Analytical Study of the Complexities in a Three Species Food Web Model with Modified Caputo–Fabrizio Operator
Abstract
:1. Introduction
2. Model Formulation
3. Equilibria Points and Stability Analysis
- The zero equilibrium point which always exists, ;
- The axial equilibrium points always exists, ;
- The top predator free equilibrium point exists if .
- The endemic equilibrium points are denoted by
4. Basic Results
5. Theoretical Results
- Consider a non-negative function such that
- Consider a function Ψ satisfies , where , . Then, the proposed system (2) has at least one solution.
- Suppose a function exists which is positive, ∋
- Suppose that ; then, the proposed problem (2) solution is unique.
6. Numerical Solution
7. Results and Discussion
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differentiation. arXiv 2001, arXiv:math/0110241. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Haidong, Q.; Rahman, M.U.; Arfan, M. Fractional model of smoking with relapse and harmonic mean type incidence rate under Caputo operator. J. Appl. Math. Comput. 2022, 69, 403–420. [Google Scholar] [CrossRef]
- Xu, C.; Rahman, M.U.; Fatima, B.; Karaca, Y. Theoretical and Numerical Investigation of Complexities in Fractional-Order Chaotic System Having Torus Attractors. Fractals 2022, 30, 2250164. [Google Scholar] [CrossRef]
- Shah, K.; Abdeljawad, T. Study of a mathematical model of COVID-19 outbreak using some advanced analysis. Waves Random Complex Media 2022, 1–18. [Google Scholar] [CrossRef]
- Atangana, A.; Owolabi, K.M. New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 2018, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Shiri, B.; Baleanu, D. A general fractional pollution model for lakes. Commun. Appl. Math. Comput. 2022, 4, 1105–1130. [Google Scholar] [CrossRef]
- Eskandari, Z.; Avazzadeh, Z.; Ghaziani, R.K.; Li, B. Dynamics and bifurcations of a discrete-time Lotka–Volterra model using nonstandard finite difference discretization method. Math. Methods Appl. Sci. 2022. [CrossRef]
- Shiri, B.; Wu, G.; Baleanu, D. Terminal value problems for the nonlinear systems of fractional differential equations. Appl. Numer. Math. 2021, 170, 162–178. [Google Scholar] [CrossRef]
- Li, B.; Liang, H.; Shi, L.; He, Q. Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fractals 2022, 156, 111860. [Google Scholar] [CrossRef]
- Li, B.; Liang, H.; He, Q. Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals 2021, 146, 110856. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Caputo, M.; Fabrizio, M. On the singular kernels for fractional derivatives. Some applications to partial differential equations. Prog. Fract. Differ. Appl. 2021, 7, 1–4. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef] [Green Version]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Ahmad, S.; Qiu, D.; Rahman, M.U. Dynamics of a fractional-order COVID-19 model under the nonsingular kernel of Caputo–Fabrizio operator. Math. Model. Numer. Simul. Appl. 2022, 2, 228–243. [Google Scholar] [CrossRef]
- Saifullah, S.; Ali, A.; Khan, Z.A. Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel. AIMS Math. 2022, 7, 5275–5290. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Partohaghighi, M.; Saifullah, S.; Akgül, A.; Jarad, F. Oscillatory and complex behaviour of Caputo–Fabrizio fractional order HIV-1 infection model. AIMS Math. 2021, 7, 4778–4792. [Google Scholar] [CrossRef]
- Mostaghim, Z.S.; Moghaddam, B.P.; Haghgozar, H.S. Numerical simulation of fractional-order dynamical systems in noisy environments. Comput. Appl. Math. 2018, 37, 6433–6447. [Google Scholar] [CrossRef]
- Khan, Z.A.; Khan, J.; Saifullah, S.; Ali, A. Dynamics of Hidden Attractors in Four-Dimensional Dynamical Systems with Power Law. J. Funct. Spaces 2022, 2022, 3675076. [Google Scholar] [CrossRef]
- Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 1926, 118, 558–560. [Google Scholar] [CrossRef] [Green Version]
- Falconi, M.; Huenchucona, M.; Vidal, C. Stability and global dynamic of a stage-structured predator–prey model with group defense mechanism of the prey. Appl. Math. Comput. 2015, 270, 47–61. [Google Scholar] [CrossRef]
- Raw, S.N.; Mishra, P.; Kumar, R.; Thakur, S. Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study. Chaos Solitons Fractals 2017, 100, 74–90. [Google Scholar] [CrossRef]
- Yavuz, M.; Sene, N. Stability analysis and numerical computation of the fractional predator–prey model with the harvesting rate. Fractal Fract. 2020, 4, 35. [Google Scholar] [CrossRef]
- Ghanbari, B.; Djilali, S. Mathematical analysis of a fractional-order predator–prey model with prey social behavior and infection developed in predator population. Chaos Solitons Fractals 2020, 138, 109960. [Google Scholar] [CrossRef]
- Xu, C.; Rahman, M.U.; Baleanu, D. On fractional-order symmetric oscillator with offset-boosting control. Nonlinear Anal. Model. Control 2022, 27, 994–1008. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, L.; Huang, C.; Xiao, M. Stability and bifurcation analysis of a fractional predator–prey model involving two nonidentical delays. Math. Comput. Simul. 2021, 181, 562–580. [Google Scholar] [CrossRef]
- Qu, H.; Rahman, M.U.; Ahmad, S.; Riaz, M.B.; Ibrahim, M.; Saeed, T. Investigation of fractional order bacteria dependent disease with the effects of different contact rates. Chaos Solitons Fractals 2022, 159, 112169. [Google Scholar] [CrossRef]
- Algehyne, E.A.; Ibrahim, M. Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel. Chaos Solitons Fractals 2021, 150, 111150. [Google Scholar] [CrossRef]
- Ibrahim, H.A.; Naji, R.K. The complex dynamic in three species food webmodel involving stage structure and cannibalism. Aip Conf. Proc. 2020, 2292, 020006. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
1 | 1 | ||
0.25 | 0.1 | ||
0.65 | 0.5 | ||
0.01 | 0.2 | ||
0.01 | ℘ | 0.15 | |
100 | 0.15 | ||
0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkahtani, B.S.T. Analytical Study of the Complexities in a Three Species Food Web Model with Modified Caputo–Fabrizio Operator. Fractal Fract. 2023, 7, 105. https://doi.org/10.3390/fractalfract7020105
Alkahtani BST. Analytical Study of the Complexities in a Three Species Food Web Model with Modified Caputo–Fabrizio Operator. Fractal and Fractional. 2023; 7(2):105. https://doi.org/10.3390/fractalfract7020105
Chicago/Turabian StyleAlkahtani, Badr Saad T. 2023. "Analytical Study of the Complexities in a Three Species Food Web Model with Modified Caputo–Fabrizio Operator" Fractal and Fractional 7, no. 2: 105. https://doi.org/10.3390/fractalfract7020105
APA StyleAlkahtani, B. S. T. (2023). Analytical Study of the Complexities in a Three Species Food Web Model with Modified Caputo–Fabrizio Operator. Fractal and Fractional, 7(2), 105. https://doi.org/10.3390/fractalfract7020105