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Abstract: This paper introduces the complex Rayleigh–van-der- Pol–Duffing oscillators (RVDOs),
which are hyperchaotic and can be autonomous or nonautonomous. The fundamental dynamics
of the autonomous and nonautonomous complex RVDOs, including dissipation, symmetry, fixed
points, and stability, are studied. These oscillators are found in various necessary fields of physics and
engineering. The paper proposes a scheme to achieve phase synchronization (PS) and antiphase syn-
chronization (APS) for different dimensional models. These kinds of synchronization are considered
a generalization of several other types of synchronization. We use the active control method based
on Lyapunov’s stability theory for this scheme. By analytically determining the control functions,
the scheme achieved PS and APS. Our scheme is applied to study the PS of hyperchaotic behaviors
for two distinct hyperchaotic nonautonomous and autonomous complex RVDOs. Additionally, the
scheme is employed to achieve the APS of a chaotic real nonautonomous RVDO and a hyperchaotic
complex autonomous RVDO, including those with different dimensions. Our work presents numeri-
cal results that plot the amplitudes and phases of these hyperchaotic behaviors, demonstrating the
achievement of the PS and APS. The encryption and decryption of grayscale images are researched
based on APS. The experimental results of image encryption and decryption are computed with
information entropy, visual analysis, and histograms.

Keywords: hyperchaotic; complex; Rayleigh–van-der-Pol–Duffing oscillator; phase synchronization;
antiphase synchronization

1. Introduction

The phase and antiphase synchronization of chaotic systems have gained significant
interest because of their relevance to various fields and scenarios. These include lasers [1,2],
complex networks [3], electrical circuits [4], memory processes [5], optical parametric oscil-
lators [6], human cortex [7], fluids [8], neuroscience [9], ecological systems [10], coupled
chemical oscillators [11], and the heartbeat and respiration cycle [12]. Many techniques to
study the phase synchronization for the same dimension have been introduced, such as com-
plete phase synchronization [13,14], antiphase synchronization [14], modified projective
phase synchronization [15], and combination–combination phase synchronization [16]. On
the other hand, different kinds of synchronization were introduced in the literature [17,18]
and in the references therein. It is widely acknowledged that real-world models exhibit non-
linearity as a fundamental characteristic. Consequently, the dynamics of these models are
mathematically depicted using nonlinear ODEs [19–23]. Kpomahou et al. [24] introduced
the real Rayleigh–van-der-Pol–Duffing oscillator (RVDO) as:
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u− u + au3 − e(b− cu2 − d

.
u2
)

.
u + el

(
1− au2)ucos(2wt) = e(h + 2msin(Ωt))cos(wt), (1)

where the expression −u + au3 + el
(
1− au2)u cos(2wt) represents the components of lin-

ear and nonlinear stiffness that contribute to the linear and nonlinear parametric ex-
citation, e(−b + cu2 + d

.
u2
)

.
u is the hybrid Rayleigh–van der Pol damping force, and

e(h + 2msin(Ωt))cos(wt)) is the external excitation force, w and Ω represent the two fre-
quencies of the force that are modulated in amplitude, while 2m, h, and e stand for the
degree of modulation, the unmodulated carrier amplitude, and a small quantity characteriz-
ing the smallness of the dissipative and forced terms, respectively. If one has v1 = u, v2 =

.
u,

the two first order ordinary differential equations of oscillator (1) are:
.
v1= v2,
.
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2 − dv2
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2)v1cos(2wt) + e(h + 2msin(Ωt))cos(wt).

(2)

If we consider that v1 = z1 + iz2 and v2 = z3 + iz4, i =
√
−1 are complex variables, then

the 4D real form of the RVDO (2) is:
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(3)

For the choice l = h = m = 0, the autonomous form of RVDO (3) is given as:

.
z1 =z3,
.
z2 =z4,
.
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2
)
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]
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[
−z4

3 + 3z2
3z4

]}
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(4)

This paper introduces hyperchaotic nonautonomous and autonomous complex Rayleigh–
van-der-Pol–Duffing oscillators (3) and (4), respectively. We investigate the basic dynamics
for these oscillators including dissipation, symmetry, fixed points, and their stability. Using
the Lyapunov exponents [25], we prove that models (3) and (4) have hyperchaotic solutions.
The paper proposes, also, a scheme utilizing an active control technique based on Lyapunov
stability analysis to achieve phase synchronization (PS) and antiphase synchronization
(APS) for different dimension models. According to the literature, these kinds of synchro-
nization are a generalization of several other forms [14,15]. The encryption and decryption
of the gray chemical plant image are examined using APS. For this image, we compute the
visual analysis, information entropy, and histograms.

This paper is organized as follows: Section 2 contains the dynamics of the proposed
complex oscillators (3) and (4), including fixed points and their stability, dissipation, sym-
metry, and chaotic behavior. In Section 3, we introduce a scheme to achieve PS and APS
based on an active control technique and Lyapunov stability analysis. Sections 4 and 5
deal with illustrative examples for the PS and APS, respectively. A gray image encryption
application of APS is presented in Section 6. For the grayscale chemical plant image, the
information entropy, visual analysis, and histograms are provided. Section 7 presents
our conclusions.
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2. Dynamics of Complex RVDOs (3) and (4)

This section presents the characteristics and behavior of our suggested autonomous
RVDO (3) and nonautonomous RVDO (4). These models are dissipative under the condition
eb < 0. It is clear that model (3) is not symmetric and model (4) is symmetric under the
transformation (z1, z2, z3, z4) −→ (−z1,−z2,−z3,−z4). Model RVDO (3) has no fixed

points, while model (4) has three as: E0 = (0, 0, 0, 0)T and E1,2 =
(
± 1√

a , 0, 0, 0
)T

for a > 0.

To study the stability of E0 = (0, 0, 0, 0)T , we calculate the Jacobian matrix of the model (4)
at E0 as: 



0 0 1 0
0 0 0 1
1 0 eb 0
0 1 0 eb


, (5)

and its eigenvalues are: µ1,2 = µ3,4 = be±
√

b2e2+4
2 . It is clear that E0 is not stable for any

values of the parameters e and b. The fixed points E1,2 can be similarly studied to E0.
We chose a = 1.25, b = 0.5, c = 0.085, e = 1, h = 1, m = 0.5, l = 0.05, w = 1, and Ω = 1

and calculated the Lyapunov exponents [25] for the real autonomous RVDO (2), the com-
plex autonomous RVDO (3) and the complex nonautonomous RVDO (4). We found those
values are (λ1 = 0.1556, λ2 = 0, λ3 = −0.4198), (λ1,2 = 0.028 , λ3 = 0, λ4 = −0.7289,
λ5 = −0.6709), and (λ1,2 = 0.0878, λ3 = −0.3291, λ4 = −5.1644), respectively. This means
that the real autonomous RVDO (2) has a chaotic solution, the complex autonomous
RVDO (3) has a hyperchaotic solution of order 2, and the complex nonautonomous RVDO (4)
has a hyperchaotic solution of order 2 as shown in Figures 1–3.
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Figure 1. Chaotic solution of model RVDO (2) for d = 0 and the initial values v0 = (0.1, 0.1)T in
(v1, v2) space.
Figure 1. Chaotic solution of model RVDO (2) for d = 0 and the initial values v0 = (0.1, 0.1)T in
(v1, v2) space.

In the following remarks, we present the differences between models (2)–(4).

Remark 1. Model (3) is considered a generalization of model (2).

Remark 2. Model (3) is not symmetric, and model (4) is symmetric.

Remark 3. Model (4) has three fixed points, while model (3) does not.
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Remark 4. It is observed that the count of Lyapunov exponents in nonautonomous models is higher
by one compared to autonomous models with the same dimensions. This difference arises due to the
inclusion of time as an additional dimension in the nonautonomous models.
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Figure 2. Hyperchaotic solution of model RVDO (3) for d = 0.2 and the initial values z0 =

(0.1, 0.1, 0.1, 0.1)T in (z1, z3) space.
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(0.1, 0.1, 0.1, 0.1)T in (z3, z4) space.

3. A Scheme for PS and APS with Different Dimensions

Our plan assumes a single master model and a single slave system. The master system
represents:

ż = f (z, t), (6)

while the slave model is:

ζ̇ = g(ζ, t) + u, (7)

where z ∈ Rn, ζ ∈ Rm are the state vectors of models, and u ∈ Rm is the control function
which will be calculated.
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3. A Scheme for PS and APS with Different Dimensions

Our plan assumes a single master model and a single slave system. The master
system represents:

.
z = f (z, t), (6)

while the slave model is: .
ζ = g(ζ, t) + u, (7)

where z ∈ Rn, ζ ∈ Rm are the state vectors of models, and u ∈ Rm is the control function
which will be calculated.
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Definition 1. PS can be observed in the master system (6) as well as the slave system (7), provided
that there exist two constant matrices A ∈ Rn×n and B ∈ Rn×m in the real matrix space, if

lim
x→∞
‖ E ‖ = lim

x→∞
‖ Bζ − Az ‖ = C, (8)

where E = (e1, e2, . . . , en)
T ∈ Rn is the error vector, and C is a constant vector.

Remark 5. The APS for different dimensions can be obtained if one takes A = −A in Equation (8).

Remark 6. If ζinRn and A = B = I ∈ Rn×n, then the PS for different dimensions is converted to
the PS with the same dimensions [14].

Remark 7. The modified PS with the same dimensions can be obtained from Equation (8), if one
chooses ζinRn and B ∈ Rn×n [15].

Theorem 1. We can achieve PS among two distinct models (6) and (7), if we design the vector of
the control functions U ∈ Rn in the following way:

U ≡ Bu = A f (z, t)− Bg(ζ, t)− KE, (9)

where K = diag(k1, k2, . . . , kn) is the control gain diagonal matrix.

Proof. From Equation (8), we have

E = Bζ − Az, (10)

by taking the derivative of Equation (10) with respect to time, we derive the following
expression:

.
E = B

.
ζ − A

.
z, (11)

using Equations (6), (7) and (9), we obtain

.
E = −KE, (12)

and by utilizing Lyapunov stability analysis, if we assign K to be zero, Equation (12) can
be expressed in the following form

.
E = 0. This means that E −→ C as t −→ ∞ ; then, PS

is achieved. �

Corollary 1. For the choice ki < 0 and using the stability theory, E −→ 0 as t −→ ∞ .

Corollary 2. According to Remark 5, the APS between the models (6) and (7) can be achieved if the
control functions take the form:

U ≡ Bu = −A f (z, t)− Bg(ζ, t)− KE. (13)

The phase differences ∆ij between the
(

n
∑

k=1
Aikzk,

n
∑

k=1
Ajkzk

)
projection for the master

model and the
(

m
∑

l=1
Bilζl ,

m
∑

l=1
Bjlζl

)
projection for the slave one are described as follows:

∆ij = ψd
ij − ψr

ij, (14)

where i, j = 1, 2, 3, . . . , n, i 6= j, ψd
ij = tan−1




n
∑

k=1
Ajkzk

n
∑

k=1
Aikzk


 and ψr

ij = tan−1




m
∑

l=1
Bjl ζl

m
∑

l=1
Bilζl


. The

occurrence of the PS is dependent on the bounded nature of these phase differences.
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The definitions of the amplitudes in the
(

n
∑

k=1
Aikzk,

n
∑

k=1
Ajkzk

)
projection for the master

model and the
(

m
∑

l=1
Bilζl ,

m
∑

l=1
Bjlζl

)
projection for the slave one are as follows:

Ad
ij =

√(
n
∑

k=1
Aikzk

)2
+

(
n
∑

k=1
Ajkzk

)2
,

Ar
ij =

√(
m
∑

l=1
Bilζl

)2
+

(
m
∑

l=1
Bjlζl

)2
.

(15)

Subsequently, we utilize this approach to examine the occurrence of PS in Section 4 and
APS in Section 5 by applying it to hyperchaotic attractors (2)–(4).

4. Illustrative Example for PS

In this section, we test the PS technique using an example. We consider the model (3)
as the master model, and the slave one is model (4). The slave model can be written after
adding the control functions as:

.
ζ1 = ζ3 + u1,
.
ζ2 = ζ4 + u2,
.
ζ3 = ζ1 − a

(
ζ1

3 − 3ζ1ζ2
2
)
+ e
{

bζ3 − c
[(

ζ2
1 − ζ2

2

)
ζ3 − 2ζ1ζ2ζ4

]
− d
[
ζ3

3 − 3ζ3ζ4
2
]}

+ u3,
.
ζ4 = ζ2 − a

(
−ζ2

3 + 3ζ2
1ζ2

)
e
{

bζ4 − c
[(

ζ2
1 − ζ2

2

)
ζ4 + 2ζ1ζ2ζ3

]
− d
[
−ζ4

3 + 3ζ2
3ζ4

]}
+ u4,

(16)

where u = (u1, u2, u3, u4)
T is the control functions.

For the choice A = B = I4×4 and applying Theorem 1, the control functions (9) can be
written as:

U1 ≡ u1 =z3 − ζ3 − k1e1,

U2 ≡ u2 =z4 − ζ4 − k2e2,

U3 ≡ u3 =z1 − a
(

z1
3 − 3z1z2

2
)
+ e
{

bz3 − c
[(

z2
1 − z2

2

)
z3 − 2z1z2z4

]
− d
[
z3

3 − 3z3z4
2
]}
−el{

[
1− a

(
z2

1 − z2
2

)]
z1

+2az1z2
2}cos(2wt) + e(h + 2msin(Ωt))cos(wt)−ζ1 + a

(
ζ1

3 − 3ζ1ζ2
2
)
− e{bζ3 − c[

(
ζ2

1 − ζ2
2

)
ζ3

−2ζ1ζ2ζ4]−d
[
ζ3

3 − 3ζ3ζ4
2
]}
− k3e3,

U4 ≡ u4 =z2 − a
(
−z2

3 + 3z2
1z2

)
e
{

bz4 − c
[(

z2
1 − z2

2

)
z4 + 2z1z2z3

]
− d
[
−z4

3 + 3z2
3z4

]}
−el{

[
1− a

(
z2

1 − z2
2

)]
z2

−2az2
1z2}cos(2wt)−ζ2 + a

(
−ζ2

3 + 3ζ2
1ζ2

)
− e
{

bζ4 − c
[(

ζ2
1 − ζ2

2

)
ζ4 + 2ζ1ζ2ζ3

]
− d
[
−ζ4

3 + 3ζ2
3ζ4

]}
− k4e4.

(17)

During the numerical simulation, we use the same parameters and initial conditions of the
master and slave models (3) and (16) of Figures 2 and 3. For the choice K = 0, the results
of PS are shown in Figures 4–6. Figures 4 and 5 show the phase differences for six plane
projections vs. t. The confirmation of achieving PS is supported by the observation that
the phase differences remain within a bounded range. The amplitudes of the master and
the slave models in (z1, z3) and (ζ1, ζ3) spaces ( Ad

13 and Ar
13 ) are shown in Figure 6a,b,

and Figure 6c displays Ad
13 vs. Ar

13. Figure 6 demonstrates that these amplitudes exhibit
hyperchaotic behavior and are uncorrelated. Similar results are observed for the other
amplitudes of the master and slave systems in different plane projections.

For K = diag(0.5, 2, 1.5, 1), the state variables for the master model (3) and the slave
model (16) are shown in Figure 7. Figure 8 depicts the synchronization errors, which
approach zero.
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5. Illustrative Example for APS

In this section, we introduce an example for APS with different dimensions. We
consider the model (2) as the 2D master model, and model (16) is the 4D slave one.

For the choice A = I2×2 and B =

(
1 0 1 0
0 1 0 1

)
and applying Corollary 2, the control

functions (13) can be written as:
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In the numerical simulation, we use the same parameters and initial conditions of the
master and slave models (2) and (16) of Figures 1 and 3. For the choice K = 0, the results
of the PS are shown in Figures 9 and 10. Figure 9 depicts the phase differences for one
plane projection vs. t. The fact that the phase differences are bounded confirms the
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achievement of PS. The amplitudes of the master and the slave models in (v1, v2) and
(ζ1 + ζ3, ζ2 + ζ4) spaces ( Ad

12 and Ar
12 ) are shown in Figure 10a,b, and Figure 6c displays

Ad
12 vs. Ar

12. Figure 10 demonstrates that these amplitudes exhibit hyperchaotic behavior
and are uncorrelated (linearly independent).
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For K = diag(0.5, 2), the state variables for the master model (2) and the slave model
(16) are shown in Figure 11. Figure 12 depicts the synchronization errors, which approach
zero.
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achievement of PS. The amplitudes of the master and the slave models in (v1, v2) and
(ζ1 + ζ3, ζ2 + ζ4) spaces (Ad

12 and Ar
12) are shown in Figure 10a,b, and Figure 6c displays

Ad
12 versus Ar

12. Figure 10 demonstrates that these amplitudes exhibit hyperchaotic behavior
and are uncorrelated (linearly independent).
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For K = diag(0.5, 2), the state variables for the master model (2) and the slave model
(16) are shown in Figure 11. Figure 12 depicts the synchronization errors, which approach
zero.

Figure 10. The amplitudes of the master model (2) and the slave model (16) in (v1, v2) and
(ζ1 + ζ3, ζ2 + ζ4) spaces: (a) Ad

12 vs. t, (b) Ar
1324 vs. t, (c) ( Ad

12, Ar
1324 ) space.

For K = diag(0.5, 2), the state variables for the master model (2) and the slave
model (16) are shown in Figure 11. Figure 12 depicts the synchronization errors, which
approach zero.
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which we take to be the master model in the sender. These signals produce a sequence of
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6.1. The Process of Encryption

In the encryption process, the following major steps are outlined. Firstly, an M× N
grayscale image is represented as a matrix of pixels as:

G =




G11 G12 . . . G1N
...

...
. . .

...
GM1 GM2 . . . GMN


. (19)

This matrix is then converted into a 1D vector, where each element represents a gray value
ranging from 0 to 255 as follows:

P = [G11, G12, . . . , G1N , G21, G22, . . . , G2N , GM1, GM2, . . . , GMN ] = [L1, L2, . . . , LMN ]. (20)

Next, a chaotic decimal sequence is generated based on the APS of the master model (2)
and the slave model (16), discarding the initial values to obtain a sequence of length MN as:

CS = [CS1, CS2, . . . , CSMN ]. (21)

This chaotic sequence is sorted in ascending order, and integer values K are calculated
using a formula involving the rounded floor of the chaotic sequence as follows:

K = mod
(

f loor(CS)× 1015, 256
)

. (22)

Then, an exclusive XOR operation is performed between the integer values K and the vector
P to create the encrypted vector HG.

HG = K⊕ P, (23)

where ⊕ is the exclusive XOR operation.
Finally, the encrypted vector is converted back into a 2D matrix to produce the ciphered

image of size M × N.

6.2. The Process of Decryption

The encryption procedure is both symmetric and reversible. As most people know,
decryption is the opposite of encryption, and the keys required for both processes are the
same.

6.3. Experimental Results

The efficiency of encrypting and decrypting grayscale images is evaluated in this
subsection. Various techniques, including information entropy, histogram, and visual
analysis, are used to assess the application’s performance. The 256 × 256 test image,
chemical plant, is shown in Figure 13a and was used for this evaluation.

6.3.1. Visual Analysis

This subsection assesses how closely and differently the original and decrypted images
resemble each other using visual analysis. The simulation results are shown in Figure 13,
where Figure 13a shows the original image (chemical plant), and Figure 13b depicts the
decrypted image. The decrypted image is the same as the original, whereas the encrypted
image has noise. This shows that our image encryption approach successfully encrypts and
decrypts grayscale images.
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Figure 13. Original and decrypted chemical plant images.

6.3.2. Information Entropy

A measure of an image’s randomness is called information entropy, and it is computed
as follows:

H(I) =
M

∑
k=1

q(k) log2
1

q(k)
. (24)

In image I, q(k) indicates the probability of an intensity value k, and M represents the
maximum feasible intensity value.

The encryption approach produced chemical plant images with information entropy
values of 7.3399 and 7.3424 for the original and decrypted images, respectively. With an
information entropy of nearly 8, the suggested method is very close to the optimal value
and contains considerable randomness. This indicates that the proposed method has a
minimal possibility of leaking information.

6.3.3. Histogram Analysis

The total number of pixels with intensity i is given by the histogram h(i) for an image
with intensity values between 0 and L. The frequency of the encrypted and decrypted
images can be examined using this histogram. It is imperative to remember that the his-
togram of an encrypted image must differ from the image’s before encryption. The original
chemical plant and decrypted image histograms are displayed in Figure 14, respectively.
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Figure 13. Chemical plant images: (a) original, and (b) decrypted.

6.3.2. Information Entropy

A measure of an image’s randomness is called information entropy, and it is computed
as follows:

H(I) =
M

∑
k=1

q(k) log2
1

q(k)
. (24)

In image I, q(k) indicates the probability of an intensity value k, and M represents the
maximum feasible intensity value.

The encryption approach produced chemical plant images with information entropy
values of 7.3399 and 7.3424 for the original and decrypted images, respectively. With an
information entropy of nearly 8, the suggested method is very close to the optimal value
and contains considerable randomness. This indicates that the proposed method has a
minimal possibility of leaking information.

6.3.3. Histogram Analysis

The total number of pixels with intensity i is given by the histogram h(i) for an image
with intensity values between 0 and L. The frequency of the encrypted and decrypted
images can be examined using this histogram. It is imperative to remember that the his-
togram of an encrypted image must differ from the image’s before encryption. The original
chemical plant and decrypted image histograms are displayed in Figure 14, respectively.
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A grayscale image’s histogram is not evenly distributed. By dividing the pixels in
the encrypted image equally, the suggested encryption algorithm can conceal statistical
information from the plain image.

7. Conclusions

In conclusion, this paper has introduced the hyperchaotic nonautonomous and au-
tonomous complex Rayleigh–van-der-Pol–Duffing oscillators (RVDOs) (3) and (4). We
studied the fundamental dynamics of these oscillators, such as stability, fixed points, and
dissipation. We demonstrated the hyperchaotic solutions of models (3) and (4) using the
Lyapunov exponents, as shown in Figures 1–3. The hyperchaotic nature of these models
may be used in numerous significant engineering and scientific domains. The proposed
scheme in Section 3, utilizing an active control technique based on Lyapunov stability anal-
ysis, aims to achieve PS and APS for different dimensional models. The scheme successfully
achieved PS and APS through the analytical determination of control functions (9) and
(13). These types of synchronization are considered a generalization of many types in the
literature [14,15]. The scheme is applied to investigate the PS of hyperchaotic attractors (3)
and (4). To achieve APS, we used the models (2) and (4), including those with different
dimensions. The presented numerical results illustrate the phases and amplitudes of these
chaotic and hyperchaotic attractors and provide evidence of the effective accomplishment
of PS and APS. These results are shown in Figures 4–12. Using the APS, a grayscale image
encryption technique is offered. Figure 13 displays the simulation results for the original
and decrypted images. The information entropy of both the plain and decrypted images
was computed and analyzed. They were closer to the optimal value of 8. As demonstrated
in Figure 14, the encrypted image distributions are uniform, but the ciphered picture his-
tograms are nearly flat. The encryption and decryption results for the gray chemical plant
images were displayed using the Matlab application.

Shortly, we hope to expand these studies to include phase combination synchroniza-
tion and phase combination–combination synchronization with various dimensions.
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