imes10^{-5}$		
	1	1.266×10^{-6}	$2.428 imes 10^{-6}$	$1.207 imes 10^{-6}$	$5.121 imes 10^{-7}$	$8.217 imes10^{-7}$	$4.883 imes10^{-7}$		
			c = 0.26237			c = 0.16625			
	0.2	$9.327 imes 10^{-5}$	$1.287 imes 10^{-4}$	$8.893 imes 10^{-5}$	2.726×10^{-5}	$3.641 imes 10^{-5}$	2.599×10^{-5}		
GS	0.4	$1.016 imes10^{-4}$	$1.413 imes10^{-4}$	$9.682 imes10^{-5}$	$1.115 imes 10^{-4}$	$1.571 imes10^{-4}$	$1.063 imes10^{-4}$		
	0.6	$3.468 imes10^{-5}$	$5.034 imes10^{-5}$	$3.306 imes10^{-5}$	$1.060 imes10^{-4}$	$1.599 imes10^{-4}$	$1.011 imes10^{-4}$		
	0.8	$3.649 imes10^{-5}$	$4.743 imes 10^{-5}$	$3.479 imes10^{-5}$	$4.430 imes10^{-5}$	$6.206 imes10^{-5}$	$4.224 imes10^{-5}$		
	1	$2.129 imes10^{-6}$	$2.664 imes 10^{-6}$	$2.030 imes 10^{-6}$	$5.164 imes10^{-6}$	$6.820 imes 10^{-6}$	$4.924 imes 10^{-6}$		

(c) Error norms and spectral radius against IQ

(d) Error norms and spectral radius using GS

Figure 1. Error norms and spectral radius correspond to Example 1 when N = M = 10, $\theta = 0.5$ using MQ, IMQ, IQ, and GS RBFs.

(c) Computed solution using IMQ

(d) Computed solution against IQ

Figure 2. Exact vs. computed solution corresponds to Example 1 when N = M = 10, $\alpha = 1$ using MQ, IMQ, IQ, and GS RBFs.

(c) Exact vs. numerical against IQ

Figure 5. Absolute errors for Example 1 with different values of α 's using MQ RBF.

(c) Absolute error

Figure 6. Absolute errors for Example 1 with different values of α 's using IMQ RBF.

Figure 7. Absolute errors for Example 1 with different values of α 's using IQ RBF.

absolute error

(c) Absolute error

Figure 8. Absolute errors for Example 1 with different values of α 's using GS RBF.

Example 2. Let us consider FitzHugh–Nagumo Equations (2) and (3) with $\beta = -1$. The exact solution is given by [25]

$$u(t,x) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\sqrt{2}x + 3t}{4}\right).$$

The ICs and BCs are derived from the exact solution. The approximate solution is computed using various RBFs such as MQ, IMQ, IQ, and GS with parameters N = 10, $\delta t = 0.1$, $\theta = 0.5$, and $\alpha = 0.25, 0.5, 0.75, 1$. The present method is evaluated, and the results are recorded in Tables 5 and 6 at various node points. These results are then compared with FRDTM. It can be seen that the computed solutions are more accurate than the cited method. All the RBFs exhibit good accuracy even for a small value of α .

Furthermore, for $x \in [0, 1]$ *, error norms at various time levels are recorded in Tables 7 and 8* using MQ, IMQ, IQ, and GS RBFs with parameters N = 10, $\delta t = 0.1$, and $\theta = 0.5$ and for different values of α (0.25, 0.5, 0.75, and 1). Stability and error norm plots are displayed for MQ, IMQ, IQ, and GS RBFs against the shape parameter in Figure 9, which clearly show that the present method fully satisfies the Lax-Richtmyer stability criterion. Surface plots are presented in Figure 10, illustrating that the computed solutions using these RBFs closely match the exact solution. Absolute errors for $\alpha = 1$ at various time levels are shown in Figure 11, indicating reasonable accuracy. Additionally, in Figure 12, a comparison between the exact and computed solutions at the final time is displayed, demonstrating the good accuracy of the present method. Finally, Figures 13–16 present the absolute errors for different RBFs when considering fractional order, highlighting their performance.

Table 5. Comparison of computed values of the present method solution with FRDTM using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.25, 0.5, \beta = -1, N = 10, \theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 2.

				$\alpha = 0.25$					$\alpha = 0.5$		
(x, t)	Exact	[05]	MQ	IMQ	IQ	GS		MQ	IMQ	IQ G $c = 5.55183$ $c = 0.$ 0.592074 0.59 0.662272 0.66 0.725984 0.72 0.781398 0.780 0.626279 0.62 0.693797 0.692 0.753975 0.755 0.805201 0.800 0.658895 0.655 0.723087 0.72 0.779384 0.77 0.826587 0.82 0.689747 0.68 0.750211 0.74 0.802430 0.80 0.845751 0.84 0.718709 0.71 0.775256 0.77 0.823318 0.82	GS
		[25]	c = 4.4666	c = 6.03186	c = 6.4267	c = 0.35958	[25]	c = 3.92393	c = 5.70391	c = 5.55183	c = 0.19219
(0.1, 0.2)	0.591631	0.712693	0.593101	0.592493	0.592342	0.590743	0.685107	0.592535	0.592192	0.592074	0.591955
(0.1, 0.4)	0.661662	0.712224	0.663565	0.662685	0.662345	0.659307	0.727258	0.662760	0.662288	0.662272	0.661768
(0.1, 0.6)	0.725261	0.701487	0.727501	0.726615	0.726035	0.723119	0.741707	0.726324	0.725878	0.725984	0.725129
(0.1, 0.8)	0.780864	0.686791	0.782618	0.782556	0.781355	0.780438	0.739056	0.781578	0.781381	0.781398	0.780881
(0.3, 0.2)	0.625306	0.733926	0.628485	0.627149	0.626822	0.623410	0.712225	0.627311	0.626542	0.626279	0.626011
(0.3, 0.4)	0.692564	0.730566	0.696581	0.694651	0.693921	0.687425	0.748766	0.694919	0.693883	0.693797	0.692771
(0.3, 0.6)	0.752526	0.718291	0.757243	0.755312	0.754041	0.747581	0.758657	0.754761	0.753778	0.753975	0.752209
(0.3, 0.8)	0.804102	0.702703	0.807793	0.807757	0.805025	0.802687	0.752244	0.805574	0.805128	0.805201	0.804145
(0.5, 0.2)	0.657811	0.756506	0.661302	0.659809	0.659448	0.655772	0.738240	0.660064	0.659191	0.658895	0.658579
(0.5, 0.4)	0.721829	0.752516	0.726144	0.723992	0.723195	0.716165	0.770276	0.724394	0.723242	0.723087	0.722032
(0.5, 0.6)	0.777914	0.740736	0.782982	0.780841	0.779420	0.772144	0.777298	0.780297	0.779205	0.779384	0.777545
(0.5, 0.8)	0.825426	0.726144	0.829396	0.829500	0.826306	0.823317	0.769236	0.826965	0.826464	0.826587	0.825521
(0.7, 0.2)	0.688899	0.780077	0.691594	0.690419	0.690140	0.687381	0.763050	0.690677	0.689980	0.689747	0.689481
(0.7, 0.4)	0.749317	0.777418	0.752584	0.750893	0.750280	0.744958	0.791672	0.751279	0.750382	0.750211	0.749455
(0.7, 0.6)	0.801385	0.767864	0.805234	0.803562	0.802439	0.796670	0.797388	0.803170	0.802322	0.802430	0.801100
(0.7, 0.8)	0.844877	0.755857	0.847904	0.848125	0.845470	0.842806	0.789575	0.846004	0.845618	0.845751	0.845024
(0.9, 0.2)	0.718371	0.804119	0.719430	0.718959	0.718850	0.717810	0.786549	0.719084	0.718802	0.718709	0.718593
(0.9, 0.4)	0.774936	0.804312	0.776199	0.775521	0.775281	0.773242	0.812740	0.775698	0.775344	0.775256	0.774984
(0.9, 0.6)	0.822940	0.798295	0.824438	0.823772	0.823318	0.820985	0.818467	0.823620	0.823287	0.823318	0.822838
(0.9, 0.8)	0.862522	0.790062	0.863707	0.863865	0.862729	0.861527	0.812450	0.862941	0.862794	0.862864	0.862627

Table 6. Comparison of computed values of the present method solution with FRDTM using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.75, 1, \beta = -1, N = 10, \theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 2.

				$\alpha = 0.75$					$\alpha = 1$		
(x, t)	Exact	[25]	MQ	IMQ	IQ	GS	[25]	MQ	IMQ	$\kappa = 1$ 4Q IQ i.51787 $c = 6.45128$ $c =$ $\rho = 0.51787$ 0.67128 0.5512 0.62572 $\rho = 0.7725258$ 0.725258 0.725258 0.725258 0.725258 0.725258 0.725258 0.725258 0.725258 0.725258 0.62572 0.6657821 0.6657821 0.6657823 0.657821 0.62572 0.62572 0.777936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.72779342 0.72779342 0.72779342 0.7277933 0.774950 0.7277933 0.774950 0.7277935 0.774950 0.7222962 0.8229597 0.7277936 0.7277936 0.7277936 0.7277936 0.7277936 0.72779366 0.72779366 0.72779366 <th>GS</th>	GS
		[25]	c = 4.80554	c = 5.17758	c = 5.90952	c = 0.20069	[25]	c = 6.47961	c = 5.51787	c = 6.45128	c = 0.19927
(0.1, 0.2)	0.591631	0.634779	0.591992	0.591864	0.591837	0.591767	0.591631	0.591628	0.591633	0.591632	0.591620
(0.1, 0.4)	0.661662	0.702543	0.662181	0.661959	0.661901	0.661733	0.661672	0.661649	0.661667	0.661662	0.661628
(0.1, 0.6)	0.725261	0.747913	0.725872	0.725535	0.725459	0.725237	0.725403	0.725246	0.725272	0.725258	0.725197
(0.1, 0.8)	0.780864	0.774078	0.781331	0.781026	0.781074	0.780806	0.781773	0.780862	0.780876	0.780859	0.780768
(0.3, 0.2)	0.625306	0.666335	0.626111	0.625833	0.625768	0.625606	0.625306	0.625302	0.625314	0.625312	0.625284
(0.3, 0.4)	0.692564	0.729310	0.693682	0.693228	0.693080	0.692711	0.692582	0.692538	0.692581	0.692572	0.692491
(0.3, 0.6)	0.752526	0.769312	0.753809	0.753125	0.752937	0.752464	0.752748	0.752494	0.752557	0.752531	0.752396
(0.3, 0.8)	0.804102	0.789838	0.805115	0.804456	0.804526	0.803957	0.805411	0.804095	0.804133	0.804104	0.803895
(0.5, 0.2)	0.657811	0.696497	0.658719	0.658414	0.658337	0.658141	0.657811	0.657808	0.657823	0.657821	0.657786
(0.5, 0.4)	0.721829	0.754683	0.723053	0.722590	0.722397	0.721980	0.721853	0.721803	0.721858	0.721849	0.721749
(0.5, 0.6)	0.777914	0.789950	0.779284	0.778586	0.778350	0.777837	0.778188	0.777881	0.777959	0.777936	0.777778
(0.5, 0.8)	0.825426	0.806094	0.826535	0.825827	0.825872	0.825257	0.826971	0.825416	0.825467	0.825446	0.825201
(0.7, 0.2)	0.688899	0.725094	0.689618	0.689385	0.689319	0.689149	0.688899	0.688896	0.688911	0.688910	0.688877
(0.7, 0.4)	0.749317	0.778610	0.750257	0.749934	0.749755	0.749423	0.749343	0.749298	0.749349	0.749342	0.749253
(0.7, 0.6)	0.801385	0.809841	0.802413	0.801920	0.801715	0.801324	0.801677	0.801361	0.801430	0.801416	0.801284
(0.7, 0.8)	0.844877	0.822859	0.845727	0.845204	0.845215	0.844750	0.846479	0.844868	0.844914	0.844909	0.844705
(0.9, 0.2)	0.718371	0.751995	0.718660	0.718571	0.718542	0.718465	0.718372	0.718370	0.718378	0.718377	0.718361
(0.9, 0.4)	0.774936	0.801046	0.775302	0.775193	0.775108	0.774973	0.774962	0.774928	0.774953	0.774950	0.774909
(0.9, 0.6)	0.822940	0.828936	0.823333	0.823160	0.823070	0.822918	0.823220	0.822932	0.822962	0.822959	0.822902
(0.9, 0.8)	0.862522	0.839976	0.862853	0.862662	0.862657	0.862479	0.864017	0.862518	0.862539	0.862542	0.862455

10

0

200

150

10⁹

0* C

100

50

error norm

error norm 100 50

(c) Error norms and spectral radius against IQ

 (\mathbf{d}) Error norms and spectral radius using GS

4 5 6 GS shape parameter c

9 10

8

Figure 9. Error norms and spectral radius correspond to Example 2 when N = M = 10, $\theta = 0.5$ using MQ, IMQ, IQ, and GS RBFs.

Table 7. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for α =	$= 0.25, 0.5, \beta = -1,$
N = 10, θ = 0.5, and δ t = 0.1 correspond to Example 2.	

PREc	+		$\alpha = 0.25$			$\alpha = 0.5$	
KD13	L	L ₂	L_{∞}	L _{rms}	L ₂	L_{∞}	L _{rms}
			c = 4.4666			c = 3.92393	
	0.2	$2.56 imes 10^{-3}$	$3.49 imes 10^{-3}$	$2.44 imes 10^{-3}$	$1.65 imes 10^{-3}$	$2.25 imes 10^{-3}$	$1.57 imes 10^{-3}$
МО	0.4	$3.18 imes10^{-3}$	$4.36 imes10^{-3}$	$3.03 imes10^{-3}$	$1.88 imes10^{-3}$	$2.58 imes10^{-3}$	$1.80 imes 10^{-3}$
~	0.6	$3.74 imes10^{-3}$	$5.12 imes 10^{-3}$	$3.56 imes10^{-3}$	$1.76 imes10^{-3}$	$2.42 imes 10^{-3}$	$1.67 imes10^{-3}$
	0.8	$2.93 imes10^{-3}$	$4.01 imes10^{-3}$	$2.79 imes10^{-3}$	$1.14 imes10^{-3}$	$1.58 imes10^{-3}$	$1.09 imes10^{-3}$
	1	$3.66 imes 10^{-5}$	$5.14 imes10^{-5}$	$3.49 imes 10^{-5}$	$3.49 imes 10^{-6}$	$5.48 imes 10^{-6}$	$3.32 imes 10^{-6}$
			c = 6.03186			c = 5.70391	
-	0.2	$1.47 imes 10^{-3}$	2.01×10^{-3}	$1.40 imes 10^{-3}$	$1.01 imes 10^{-3}$	$1.38 imes 10^{-3}$	$9.63 imes10^{-4}$
IMO	0.4	$1.61 imes 10^{-3}$	$2.23 imes10^{-3}$	$1.53 imes10^{-3}$	$1.04 imes10^{-3}$	$1.43 imes10^{-3}$	$9.93 imes10^{-4}$
~	0.6	$2.17 imes10^{-3}$	$2.99 imes10^{-3}$	$2.07 imes10^{-3}$	$9.59 imes10^{-4}$	$1.33 imes10^{-3}$	$9.14 imes10^{-4}$
	0.8	$3.00 imes10^{-3}$	$4.07 imes10^{-3}$	$2.86 imes10^{-3}$	$7.76 imes10^{-4}$	$1.08 imes10^{-3}$	$7.40 imes10^{-4}$
	1	$1.08 imes 10^{-5}$	$1.83 imes 10^{-5}$	$1.03 imes 10^{-5}$	$5.36 imes 10^{-6}$	$8.29 imes 10^{-6}$	$5.11 imes 10^{-6}$

RBFe	+		$\alpha = 0.25$			$\alpha = 0.5$	
KDI 5	·	L2	L∞	L _{rms}	L ₂	L∞	L _{rms}
			c = 6.4267			c = 5.55183	
	0.2	$1.20 imes 10^{-3}$	$1.65 imes 10^{-3}$	$1.15 imes 10^{-3}$	$7.93 imes10^{-4}$	$1.08 imes 10^{-3}$	$7.56 imes10^{-4}$
Ю	0.4	$1.02 imes10^{-3}$	$1.43 imes10^{-3}$	$9.73 imes10^{-4}$	$9.34 imes10^{-4}$	$1.31 imes 10^{-3}$	$8.91 imes10^{-4}$
- 2	0.6	$1.13 imes 10^{-3}$	$1.58 imes 10^{-3}$	$1.08 imes 10^{-3}$	$1.10 imes10^{-3}$	$1.53 imes 10^{-3}$	$1.04 imes10^{-3}$
	0.8	$6.71 imes10^{-4}$	$9.45 imes10^{-4}$	$6.40 imes10^{-4}$	$8.61 imes10^{-4}$	$1.18 imes 10^{-3}$	$8.21 imes10^{-4}$
	1	$1.45 imes 10^{-5}$	$2.48 imes10^{-5}$	$1.38 imes 10^{-5}$	$6.97 imes 10^{-6}$	$1.10 imes 10^{-5}$	$6.64 imes 10^{-6}$
			c = 0.35958			c = 0.19219	
-	0.2	$1.49 imes 10^{-3}$	$2.06 imes 10^{-3}$	$1.42 imes 10^{-3}$	$5.62 imes10^{-4}$	$7.72 imes 10^{-4}$	$5.36 imes10^{-4}$
GS	0.4	$4.14 imes 10^{-3}$	$5.66 imes 10^{-3}$	$3.95 imes 10^{-3}$	$1.53 imes10^{-4}$	$2.16 imes10^{-4}$	$1.45 imes 10^{-4}$
	0.6	$4.20 imes10^{-3}$	$5.77 imes 10^{-3}$	$4.01 imes10^{-3}$	$2.63 imes10^{-4}$	$3.69 imes10^{-4}$	$2.51 imes10^{-4}$
	0.8	$1.54 imes 10^{-3}$	$2.20 imes 10^{-3}$	$1.47 imes 10^{-3}$	$9.23 imes 10^{-5}$	$1.46 imes 10^{-4}$	$8.80 imes10^{-5}$
	1	$3.07 imes 10^{-5}$	$5.19 imes10^{-5}$	$2.93 imes 10^{-5}$	$1.25 imes 10^{-5}$	$2.32 imes 10^{-5}$	$1.19 imes 10^{-5}$

Table 7. Cont.

Table 8. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.75, 1, \beta = -1$, N = 10, $\theta = 0.5$, and $\delta t = 0.1$ correspond to Example 2.

DPE	L.		$\alpha = 0.75$			$\alpha = 1$	
KDF5	ι	L ₂	L∞	L _{rms}	L ₂	L _∞	L _{rms}
			c = 4.80554			c = 6.47961	
	0.2	$6.64 imes 10^{-4}$	$9.08 imes10^{-4}$	$6.33 imes10^{-4}$	$2.74 imes10^{-6}$	$3.70 imes 10^{-6}$	2.61×10^{-6}
MQ	0.4	$8.97 imes10^{-4}$	$1.23 imes10^{-3}$	$8.56 imes10^{-4}$	$2.01 imes10^{-5}$	$2.76 imes10^{-5}$	$1.91 imes 10^{-5}$
~	0.6	$1.01 imes10^{-3}$	$1.39 imes10^{-3}$	$9.63 imes10^{-4}$	$2.46 imes10^{-5}$	$3.44 imes 10^{-5}$	$2.35 imes10^{-5}$
	0.8	$8.12 imes10^{-4}$	$1.11 imes10^{-3}$	$7.74 imes10^{-4}$	$7.31 imes 10^{-6}$	$1.02 imes 10^{-5}$	$6.97 imes10^{-6}$
	1	$4.55 imes 10^{-6}$	7.31×10^{-6}	$4.34 imes 10^{-6}$	$5.95 imes 10^{-7}$	$8.99 imes10^{-7}$	5.67×10^{-7}
			c = 5.17758			c = 5.51787	
	0.2	$4.41 imes 10^{-4}$	$6.04 imes10^{-4}$	$4.20 imes10^{-4}$	$8.95 imes10^{-6}$	$1.28 imes 10^{-5}$	$8.54 imes10^{-6}$
IMO	0.4	$5.57 imes 10^{-4}$	$7.60 imes10^{-4}$	$5.31 imes 10^{-4}$	$2.21 imes 10^{-5}$	$3.19 imes 10^{-5}$	$2.10 imes 10^{-5}$
2	0.6	$4.93 imes10^{-4}$	$6.71 imes10^{-4}$	$4.70 imes10^{-4}$	$3.31 imes10^{-5}$	$4.66 imes 10^{-5}$	$3.16 imes10^{-5}$
	0.8	$2.96 imes10^{-4}$	$4.01 imes 10^{-4}$	$2.82 imes 10^{-4}$	$2.96 imes10^{-5}$	$4.07 imes10^{-5}$	$2.82 imes 10^{-5}$
	1	$1.30 imes 10^{-6}$	$2.26 imes 10^{-6}$	$1.24 imes 10^{-6}$	$5.23 imes10^{-7}$	$8.30 imes 10^{-7}$	$4.99 imes10^{-7}$
			c = 5.90952			c = 6.45128	
	0.2	$3.84 imes 10^{-4}$	$5.26 imes 10^{-4}$	$3.66 imes 10^{-4}$	$7.91 imes 10^{-6}$	$1.14 imes 10^{-5}$	$7.54 imes 10^{-6}$
IO	0.4	$4.16 imes10^{-4}$	$5.68 imes10^{-4}$	$3.97 imes10^{-4}$	$1.58 imes10^{-5}$	$2.46 imes10^{-5}$	$1.51 imes 10^{-5}$
~	0.6	$3.23 imes10^{-4}$	$4.43 imes10^{-4}$	$3.08 imes10^{-4}$	$1.87 imes10^{-5}$	$3.05 imes 10^{-5}$	$1.78 imes10^{-5}$
	0.8	$3.33 imes10^{-4}$	$4.54 imes10^{-4}$	$3.17 imes10^{-4}$	$1.88 imes10^{-5}$	$3.13 imes10^{-5}$	$1.80 imes10^{-5}$
	1	$1.29 imes 10^{-6}$	$1.89 imes 10^{-6}$	1.23×10^{-6}	$1.05 imes 10^{-6}$	$1.81 imes 10^{-6}$	1.00×10^{-6}
			c = 0.20069			c = 0.19927	
	0.2	$2.40 imes 10^{-4}$	$3.31 imes 10^{-4}$	$2.29 imes10^{-4}$	$1.90 imes10^{-5}$	$2.50 imes 10^{-5}$	$1.81 imes 10^{-5}$
GS	0.4	$1.11 imes 10^{-4}$	$1.57 imes10^{-4}$	$1.06 imes10^{-4}$	$5.96 imes10^{-5}$	$8.05 imes 10^{-5}$	$5.69 imes10^{-5}$
	0.6	$5.43 imes10^{-5}$	$7.71 imes 10^{-5}$	$5.18 imes10^{-5}$	$1.02 imes 10^{-4}$	$1.40 imes 10^{-4}$	$9.67 imes10^{-5}$
	0.8	$1.19 imes 10^{-4}$	$1.69 imes10^{-4}$	$1.14 imes 10^{-4}$	$1.65 imes10^{-4}$	$2.26 imes10^{-4}$	$1.58 imes10^{-4}$
	1	$9.36 imes 10^{-6}$	$1.59 imes 10^{-5}$	$8.93 imes 10^{-6}$	$5.69 imes10^{-6}$	$8.86 imes10^{-6}$	$5.43 imes 10^{-6}$

Figure 10. Exact vs. computed solution corresponds to Example 2 when N = M = 10, $\alpha = 1$ using MQ, IMQ, IQ, and GS RBFs.

х

(c) Absolute error **Figure 13.** Absolute errors for Example 3 with different values of α 's using MQ RBF.

(c) Absolute error

0 0 0.8

0.6 0.4 0.2

х

Figure 14. Absolute errors for Example 3 with different values of α 's using IMQ RBF.

0.5

t

Figure 15. Absolute errors for Example 3 with different values of α 's using IQ RBF.

(c) Absolute error

Figure 16. Absolute errors for Example 3 with different values of α 's using GS RBF.

Example 3. Let us consider FitzHugh–Nagumo Equations (2) and (3) with $\beta = 0$. The exact solution is given by [25]

$$u(t,x) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\sqrt{2}x+t}{4}\right).$$

We employ the ICs and BCs from this exact solution. Using this solution, we apply the present method to approximate the exact solution within the domain $x \in [0, 1]$. RBFs such as MQ, IMQ, IQ, and GS are employed for the numerical approximation. We choose N = 10, $\delta t = 0.1$, and $\theta = 0.5$. The obtained results are presented in Tables 9 and 10 for different values of α (0.25, 0.5, 0.75, 1).

The tables clearly indicate that the accuracy of the method is better than the FRDTM. Additionally, it can be seen that the accuracy improves as α approaches 1. Additionally, the chosen RBFs demonstrate comparable performance. Furthermore, the error norms at various time levels are recorded in Tables 11 and 12 for α values of 0.25, 0.5, 0.75, and 1, using the MQ, IMQ, IQ, and GS RBFs. The stability and error norm plots are presented in Figure 17, demonstrating that the present method consistently satisfies the Lax–Richtmyer stability criterion.

Additionally, surface plots in Figure 18 show that the computed solution using the selected RBFs closely matches the exact solution. The absolute errors for $\alpha = 1$ at various time levels are depicted in Figure 19, indicating reasonable accuracy. Figure 20 compares the exact and computed solutions at the final time, demonstrating the good accuracy of the present method. Finally, Figures 21–24 display the absolute errors for different fractional orders using different RBFs.

Table 9. Comparison of computed values of the present method solution with FRDTM using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.25, 0.5, \beta = 0, N = 10, \theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 3.

				$\alpha = 0.25$					$\alpha = 0.5$		
(x, t)	Exact	[25]	MQ	IMQ	IQ	GS	[25]	MQ	IMQ	IQ	GS
		[23]	c = 3.68162	c = 6.61203	c = 8.81199	c = 0.36854	[23]	c = 6.48549	c = 7.63322	c = 6.9269	c = 0.33014
(0.1, 0.2)	0.542574	0.607541	0.543147	0.543015	0.542936	0.542301	0.579728	0.542826	0.542838	0.542813	0.542595
(0.1, 0.4)	0.567267	0.624171	0.567777	0.567728	0.567539	0.566309	0.604611	0.567451	0.567615	0.567554	0.567328
(0.1, 0.6)	0.591631	0.635373	0.592090	0.592066	0.591836	0.590916	0.623334	0.591672	0.591984	0.591826	0.591753
(0.1, 0.8)	0.615552	0.644106	0.615894	0.615880	0.615667	0.615606	0.638889	0.615523	0.615760	0.615571	0.615607
(0.3, 0.2)	0.577406	0.639862	0.578702	0.578408	0.578231	0.576967	0.613492	0.577980	0.578005	0.577953	0.577472
(0.3, 0.4)	0.601599	0.655466	0.602729	0.602641	0.602231	0.599800	0.637390	0.602020	0.602392	0.602265	0.601792
(0.3, 0.6)	0.625306	0.665857	0.626309	0.626280	0.625790	0.623770	0.655204	0.625410	0.626117	0.625769	0.625657
(0.3, 0.8)	0.648427	0.673883	0.649148	0.649157	0.648699	0.648556	0.669886	0.648373	0.648923	0.648480	0.648661
(0.5, 0.2)	0.611484	0.670946	0.612968	0.612638	0.612435	0.611202	0.646202	0.612144	0.612174	0.612119	0.611584
(0.5, 0.4)	0.634960	0.685416	0.636223	0.636155	0.635702	0.633346	0.668940	0.635440	0.635874	0.635739	0.635255
(0.5, 0.6)	0.657811	0.694923	0.658913	0.658914	0.658388	0.656165	0.685729	0.657930	0.658750	0.658358	0.658312
(0.5, 0.8)	0.679952	0.702183	0.680713	0.680772	0.680279	0.680129	0.699451	0.679896	0.680535	0.680019	0.680357
(0.7, 0.2)	0.644506	0.700614	0.645694	0.645439	0.645271	0.644477	0.677605	0.645032	0.645063	0.645023	0.644609
(0.7, 0.4)	0.667073	0.713905	0.668059	0.668036	0.667684	0.666161	0.699052	0.667449	0.667813	0.667710	0.667379
(0.7, 0.6)	0.688899	0.722509	0.689742	0.689775	0.689383	0.687690	0.714740	0.688986	0.689660	0.689347	0.689393
(0.7, 0.8)	0.709916	0.728997	0.710468	0.710559	0.710191	0.710100	0.727453	0.709870	0.710385	0.709969	0.710363
(0.9, 0.2)	0.676207	0.728724	0.676688	0.676590	0.676519	0.676287	0.707489	0.676418	0.676435	0.676422	0.676262
(0.9, 0.4)	0.697706	0.740845	0.698094	0.698100	0.697961	0.697504	0.727556	0.697851	0.698010	0.697969	0.697863
(0.9, 0.6)	0.718371	0.748576	0.718695	0.718725	0.718578	0.717935	0.742105	0.718399	0.718684	0.718556	0.718617
(0.9, 0.8)	0.738154	0.754327	0.738351	0.738410	0.738273	0.738255	0.753800	0.738134	0.738342	0.738175	0.738393

Table 10. Comparison of computed values of the present method solution with FRDTM using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.75$, 1, $\beta = 0$, N = 10, $\theta = 0.5$, and $\delta t = 0.1$ corresponds to Example 3.

		lpha=0.75						lpha=1				
(x, t)	Exact	[25]	MQ	IMQ	IQ	GS	[25]	MQ	IMQ	IQ	GS	
		[23]	c = 6.20135	c = 7.82578	c = 6.73987	c = 0.333513	[23]	c = 5.79129	c = 6.46003	c = 8.05516	c = 0.22009	
(0.1, 0.2)	0.542574	0.558029	0.542671	0.542661	0.542670	0.542575	0.542574	0.542576	0.542575	0.542570	0.542596	
(0.1, 0.4)	0.567267	0.585031	0.567267	0.567359	0.567431	0.567193	0.567267	0.567272	0.567265	0.567252	0.567332	
(0.1, 0.6)	0.591631	0.608198	0.591550	0.591683	0.591797	0.591527	0.591626	0.591638	0.591632	0.591658	0.591702	
(0.1, 0.8)	0.615552	0.628969	0.615483	0.615541	0.615611	0.615522	0.615532	0.615559	0.615549	0.615646	0.615591	
(0.3, 0.2)	0.577406	0.592512	0.577628	0.577605	0.577625	0.577403	0.577406	0.577409	0.577407	0.577397	0.577451	
(0.3, 0.4)	0.601599	0.618758	0.601608	0.601811	0.601981	0.601363	0.601598	0.601610	0.601598	0.601567	0.601745	
(0.3, 0.6)	0.625306	0.641090	0.625128	0.625431	0.625694	0.624963	0.625302	0.625322	0.625313	0.625358	0.625473	
(0.3, 0.8)	0.648427	0.660973	0.648272	0.648398	0.648570	0.648301	0.648409	0.648443	0.648426	0.648650	0.648523	
(0.5, 0.2)	0.611484	0.626109	0.611740	0.611714	0.611741	0.611473	0.611484	0.611487	0.611487	0.611475	0.611535	
(0.5, 0.4)	0.634960	0.651378	0.634968	0.635204	0.635411	0.634600	0.634959	0.634972	0.634963	0.634927	0.635130	
(0.5, 0.6)	0.657811	0.672710	0.657602	0.657954	0.658267	0.657287	0.657807	0.657830	0.657824	0.657873	0.658009	
(0.5, 0.8)	0.679952	0.691573	0.679774	0.679907	0.680117	0.679745	0.679938	0.679971	0.679957	0.680214	0.680069	
(0.7, 0.2)	0.644506	0.658533	0.644709	0.644690	0.644717	0.644489	0.644506	0.644509	0.644509	0.644499	0.644550	
(0.7, 0.4)	0.667073	0.682643	0.667064	0.667266	0.667449	0.666697	0.667072	0.667083	0.667079	0.667048	0.667216	
(0.7, 0.6)	0.688899	0.702841	0.688718	0.689008	0.689272	0.688366	0.688896	0.688914	0.688914	0.688963	0.689063	
(0.7, 0.8)	0.709916	0.720587	0.709770	0.709863	0.710039	0.709701	0.709906	0.709931	0.709924	0.710127	0.710012	
(0.9, 0.2)	0.676207	0.689541	0.676288	0.676281	0.676296	0.676195	0.676207	0.676209	0.676209	0.676204	0.676228	
(0.9, 0.4)	0.697706	0.712345	0.697691	0.697781	0.697866	0.697510	0.697705	0.697710	0.697710	0.697697	0.697768	
(0.9, 0.6)	0.718371	0.731313	0.718289	0.718410	0.718525	0.718106	0.718370	0.718378	0.718380	0.718410	0.718440	
(0.9, 0.8)	0.738154	0.747877	0.738093	0.738123	0.738198	0.738049	0.738149	0.738160	0.738160	0.738238	0.738194	

DBE	L		$\alpha = 0.25$		lpha=0.5			
KDF5	ι	L ₂	L∞	L _{rms}	L2	L∞	L _{rms}	
			c = 3.68162			c = 6.48549		
	0.2	1.081×10^{-3}	$1.484 imes 10^{-3}$	$1.031 imes 10^{-3}$	$4.795 imes 10^{-4}$	$6.599 imes 10^{-4}$	$4.572 imes 10^{-4}$	
МО	0.4	$9.220 imes10^{-4}$	$1.264 imes10^{-3}$	$8.791 imes10^{-4}$	$3.476 imes10^{-4}$	$4.805 imes10^{-4}$	$3.314 imes10^{-4}$	
~	0.6	$8.053 imes10^{-4}$	$1.103 imes10^{-3}$	$7.678 imes10^{-4}$	$8.368 imes10^{-5}$	$1.193 imes10^{-4}$	$7.978 imes10^{-5}$	
	0.8	$5.578 imes10^{-4}$	$7.776 imes10^{-4}$	$5.319 imes10^{-4}$	$4.336 imes10^{-5}$	$5.738 imes10^{-5}$	$4.134 imes10^{-5}$	
	1	$2.992 imes 10^{-6}$	$4.995 imes 10^{-6}$	2.853×10^{-6}	2.723×10^{-6}	$3.734 imes 10^{-6}$	2.597×10^{-6}	
			c = 6.61203			c = 7.63322		
	0.2	$8.418 imes 10^{-4}$	$1.154 imes 10^{-3}$	$8.027 imes 10^{-4}$	$5.035 imes 10^{-4}$	$6.907 imes10^{-4}$	$4.801 imes 10^{-4}$	
IMO	0.4	$8.722 imes10^{-4}$	$1.195 imes10^{-3}$	$8.316 imes10^{-4}$	$6.669 imes10^{-4}$	$9.148 imes10^{-4}$	$6.358 imes10^{-4}$	
~	0.6	$8.053 imes10^{-4}$	$1.103 imes10^{-3}$	$7.679 imes10^{-4}$	$6.838 imes10^{-4}$	$9.390 imes10^{-4}$	$6.519 imes10^{-4}$	
	0.8	$5.980 imes10^{-4}$	$8.194 imes10^{-4}$	$5.702 imes 10^{-4}$	$4.202 imes10^{-4}$	$5.823 imes10^{-4}$	$4.007 imes10^{-4}$	
	1	1.530×10^{-6}	2.163×10^{-6}	$1.458 imes 10^{-6}$	3.049×10^{-6}	5.391×10^{-6}	2.907×10^{-6}	
			c = 8.81199			c = 6.9269		
	0.2	$6.924 imes10^{-4}$	$9.508 imes10^{-4}$	$6.602 imes 10^{-4}$	$4.630 imes10^{-4}$	$6.348 imes 10^{-4}$	$4.414 imes10^{-4}$	
IO	0.4	$5.406 imes10^{-4}$	$7.424 imes10^{-4}$	$5.154 imes10^{-4}$	$5.671 imes10^{-4}$	$7.799 imes10^{-4}$	$5.407 imes10^{-4}$	
~	0.6	$4.209 imes10^{-4}$	$5.776 imes10^{-4}$	$4.013 imes10^{-4}$	$3.965 imes10^{-4}$	$5.470 imes10^{-4}$	$3.780 imes10^{-4}$	
	0.8	$2.383 imes10^{-4}$	$3.268 imes10^{-4}$	$2.272 imes10^{-4}$	$4.684 imes10^{-5}$	$6.663 imes10^{-5}$	$4.466 imes10^{-5}$	
	1	$7.249 imes 10^{-7}$	1.173×10^{-6}	$6.912 imes 10^{-7}$	2.578×10^{-6}	$3.610 imes 10^{-6}$	2.458×10^{-6}	
			c = 0.36854			c = 0.33014		
	0.2	$2.642 imes 10^{-4}$	$4.388 imes10^{-4}$	$2.519 imes10^{-4}$	$7.528 imes 10^{-5}$	$1.068 imes 10^{-4}$	$7.178 imes10^{-5}$	
GS	0.4	$1.233 imes10^{-3}$	$1.803 imes10^{-3}$	$1.175 imes 10^{-3}$	$2.218 imes10^{-4}$	$3.161 imes 10^{-4}$	$2.115 imes 10^{-4}$	
	0.6	1.202×10^{-3}	$1.671 imes10^{-3}$	$1.146 imes10^{-3}$	$3.722 imes 10^{-4}$	$5.227 imes10^{-4}$	$3.549 imes10^{-4}$	
	0.8	1.376×10^{-4}	1.881×10^{-4}	1.312×10^{-4}	3.090×10^{-4}	$4.497 imes 10^{-4}$	2.946×10^{-4}	
	1	9.904×10^{-6}	1.513×10^{-5}	9.443×10^{-6}	6.429×10^{-6}	1.094×10^{-5}	6.130×10^{-6}	

Table 11. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.25, 0.5, \beta = 0$, N = 10, $\theta = 0.5$, and $\delta t = 0.1$ correspond to Example 3.

Table 12. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.75, 1, \beta = 0$, N = 10, $\theta = 0.5$, and $\delta t = 0.1$ correspond to Example 3.

RBFe	+		$\alpha = 0.75$		$\alpha = 1$			
KD15	L	L2	L∞	L _{rms}	L ₂	L∞	L _{rms}	
			c = 6.20135			c = 5.79129		
	0.2	$1.854 imes10^{-4}$	$2.561 imes10^{-4}$	$1.768 imes10^{-4}$	$2.754 imes 10^{-6}$	$3.671 imes 10^{-6}$	$2.626 imes 10^{-6}$	
MO	0.4	$9.181 imes10^{-6}$	$1.560 imes10^{-5}$	$8.754 imes10^{-6}$	$9.160 imes10^{-6}$	$1.245 imes10^{-5}$	$8.734 imes10^{-6}$	
~	0.6	$1.553 imes10^{-4}$	$2.091 imes10^{-4}$	$1.481 imes10^{-4}$	$1.392 imes 10^{-5}$	$1.900 imes 10^{-5}$	$1.327 imes 10^{-5}$	
	0.8	$1.306 imes10^{-4}$	$1.781 imes10^{-4}$	$1.245 imes10^{-4}$	$1.335 imes10^{-5}$	$1.841 imes 10^{-5}$	$1.273 imes10^{-5}$	
	1	$1.342 imes 10^{-6}$	$2.211 imes 10^{-6}$	$1.280 imes 10^{-6}$	$4.507 imes10^{-7}$	$7.729 imes10^{-7}$	$4.298 imes10^{-7}$	
			c = 7.82578			c = 6.46003		
	0.2	$1.672 imes 10^{-4}$	$2.305 imes10^{-4}$	$1.594 imes 10^{-4}$	$2.380 imes10^{-6}$	$3.590 imes 10^{-6}$	$2.269 imes 10^{-6}$	
IMO	0.4	$1.765 imes10^{-4}$	$2.442 imes10^{-4}$	$1.683 imes10^{-4}$	$3.844 imes10^{-6}$	$6.398 imes10^{-6}$	$3.665 imes 10^{-6}$	
~	0.6	$1.025 imes 10^{-4}$	$1.434 imes10^{-4}$	$9.769 imes10^{-5}$	$1.029 imes10^{-5}$	$1.545 imes 10^{-5}$	$9.806 imes10^{-6}$	
	0.8	$3.666 imes 10^{-5}$	$5.292 imes 10^{-5}$	$3.495 imes10^{-5}$	$5.069 imes10^{-6}$	$8.448 imes 10^{-6}$	$4.833 imes10^{-6}$	
	1	$8.111 imes 10^{-7}$	1.714×10^{-6}	7.733×10^{-7}	5.708×10^{-7}	$7.934 imes10^{-7}$	$5.443 imes 10^{-7}$	

		Table 12. Cont.							
RBFs	t		$\alpha = 0.75$			$\alpha = 1$			
KD15	•	L2	L∞	L _{rms}	L 2	L∞	L _{rms}		
			c = 6.73987			c = 8.05516			
	0.2	$1.874 imes10^{-4}$	$2.569 imes10^{-4}$	$1.787 imes 10^{-4}$	$6.647 imes10^{-6}$	$8.712 imes 10^{-6}$	$6.337 imes10^{-6}$		
Ю	0.4	$3.295 imes10^{-4}$	$4.515 imes10^{-4}$	$3.141 imes10^{-4}$	$2.459 imes10^{-5}$	$3.395 imes 10^{-5}$	$2.344 imes10^{-5}$		
~	0.6	$3.312 imes10^{-4}$	$4.562 imes10^{-4}$	$3.157 imes10^{-4}$	$5.053 imes10^{-5}$	$6.511 imes 10^{-5}$	$4.817 imes10^{-5}$		
	0.8	$1.167 imes10^{-4}$	$1.641 imes10^{-4}$	$1.112 imes 10^{-4}$	$1.887 imes10^{-4}$	$2.612 imes 10^{-4}$	$1.799 imes10^{-4}$		
	1	$3.197 imes 10^{-6}$	4.250×10^{-6}	$3.048 imes 10^{-6}$	$1.895 imes 10^{-6}$	$3.064 imes 10^{-6}$	$1.806 imes 10^{-6}$		
			c = 0.333513			c = 0.22009			
-	0.2	$1.039 imes 10^{-5}$	$1.683 imes10^{-5}$	$9.904 imes 10^{-6}$	$3.868 imes10^{-5}$	$5.120 imes 10^{-5}$	$3.688 imes 10^{-5}$		
GS	0.4	$2.716 imes10^{-4}$	$3.860 imes10^{-4}$	$2.589 imes10^{-4}$	$1.255 imes10^{-4}$	$1.707 imes 10^{-4}$	$1.197 imes10^{-4}$		
	0.6	$3.887 imes10^{-4}$	$5.566 imes10^{-4}$	$3.706 imes10^{-4}$	$1.440 imes10^{-4}$	$1.978 imes10^{-4}$	$1.373 imes10^{-4}$		
	0.8	$1.526 imes10^{-4}$	$2.234 imes10^{-4}$	$1.455 imes10^{-4}$	$8.383 imes10^{-5}$	$1.163 imes10^{-4}$	$7.993 imes10^{-5}$		
	1	$5.527 imes10^{-6}$	$1.015 imes 10^{-5}$	$5.270 imes 10^{-6}$	$6.293 imes10^{-6}$	$9.884 imes10^{-6}$	$6.000 imes 10^{-6}$		

(a) Error norms and spectral radius using $\ensuremath{\mathsf{MQ}}$

 (\mathbf{b}) Error norms and spectral radius using IMQ

(c) Computed solution using IMQ

(d) Computed solution against IQ

Figure 18. Exact vs. computed solution corresponds to Example 3 when N = M = 10, $\alpha = 1$ using MQ, IMQ, IQ, and GS RBFs.

(c) Absolute error against IQ

(d) Absolute error using GS

0.7 0.8 0.9

1

(c) Exact vs. numerical against IQ

(c) Absolute error

Figure 21. Absolute errors for Example 3 with different values of α 's using MQ RBF.

(c) Absolute error **Figure 22.** Absolute errors for Example 3 with different values of α 's using IMQ RBF.

(c) Absolute error

Figure 23. Absolute errors for Example 3 with different values of α 's using IQ RBF.

(c) Absolute error **Figure 24.** Absolute errors for Example 3 with different values of α 's using GS RBF.

Example 4. Let us consider FitzHugh–Nagumo Equations (2) and (3). For $\alpha = 1$, the exact solution, as given in [27], is described by the following expression:

$$u(t,x) = rac{1}{1 + e^{\left(rac{-x}{\sqrt{2}} + yt
ight)}}, \quad where \quad y = rac{1}{\sqrt{2}} - \sqrt{2}\beta,$$

where β represents an arbitrary constant. We employ the ICs and BCs from this exact solution. Using this solution, we apply the present method to approximate the exact solution within the domain $x \in [0, 1]$. RBFs such as MQ, IMQ, IQ, and GS are employed for the numerical approximation. We choose N = 10, $\delta t = 0.001$, $\theta = 0.5$, and $\beta = -1$. The obtained results, in terms of absolute errors, are presented in Table 13 for $\alpha = 1$. The table clearly indicates that the accuracy of the present method is better than that of the homotopy perturbation transform technique (HPTT). Additionally, the comparison of the present method with HPTT is presented in Table 14 for $\beta = 0.45$ and $\alpha = 0.5$ while keeping the other parameters the same. The comparison shows that the results of the present method using different RBFs are more accurate than those of HPTT. Furthermore, the error norms at various time levels are recorded in Tables 15 and 16 for α values of 0.5 and 1 using the MQ, IMQ, IQ, and GS RBFs.

The stability and error norm plots are presented in Figures 25 and 26 for $\alpha = 1$ and 0.5 and $\beta = -1$ and $\beta = 0.45$, respectively, for N = 10, $\theta = 0.5$, and $\delta t = 0.001$, demonstrating that the present method consistently satisfies the Lax–Richtmyer stability criterion. Additionally, the surface plots in Figures 27 and 28 show that the computed solution using the selected RBFs closely matches the exact solution. The absolute errors for $\alpha = 1$ and 0.5 at various time levels are depicted in Figures 29 and 30, respectively, indicating reasonable accuracy. Finally, Figures 31 and 32 compare the exact and computed solutions at the final time, demonstrating the good accuracy of the present method.

(c) Error norms and spectral radius against IQ

 (\mathbf{d}) Error norms and spectral radius using GS

Figure 25. Error norms and spectral radius correspond to Example 4 when N = M = 10, $\alpha = 1$ using MQ, IMQ, IQ, and GS RBFs.

x	4	[27]	MQ	IMQ	IQ	GS
	ι	[27]	c = 18.6452	c = 15.3437	c = 19.0984	c = 0.3839
0.001	0.001	$1.5 imes 10^{-3}$	$2.604 imes 10^{-9}$	$1.507 imes 10^{-9}$	$1.243 imes 10^{-9}$	$1.019 imes 10^{-9}$
0.002	0.002	$3.0 imes10^{-3}$	$1.287 imes10^{-8}$	$3.875 imes 10^{-9}$	$4.379 imes 10^{-9}$	$8.782 imes10^{-11}$
0.003	0.003	$4.5 imes10^{-3}$	$1.573 imes10^{-8}$	$1.229 imes10^{-8}$	$9.328 imes10^{-9}$	$1.306 imes 10^{-9}$
0.004	0.004	$6.0 imes10^{-3}$	$9.833 imes10^{-9}$	$6.037 imes 10^{-9}$	$9.718 imes10^{-9}$	$3.324 imes10^{-9}$
0.005	0.005	$7.5 imes10^{-3}$	$1.269 imes10^{-8}$	$7.529 imes 10^{-9}$	$2.312 imes 10^{-8}$	$4.515 imes10^{-9}$
0.006	0.006	$9.1 imes10^{-3}$	$9.864 imes10^{-9}$	6.832×10^{-9}	$3.217 imes10^{-9}$	$5.898 imes10^{-9}$
0.007	0.007	$1.0 imes 10^{-2}$	$2.049 imes10^{-9}$	5.261×10^{-9}	$6.513 imes 10^{-9}$	$1.112 imes 10^{-8}$
0.008	0.008	$1.2 imes 10^{-2}$	$4.631 imes 10^{-10}$	$5.446 imes 10^{-9}$	$4.356 imes 10^{-10}$	$1.287 imes 10^{-8}$
0.009	0.009	$1.3 imes10^{-2}$	$3.879 imes10^{-9}$	$5.513 imes10^{-11}$	$1.102 imes 10^{-9}$	$6.502 imes 10^{-9}$
0.010	0.010	$1.5 imes10^{-2}$	$9.973 imes 10^{-10}$	8.579×10^{-10}	1.403×10^{-10}	$1.438 imes 10^{-9}$

Table 13. Comparison of absolute errors of the present method solution with HPTT using MQ, IMQ, IQ, and GS RBFs for $\alpha = 1$, $\beta = -1$, N = 10, $\theta = 0.5$, and $\delta t = 0.001$ corresponds to Example 4.

×	+	[27]	MQ	IMQ	IQ	GS
*	t	[27]	c = 5.8849	c = 46.8122	c = 21.9648	c = 0.01313
0.001	0.001	$2.8 imes10^{-2}$	$5.428 imes 10^{-10}$	2.256×10^{-9}	$8.790 imes10^{-11}$	$8.717 imes10^{-10}$
0.002	0.002	$4.1 imes 10^{-2}$	$3.680 imes10^{-10}$	$2.810 imes10^{-9}$	$3.522 imes 10^{-10}$	$4.335 imes10^{-10}$
0.003	0.003	$5.3 imes10^{-2}$	$6.547 imes 10^{-10}$	$2.313 imes10^{-9}$	$2.294 imes10^{-12}$	$1.436 imes10^{-8}$
0.004	0.004	$6.2 imes 10^{-2}$	$3.745 imes10^{-10}$	$4.687 imes10^{-9}$	$1.209 imes10^{-9}$	$6.656 imes10^{-9}$
0.005	0.005	$6.9 imes10^{-2}$	$2.766 imes 10^{-10}$	$1.804 imes10^{-9}$	$5.891 imes10^{-10}$	$1.806 imes 10^{-9}$
0.006	0.006	$8.0 imes10^{-2}$	$5.124 imes10^{-11}$	$4.929 imes10^{-9}$	$1.687 imes10^{-9}$	$4.174 imes10^{-9}$
0.007	0.007	$8.7 imes10^{-2}$	$2.419 imes 10^{-11}$	$5.098 imes10^{-10}$	$1.065 imes10^{-9}$	2.086×10^{-9}
0.008	0.008	$9.4 imes10^{-2}$	$3.764 imes 10^{-11}$	$8.220 imes10^{-10}$	$2.522 imes10^{-10}$	$3.540 imes 10^{-10}$
0.009	0.009	$1.0 imes10^{-2}$	$2.451 imes 10^{-11}$	$3.408 imes10^{-10}$	$1.441 imes 10^{-9}$	$7.412 imes10^{-10}$
0.010	0.010	$1.1 imes 10^{-2}$	1.957×10^{-11}	4.644×10^{-10}	$9.778 imes 10^{-11}$	$1.064 imes 10^{-9}$

Table 14. Comparison of absolute errors of the present method solution with HPTT using MQ, IMQ, IQ, and GS RBFs for $\alpha = 0.5$, $\beta = 0.45$, N = 10, $\theta = 0.5$, and $\delta t = 0.001$ corresponds to Example 4.

Table 15. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for $\beta = -1$, N = 10, $\theta = 0.5$, and $\delta t = 0.001$ corresponds to Example 4.

PREc	Ļ		$\alpha = 0.5$			lpha=1			
RBFs	ι	L ₂	L _∞	L _{rms}	L ₂	L∞	L _{rms}		
			c = 2.2759			c = 18.6452			
	0.002	$1.826 imes 10^{-9}$	$2.695 imes10^{-8}$	$1.741 imes 10^{-8}$	$1.506 imes 10^{-9}$	$2.005 imes 10^{-8}$	$1.436 imes 10^{-8}$		
MQ	0.004	$3.987 imes 10^{-10}$	$7.487 imes10^{-9}$	$3.801 imes 10^{-9}$	$8.064 imes10^{-10}$	$1.239 imes10^{-8}$	$7.688 imes10^{-9}$		
	0.006	$3.952 imes 10^{-10}$	$6.265 imes 10^{-9}$	$3.768 imes 10^{-9}$	$7.224 imes 10^{-10}$	$9.868 imes 10^{-9}$	$6.888 imes 10^{-9}$		
	0.008	$1.206 imes 10^{-10}$	$2.755 imes 10^{-9}$	1.150×10^{-9}	$1.338 imes10^{-10}$	$2.402 imes 10^{-9}$	1.276×10^{-9}		
	0.01	8.903×10^{-11}	1.567×10^{-9}	8.488×10^{-10}	$8.692 imes 10^{-11}$	1.269×10^{-9}	$8.287 imes 10^{-10}$		
			c = 35.2365			c = 15.3437			
	0.002	$1.410 imes 10^{-9}$	$2.428 imes10^{-8}$	$1.344 imes 10^{-8}$	$5.814 imes10^{-10}$	$9.810 imes10^{-9}$	$5.543 imes 10^{-9}$		
IMO	0.004	$9.698 imes 10^{-10}$	$1.670 imes10^{-8}$	$9.247 imes10^{-9}$	$3.875 imes 10^{-10}$	$7.351 imes 10^{-9}$	$3.695 imes 10^{-9}$		
~	0.006	$2.074 imes10^{-9}$	$3.516 imes10^{-8}$	$1.977 imes10^{-8}$	$5.499 imes10^{-10}$	$7.665 imes10^{-9}$	$5.243 imes10^{-9}$		
	0.008	$1.188 imes 10^{-9}$	$1.630 imes10^{-8}$	$1.133 imes10^{-8}$	$5.216 imes10^{-10}$	$7.340 imes10^{-9}$	$4.973 imes10^{-9}$		
	0.01	7.080×10^{-10}	$1.068 imes 10^{-8}$	6.751×10^{-9}	1.326×10^{-10}	2.486×10^{-9}	1.264×10^{-9}		
			c = 22.2965			c = 19.0984			
	0.002	4.624×10^{-9}	$6.265 imes 10^{-8}$	$4.409 imes 10^{-8}$	4.838×10^{-10}	$6.599 imes10^{-9}$	$4.613 imes10^{-9}$		
IQ	0.004	$9.319 imes10^{-9}$	$1.256 imes10^{-7}$	$8.885 imes10^{-8}$	$7.086 imes 10^{-10}$	$1.217 imes10^{-8}$	$6.757 imes 10^{-9}$		
-	0.006	2.882×10^{-9}	$5.671 imes10^{-8}$	$2.748 imes10^{-8}$	$6.541 imes 10^{-10}$	$1.277 imes10^{-8}$	$6.237 imes 10^{-9}$		
	0.008	5.201×10^{-9}	$7.886 imes10^{-8}$	$4.959 imes10^{-8}$	$1.535 imes 10^{-10}$	$3.069 imes 10^{-9}$	$1.463 imes 10^{-9}$		
	0.01	1.441×10^{-9}	2.486×10^{-8}	1.374×10^{-8}	7.404×10^{-11}	1.420×10^{-9}	7.059×10^{-10}		
			c = 0.2654			c = 0.3839			
	0.002	$2.842 imes 10^{-9}$	$3.915 imes10^{-8}$	$2.710 imes10^{-8}$	1.096×10^{-10}	1.716×10^{-9}	$1.045 imes 10^{-9}$		
GS	0.004	$5.743 imes 10^{-9}$	$7.859 imes10^{-8}$	$5.476 imes10^{-8}$	$2.960 imes 10^{-10}$	$4.213 imes 10^{-9}$	2.822×10^{-9}		
	0.006	$4.834 imes10^{-9}$	$7.845 imes10^{-8}$	$4.609 imes10^{-8}$	$4.196 imes 10^{-10}$	$5.898 imes10^{-9}$	$4.001 imes 10^{-9}$		
	0.008	5.551×10^{-9}	$1.224 imes 10^{-7}$	$5.292 imes 10^{-8}$	1.245×10^{-9}	$1.639 imes 10^{-8}$	$1.187 imes10^{-8}$		
	0.01	$1.994 imes10^{-9}$	$3.734 imes 10^{-8}$	$1.901 imes 10^{-8}$	$1.991 imes 10^{-10}$	$2.787 imes 10^{-9}$	$1.898 imes 10^{-9}$		

RBFs	t		$\alpha = 0.5$		$\alpha = 1$			
		L ₂	L _∞	L _{rms}	L ₂	L∞	L _{rms}	
			c = 5.8849			c = 4.46		
	0.002	3.997×10^{-11}	$6.588 imes 10^{-10}$	$3.811 imes 10^{-10}$	3.832×10^{-11}	5.612×10^{-10}	$3.654 imes 10^{-10}$	
MQ	0.004	$2.543 imes 10^{-11}$	$4.185 imes10^{-10}$	$2.425 imes10^{-10}$	$4.074 imes 10^{-11}$	$6.447 imes10^{-10}$	$3.885 imes 10^{-10}$	
MQ	0.006	$2.687 imes 10^{-11}$	$4.331 imes10^{-10}$	$2.562 imes 10^{-10}$	3.552×10^{-11}	$5.081 imes10^{-10}$	$3.387 imes 10^{-10}$	
	0.008	$2.878 imes 10^{-11}$	$5.097 imes 10^{-10}$	$2.744 imes 10^{-10}$	$1.383 imes 10^{-11}$	$1.986 imes 10^{-10}$	$1.318 imes 10^{-10}$	
	0.01	1.573×10^{-11}	$2.450 imes 10^{-10}$	1.500×10^{-10}	9.560×10^{-12}	1.679×10^{-10}	9.115×10^{-11}	
			c = 46.8122			c = 47.0019		
	0.002	$1.732 imes 10^{-10}$	$2.901 imes 10^{-9}$	$1.652 imes 10^{-9}$	$4.734 imes10^{-11}$	$7.761 imes 10^{-10}$	$4.513 imes10^{-10}$	
IMO	0.004	$3.925 imes 10^{-10}$	5.261×10^{-9}	$3.742 imes 10^{-9}$	4.022×10^{-11}	$7.685 imes 10^{-10}$	$3.835 imes 10^{-10}$	
~	0.006	$3.585 imes 10^{-10}$	$5.686 imes10^{-9}$	$3.418 imes10^{-9}$	$6.586 imes 10^{-11}$	$1.284 imes 10^{-9}$	$6.280 imes10^{-10}$	
	0.008	$2.187 imes 10^{-10}$	$3.579 imes10^{-9}$	$2.085 imes10^{-9}$	$7.760 imes 10^{-11}$	$1.417 imes 10^{-9}$	7.399×10^{-10}	
	0.01	$4.236 imes 10^{-11}$	$6.657 imes 10^{-10}$	4.038×10^{-10}	$2.589 imes 10^{-11}$	3.952×10^{-10}	$2.468 imes 10^{-10}$	
			c = 21.9648			c = 15.2317		
	0.002	2.981×10^{-11}	4.302×10^{-10}	2.842×10^{-10}	6.390×10^{-11}	$1.053 imes 10^{-9}$	$6.092 imes 10^{-10}$	
IQ	0.004	$7.874 imes 10^{-11}$	$1.499 imes10^{-9}$	$7.508 imes10^{-10}$	$4.657 imes 10^{-11}$	$9.039 imes 10^{-10}$	$4.441 imes10^{-10}$	
	0.006	$1.340 imes 10^{-10}$	$1.833 imes 10^{-9}$	1.278×10^{-9}	$4.018 imes10^{-11}$	$7.631 imes 10^{-10}$	$3.831 imes 10^{-10}$	
	0.008	$3.544 imes 10^{-11}$	$6.846 imes 10^{-10}$	$3.379 imes 10^{-10}$	$1.035 imes 10^{-10}$	$1.417 imes 10^{-9}$	$9.868 imes 10^{-10}$	
	0.01	4.529×10^{-11}	8.046×10^{-10}	$4.318 imes 10^{-10}$	2.827×10^{-11}	4.326×10^{-10}	2.695×10^{-10}	
			c = 0.01313			c = 0.17158		
	0.002	7.714×10^{-11}	$1.385 imes 10^{-9}$	7.355×10^{-10}	1.530×10^{-11}	3.216×10^{-10}	1.459×10^{-10}	
GS	0.004	$1.041 imes 10^{-9}$	$2.445 imes10^{-8}$	$9.924 imes 10^{-9}$	$5.598 imes 10^{-11}$	$7.387 imes 10^{-10}$	$5.338 imes 10^{-10}$	
	0.006	$5.649 imes 10^{-10}$	$9.973 imes10^{-9}$	5.386×10^{-9}	$3.017 imes 10^{-11}$	$5.142 imes 10^{-10}$	$2.876 imes 10^{-10}$	
	0.008	$2.462 imes 10^{-10}$	$3.775 imes 10^{-9}$	2.348×10^{-9}	$1.693 imes 10^{-11}$	$2.656 imes 10^{-10}$	$1.615 imes 10^{-10}$	
	0.01	$1.223 imes 10^{-10}$	1.844×10^{-9}	$1.166 imes 10^{-9}$	$2.405 imes 10^{-11}$	5.014×10^{-10}	$2.293 imes 10^{-10}$	

 (\mathbf{b}) Error norms and spectral radius using IMQ

 (\mathbf{c}) Error norms and spectral radius against IQ

Figure 27. Exact vs. computed solution corresponds to Example 4 when N = M = 10, $\alpha = 1$ using MQ, IMQ, IQ, and GS RBFs.

(c) Computed solution using IMQ

(d) Computed solution against IQ

Figure 28. Exact vs. computed solution corresponds to Example 4 when N = M = 10, $\alpha = 0.5$ using MQ, IMQ, IQ, and GS RBFs.

(**d**) Absolute error using GS

Figure 29. Absolute error of MQ, IMQ, IQ, and GS at t = 0.01 corresponds to Example 4.

(c) Absolute error against IQ

U_{cxac}

u.

0.4966

0.4964

0.4962

0.496

0.4958

□ 0.4956

0.4954

Figure 31. Comparison of exact and computed solution corresponds to Example 4 at t = 0.01 and $\alpha = 1$ using MQ, IMQ, IQ, and GS RBFs.

4. Conclusions

The RBF collocation method has been employed to numerically solve a range of FitzHugh–Nagumo Equations (2) and (3). The computed solutions exhibit excellent agreement with exact solutions across various parameter values. The accuracy of this method was rigorously assessed using different error norms. The results unequivocally establish that the proposed approach is highly effective in handling fractional PDE. Furthermore, the stability of the proposed algorithm was demonstrated through eigenvalue analysis, particularly focusing on the MQ, IMQ, IQ, and GS RBFs' shape parameter, denoted as c. From a computational standpoint, it is evident that the present method offers significant efficiency benefits, as it requires a minimal number of nodes and allows for fine-tuning of the RBF shape parameter to achieve satisfactory accuracy. Building on these achievements, several promising avenues for future research emerge.

- Investigate the use of locally supported RBFs to enhance adaptability to intricate spatial structures, improving accuracy in localized phenomena.
- Extend the methodology to incorporate time–space fractional derivatives, deepening understanding and expanding applicability to a broader range of real-world problems.
- The present study focuses on one-dimensional scenarios, and broadening its scope to handle multidimensional systems would significantly enhance its utility in practical applications.
- Exploring parallelization methods tailored for distributed memory systems would augment the adaptability and practical relevance of the presented techniques. Addressing these aspects not only demonstrates the methods' capacity to handle resource-intensive challenges but also enriches our understanding of their real-world applicability.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; software, M.A., S.H., I.A., M.J.E. and S.S.; validation, M.A., S.H., I.A., M.J.E. and S.S.; formal analysis, M.A.; investigation, M.A.; writing—original draft preparation, M.A.; writing—review and editing, S.H., I.A., M.J.E. and S.S.; supervision, S.H.; funding acquisition, M.J.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used to support the findings of this study are available from the first author upon request.

Acknowledgments: The first author would like to express gratitude to the GIK Institute for their support during his MS studies. The authors would like to express their sincere thanks to the Department of Mathematics, Chabahar Maritime University, Chabahar, Iran, for the financial support.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

- 1. Bhrawy, A.H. A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with timedependent coefficients. *Appl. Math. Comput.* **2013**, 222, 255–264. [CrossRef]
- 2. Fitzhugh, R. Impulses and physiological states in models of nerve membrane. *Biophys. J.* 1961, 1, 445–466. [CrossRef]
- 3. Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. *Proc. Ire* **1962**, *50*, 2061–2070. [CrossRef]
- 4. Shih, M.; Momoniat, E.; Mahomed, F. Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh– Nagumo equation. *J. Math. Phys.* 2005, *46*, 023503. [CrossRef]
- 5. Kawahara, T.; Tanaka, M. Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation. *Phys. Lett. A* **1983**, 97, 311–314. [CrossRef]
- 6. Nucci, M.C.; Clarkson, P. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. *Phys. Lett. A* **1992**, *164*, 49–56. [CrossRef]
- 7. Li, H.; Guo, Y. New exact solutions to the Fitzhugh-Nagumo equation. Appl. Math. Comput. 2006, 180, 524-528. [CrossRef]
- 8. Abbasbandy, S. Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. *Appl. Math. Model.* **2008**, *32*, 2706–2714. [CrossRef]
- 9. Kakiuchi, N.; Tchizawa, K. On an explicit duck solution and delay in the Fitzhugh–Nagumo equation. *J. Differ. Equ.* **1997**, 141, 327–339. [CrossRef]

- 10. Schonbek, M.E. Boundary value problems for the FitzHugh-Nagumo equations. J. Differ. Equ. 1978, 30, 119–147. [CrossRef]
- 11. Yanagida, E. Stability of travelling front solutions of the FitzHugh-Nagumo equations. *Math. Comput. Model.* **1989**, *12*, 289–301. [CrossRef]
- 12. Jackson, D. Error estimates for the semidiscrete Galerkin approximations of the FitzHugh-Nagumo equations. *Appl. Math. Comput.*, **1992**, *50*, 93–114. [CrossRef]
- Gao, W.; Wang, J. Existence of wavefronts and impulses to FitzHugh–Nagumo equations. *Nonlinear Anal. Theory Methods Appl.* 2004, 57, 667–676. [CrossRef]
- 14. Olmos, D.; Shizgal, B.D. Pseudospectral method of solution of the Fitzhugh–Nagumo equation. *Math. Comput. Simul.* **2009**, *79*, 2258–2278. [CrossRef]
- 15. Dehghan, M.; Heris, J.M.; Saadatmandi, A. Application of semi-analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses. *Math. Methods Appl. Sci.* **2010**, *33*, 1384–1398. [CrossRef]
- 16. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In *North-Holland Mathematics Studies*; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204, p. 540.
- 18. Singh, J.; Kumar, D.; Nieto, J.J. A reliable algorithm for a local fractional tricomi equation arising in fractal transonic flow. *Entropy* **2016**, *18*, 206. [CrossRef]
- 19. Hristov, J. Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative. *Therm. Sci.* **2016**, *20*, 757–762. [CrossRef]
- 20. Zhao, D.; Singh, J.; Kumar, D.; Rathore, S.; Yang, X.J. An efficient computational technique for local fractional heat conduction equations in fractal media. *J. Nonlinear Sci. Appl. (JNSA)* **2017**, *10*, 1478–1486. [CrossRef]
- Zaky, M.A.; Machado, J.T. On the formulation and numerical simulation of distributed-order fractional optimal control problems. *Commun. Nonlinear Sci. Numer. Simul.* 2017, 52, 177–189. [CrossRef]
- Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F. Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution. *Commun. Nonlinear Sci. Numer. Simul.* 2017, 53, 44–64. [CrossRef]
- 23. Carvalho, A.; Pinto, C.M. A delay fractional order model for the co-infection of malaria and HIV/AIDS. *Int. J. Dyn. Control* 2017, 5, 168–186. [CrossRef]
- 24. Kumar, D.; Singh, J.; Baleanu, D. A fractional model of convective radial fins with temperature-dependent thermal conductivity. *Rom. Rep. Phys.* **2017**, *69*, 103.
- 25. Patel, H.S.; Patel, T. Applications of Fractional Reduced Differential Transform Method for Solving the Generalized Fractionalorder Fitzhugh–Nagumo Equation. *Int. J. Appl. Comput. Math.* **2021**, *7*, 188. [CrossRef]
- Abdel-Aty, A.-H.; Khater, M.M.; Baleanu, D.; Khalil, E.; Bouslimi, J.; Omri, M. Abundant distinct types of solutions for the nervous biological fractional FitzHugh–Nagumo equation via three different sorts of schemes. *Adv. Differ. Equ.* 2020, 2020, 476. [CrossRef]
- 27. Prakash, A.; Kaur, H. A reliable numerical algorithm for a fractional model of Fitzhugh-Nagumo equation arising in the transmission of nerve impulses. *Nonlinear Eng.* **2019**, *8*, 719–727. [CrossRef]
- Deniz, S. Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation. *Chaos Solitons Fractals* 2021, 142, 110417. [CrossRef]
- 29. Kansa, E.J. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. *Comput. Math. Appl.* **1990**, *19*, 127–145. [CrossRef]
- Franke, C.; Schaback, R. Convergence order estimates of meshless collocation methods using radial basis functions. *Adv. Comput. Math.* 1998, *8*, 381–399. [CrossRef]
- Madych, W.; Nelson, S. Multivariate interpolation and conditionally positive definite functions II. *Math. Comput.* 1990, 54, 211–230. [CrossRef]
- Micchelli, C.A. Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions. *Constr. Approx.* 1986, 2, 11–22. [CrossRef]
- 33. Golberg, M.A.; Chen, C.-S.; Karur, S.R. Improved multiquadric approximation for partial differential equations. *Eng. Anal. Bound. Elem.* **1996**, *18*, 9–17. [CrossRef]
- 34. Sarra, S.A.; Kansa, E.J. Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. *Adv. Comput. Mech.* **2009**, *2*, 220.
- 35. Kansa, E.J.; Holoborodko, P. On the ill-conditioned nature of C[∞] RBF strong collocation. *Eng. Anal. Bound. Elem.* **2017**, *78*, 26–30. [CrossRef]
- 36. Fasshauer, G.E.; McCourt, M.J. Kernel-Based Approximation Methods Using Matlab; World Scientific Publishing Company: Singapore, 2015; Volume 19.
- 37. Uddin, M.; Haq, S. RBFs approximation method for time fractional partial differential equations *Commun. Nonlinear Sci. Numer. Simul.* **2011**, *16*, 4208–4214. [CrossRef]

- 38. Hussain, M.; Haq, S.; Ghafoor, A. Meshless RBFs method for numerical solutions of two-dimensional high order fractional Sobolev equations. *Comput. Math. Appl.* **2020**, *79*, 802–816. [CrossRef]
- 39. Rippa, S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. *Adv. Comput. Math.* **1999**, *11*, 193–210. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.