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Abstract: In this paper, we study a fractional Brusselator reaction–diffusion model with the help
of the residual power series transform method. Specific reaction–diffusion chemical processes are
modeled by applying the fractional Brusselator reaction–diffusion model. It should be mentioned
that many problems in nonlinear science are characterized by fractional differential equations, where
an unknown term occurs when a fractional-order derivative is operating on it. The analytic method
of this problem is rarely discussed in the literature, despite numerous scholars having researched its
application and usefulness. To validate our proposed method’s accuracy, we compare the numerical
results of the residual power series transform method and the exact result with different fractional
orders. The solution shows that the introduced approach is a good tool for solving linear and
nonlinear fractional system differential equations. Finally, we provide two and three-dimensional
graphical plots to support the impact of the fractional derivative on the behavior of the achieved
profile results to the proposed equations.

Keywords: fractional Brusselator reaction–diffusion system; analytical solutions; residual power
series transform method

1. Introduction

Fractional calculus, which includes fractional order derivatives and fractional integrals,
has attracted interest in the areas of natural sciences and technology due to its vast imple-
mentations in electromagnetic waves, viscoelasticity, diffusion of biological population,
nanotechnology, image and signal processing, random walk, control theory of dynam-
ical systems, anomalous transport, and anomalous diffusion [1–3]. Nonlinear ordinary
and partial differential equations (PDEs) are used to represent the majority of real-world
scientific and engineering phenomena [4]. In the mathematical modeling of numerous
natural phenomena, fractional nonlinear differential equations are particularly helpful. The
essential quality of fractional derivatives is their nonlocality, which emphasizes the fact that
the future state derives from the current state and all prior states. The study of nonlinear
ordinary differential equations is required to observe the behavior of a system. However,
evaluating the analytical solution for these types of situations is difficult. As a result, they
are dealt with by utilizing approximate numeric techniques [5–7].

Chemical reactions play an essential function, as shown by the Brusselsator reaction–
diffusion system. The reaction terms in this model come from the modeling of the chemical
structures, which includes plasma and laser physics, enzyme reactions, and other processes.
This nonlinear partial differential equation develops since chemical reactions involve two
unstable intermediates with controllable output and input compounds. Ozone generation
by atomic oxygen is one of the physical issues the Brusselsator reaction–diffusion system
solves. Specific chemical reaction–diffusion processes are modeled using the fractional
Brusselator reaction–diffusion system. It should be mentioned that many models in non-
linear science are characterized by fractional differential equations, where an unknown
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function occurs when a fractional-order derivative is operating on it. The approximate
analysis of this system is rarely discussed in the literature, despite numerous scholars
having researched its application and usefulness [8–11]. Recently, the development of
numerical schemes for the numerical solutions of reaction–diffusion Brusselator systems
has received considerable attention, such as the decomposition method [12,13], the finite-
difference method [14], the Runge–Kutta–Chebyshev technique [15], the dual-reciprocity
boundary element technique [16], the differential quadrature technique [17], the collocation
technique applying the radial basis function [18], the homotopy perturbation method [19],
the residual power series method [20] and the variational iteration method [21].

The residual power series method is a semianalytical tool for investigating many
types of fuzzy, partial, ordinary, and fractional-order integrodifferential problems. It is
an effective optimization method, since it delivers solutions in the closed type of avail-
able features. Various fractional differential and integral equations and fuzzy fractional
differential equations have been effectively solved using the residual power series tech-
nique, for example, the Newell–Whitehead–Segel fractional order equations [22] and the
fractional Fokker–Planck equations [23]. Researchers have coupled the fractional resonant
Schrodinger equation [24], massive fractional Thirring and Kundu–Eckhaus problems [25],
and particular categories of fractional fuzzy differential equations [26,27]. The Yang trans-
form (YT), which Xiao-Jun Yang introduced, can be used to resolve a variety of differential
equations with constant coefficients. This article aims to analyze the analytic and approxi-
mated solution for a nonlinear system’s fractional partial differential equations by applying
the residual power series transform method. The residual power series transform method
is a combination of the Yang transformation and the residual power series method, which
provides the analytical results as a easily fractional power series solution by converting the
suggested problems to Yang space and creating the results for the equations. Finally, the
result can be achieved by the inverse Yang transform of the achieved solutions. Using the
limit concept, the unknown coefficients in a Yang expansion can be determined, as opposed
to the residual power series transform method, which relies on the fractional derivative and
may require time to determine the fractional derivatives to identify the results. The residual
power series transform method requires fewer processing resources and less time and
provides more precision.

This work is arranged as follows: Section 2 contains some useful basic definitions of
the Yang transform. The suggested method is explained in terms of achieving the results
for the fractional partial differential equations schemes in Section 3. In Section 4, numerical
solutions are presented for some problems. Lastly, concluding remarks are drawn in
Section 2.

2. Preliminaries

This section is concerned with the fundamental concept of fractional calculus along
with the Yang transform theory.

2.1. Definition

The fractional Caputo derivative is given as [28]

D℘
ϑ U(y, ϑ) =

1
Γ(k− ℘)

∫ ϑ

0
(ϑ− ℘)k−℘−1U(k)(y,℘)d℘, k− 1 < ℘ ≤ k, k ∈ N. (1)

2.2. Definition

The Yang transform is stated as [28]

Y{U(ϑ)} = M(u) =
∫ ∞

0
e
−ϑ
u U(ϑ)dϑ, ϑ > 0, u ∈ (−ϑ1, ϑ2), (2)
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and the inverse Yang transform is

Y−1{M(u)} = U(ϑ). (3)

2.3. Definition

The nth derivative Yang transform is stated as [28]

Y{Un(ϑ)} = M(u)
un −

n−1

∑
k=0

Uk(0)
un−k−1 , ∀ n = 1, 2, 3, · · · (4)

2.4. Definition

The Yang transform in connection with the fractional-order derivative is stated as [28]

Y{U℘(ϑ)} = M(u)
u℘

−
n−1

∑
k=0

Uk(0)
u℘−(k+1)

, n− 1 < ℘ ≤ n. (5)

3. Methodology

In this section, we present the suggested methodology of the fractional partial differ-
ential equations [29]

D℘
τ ω1(ϕ, τ) = ℵ1(ω1, ω2, . . . , ωm) + f1(ϕ, τ)

D℘
τ ω2(ϕ, τ) = ℵ2(ω1, ω2, . . . , ωm) + f2(ϕ, τ)

...

D℘
τ ωm(ϕ, τ) = ℵm(ω1, ω2, . . . , ωm) + fm(ϕ, τ)

(6)

subject to:
ωi(ϕ, 0) = gi(ϕ), i = 1, 2, . . . , m, (7)

where D℘
τ refers to the CD of order ℘,℘ ∈ (0, 1],ℵi, i = 1, 2, · · · , m are well-known nonlinear

analytic functions, and fi, i = 1, 2, · · · , m can be represented as
Now, the technique for the RPSM solution of the fractional partial differential equations

in (6) and (7) can be constructed through the following steps.
Step 1. We write the fractional nonlinear differential equation as in Equations (6) and

(7) in the following short form:

D℘
τ ωj(ϕ, τ)− ℵj(ω1, ω2, . . . , ωm)− f j(ϕ, τ) = 0, j = 1, 2, . . . , m, (8)

subject to:
ωj(ϕ, 0) = gj(ϕ), j = 1, 2, . . . , m. (9)

Step 2. Applying the Yang transform to both sides of Equation (8), it becomes:

Wj(ϕ, s)− sωj(ϕ, 0)− s℘Nj(ϕ, s)− s℘Fj(ϕ, s) = 0, (10)

where Wj(ϕ, s) = Yτ

[
ωj(ϕ, τ)

]
, Nj(ϕ, s) = Yτ

[
Nj(ω1, ω2 , . . . , ωm)], and Fj(ϕ, s) =

Yτ

[
f j(ϕ, τ)

]
.

Step 3. Suppose that the solutions of fractional partial differential equations in
Equation (10) are in the form:

Wj(ϕ, s) =
∞

∑
n=0

sn℘+1gjn(ϕ), s > 0, j = 1, 2, · · · , m. (11)



Fractal Fract. 2023, 7, 108 4 of 14

Applying Equation (9), we have gj(ϕ) = ωj(ϕ, 0) = lims→∞ sWj(ϕ, s) = gj0(ϕ). Therefore,
the series form solutions can be represented as:

Wj(ϕ, s) = sgj(ϕ) +
∞

∑
n=1

sn℘+1gjn(ϕ), s > 0, j = 1, 2, · · · , m. (12)

Step 4. We define the k th-truncated series of Wj(ϕ, s) as follows:

Wk
j (ϕ, s) = sgj(ϕ) +

k

∑
n=1

snϕ+1gjn(ϕ), s > 0 j = 1, 2, · · · , m. (13)

Step 5. We define the Yang residual functions of Equation (10) and the k th-Yang
residual functions, respectively, as follows:

YResj(ϕ, s) = Wj(ϕ, s)− sωj(ϕ, 0)− s℘Nj(ϕ, s)− s℘Fj(ϕ, s). (14)

YResk
j (ϕ, s) = Wk

j (ϕ, s)− sωj(ϕ, 0)− s℘Nj(ϕ, s)− s℘Fj(ϕ, s). (15)

Step 6. We substitute the form of Wk
j (ϕ, s) as in Equation (13) into Equation (15).

Step 7. We multiply Equation (15) by ska+1, k = 1, 2, · · · , j = 1, 2, · · · , m.
Step 8. We solve the following algebraic equations recursively:

lim
s→∞

sk℘+1L Resk
j (ϕ, s) = 0, k = 1, 2, 3, · · · j = 1, 2, · · · , m; (16)

then, we obtain the forms of the unknown coefficients, gj1(ϕ), gj2(ϕ), · · · , gj(k−1)(ϕ), re-
spectively.

Step 9. We substitute the obtained forms of gji(ϕ), i = 1, 2, . . . , m to obtain the kth

series form solutions of Equation (10).
Step 10. We operate the inverse YT on the final form of Wk

j (ϕ, s), j = 1, 2, . . . , m to

obtain the kth series form solution, ωk
j (ϕ, τ), j = 1, 2, . . . , m, of Equations (6) and (7).

4. Results

Example 1. We considered the system of the fractional reaction–diffusion equation

D℘
τ u = u− u2 − uv + uϕϕ,

D℘
τ v = vϕϕ − uv, 0 < ℘ ≤ 1, τ > 0,

(17)

with the initial conditions

u(ϕ, 0) =
epϕ(

1 + e0.5pϕ
)2 ,

v(ϕ, 0) =
1

1 + e0.5pϕ
,

(18)

where p is constant.
Using the Yang transformation on Equation (17) and applying Equation (18), we obtained

Y [D℘
τ u] = Y [u− u2 − uv + uϕϕ],

Y [D℘
τ v] = Y [vϕϕ − uv],

(19)

U(ϕ, $) = $u(ϕ, 0) + $℘Y [u− u2 − uv + uϕϕ],

V(ϕ, $) = $v(ϕ, 0) + $℘Y [vϕϕ − uv].
(20)
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The Kth-truncated term series were

U(ϕ, $) =
$epϕ(

1 + e0.5pϕ
)2 +

ß

∑
n=1

$n℘+1 fn(ϕ),

V(ϕ, $) =
$(

1 + e0.5pϕ
) + ß

∑
n=1

$n℘+1gn(ϕ),

(21)

and the kth-Yang residual functions were

Yτ Resu,k(ϕ, $) =Uß(ϕ, $)− $epϕ(
1 + e0.5pϕ

)2 − $℘Yτ

[
Y−1

τ (Uß(ϕ, $))−Y−1
τ

(
U2

ß(ϕ, $)
)

−Y−1
τ (Uß(ϕ, $))Y−1

τ (Vß(ϕ, $)) + Y−1
τ

(
Uß,ϕϕ(ϕ, $)

)]
,

Yτ Resu,k(ϕ, $) =Vß(ϕ, $)− $(
1 + e0.5pϕ

) − $℘Yτ

[
Y−1

τ

(
Vß,ϕϕ(ϕ, $)

)
−Y−1

τ (Uß(ϕ, $))Y−1
τ (Vß(ϕ, $))

]
.

(22)

Now, to find fß(ϕ), and gß(ϕ), k = 1, 2, 3, · · · , we substituted the kth-truncated series
Equation (21) into the kth-Yang residual function Equation (22), multiplied the achieved solutions
by $k℘+1, and then recursively investigated the relations lim$→∞($k℘+1Yτ Resu,k(ϕ, $)) = 0
and lim$→∞($k℘+1Yτ Resv,k(ϕ, $)) = 0, k = 1, 2, 3, · · · . The first few functions were

f0(ϕ) =
epϕ(

1 + e0.5pϕ
)2 ,

g0(ϕ) =
1

1 + e0.5pϕ
,

f1(ϕ) =
(p2e0.5pϕ − 2p2 − 2e0.5pϕ)epϕ

(1 + e0.5pϕ)4 ,

g1(ϕ) =− 0.25(4epϕ + p2e0.5pϕ − p2ep∗x)

(1 + e0.5pϕ)3 ,

f2(ϕ) =
1

8(1 + e0.5pϕ)6

(
− 32p2e2pϕ + 16e2pϕ + 28e1.5pϕ p2 − 33p4e1.5pϕ + 4p2e2.5pϕ + 18p4e2pϕ − p4e2.5pϕ

+ 8p4epϕ
)

,

g2(ϕ) =
1

16(1 + e0.5pϕ)5

(
p4e2pϕ + 16e2pϕ − 8p2e2pϕ + 11p2epϕ − 11p4e1.5pϕ + 40p2e1.5pϕ − p4e0.5pϕ

− 32p2epϕ − 16e1.5pϕ
)

.

(23)

Putting the values of fß(ϕ) and gß(ϕ), k = 1, 2, 3, · · · into Equation (21), we obtained

U(ϕ, $) =
$epϕ(

1 + e0.5pϕ
)2 + $℘+1

( (p2e0.5pϕ − 2p2 − 2e0.5pϕ)epϕ

(1 + e0.5pϕ)4

)
+
( $2℘+1

8(1 + e0.5pϕ)6

(
− 32p2e2pϕ + 16e2pϕ + 28e1.5pϕ p2

− 33p4e1.5pϕ + 4p2e2.5pϕ + 18p4e2pϕ − p4e2.5pϕ + 8p4epϕ
))

,

V(ϕ, $) =
$(

1 + e0.5pϕ
) − $℘+1

(0.25(4epϕ + p2e0.5pϕ − p2ep∗x)

(1 + e0.5pϕ)3

)
+
( $2℘+1

16(1 + e0.5pϕ)5 (p4e2pϕ + 16e2pϕ − 8p2e2pϕ

+ 11p2epϕ − 11p4e1.5pϕ + 40p2e1.5pϕ − p4e0.5pϕ − 32p2epϕ − 16e1.5pϕ)
)

.

(24)

Using the inverse Yang transform, we obtained
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u(ϕ, τ) =
epϕ(

1 + e0.5pϕ
)2 +

( (p2e0.5pϕ − 2p2 − 2e0.5pϕ)epϕ

(1 + e0.5pϕ)4

) τ℘

Γ(℘+ 1)
+
( 1

8(1 + e0.5pϕ)6

(
− 32p2e2pϕ + 16e2pϕ

+ 28e1.5pϕ p2 − 33p4e1.5pϕ + 4p2e2.5pϕ + 18p4e2pϕ − p4e2.5pϕ + 8p4epϕ
)) τ2℘

Γ(2℘+ 1)
,

v(ϕ, τ) =
1(

1 + e0.5pϕ
) − (0.25(4epϕ + p2e0.5pϕ − p2ep∗x)

(1 + e0.5pϕ)3

) τ℘

Γ(℘+ 1)
+
( 1

16(1 + e0.5pϕ)5 (p4e2pϕ + 16e2pϕ − 8p2e2pϕ

+ 11p2epϕ − 11p4e1.5pϕ + 40p2e1.5pϕ − p4e0.5pϕ − 32p2epϕ − 16e1.5pϕ)
) τ2℘

Γ(2℘+ 1)
.

(25)

The residual power series transformation method was implemented to achieve the analyti-
cal and exact results for the strongly nonlinear fractional reaction–diffusion equation with the
initial conditions. In Figure 1, the analytical solutions of (a) u(ϕ, (τ)) and (b) v(ϕ, (τ)) of
Example 1 are shown. In Figure 2, (a) the fractional order 0.5, (b) 0.7, (c) the actual result and (d)
analytical solution of Eaxample 1 of u(ϕ, τ). Similarly, in Figure 3, (a) the fractional order 0.5,
(b) 0.7, (c) the actual result and (d) analytical solution of Eaxample 1 of v(ϕ, τ). In the above, the
figures showed that in the residual power series transformation method, the analytical results were
close to each other. Tables 1 and 2 detail the numerical analysis of u(ϕ, τ) and v(ϕ, τ) of the given
example from Example 1, with different values of ϕ, τ, and p = 2

3 .

Figure 1. The analytical solution for u(ϕ, (τ)) and v(ϕ, (τ)) from Example 1.

Table 1. Numerical analysis of u(ϕ, τ) of the example given in Example 1 with different values of ϕ,
τ, and p = 2

3 .

τ ϕ AE at ℘ = 0.5 AE at
℘ = 0.75 AE at ℘ = 1 AE at ℘ = 1

[20]

0.2 0.0805629452 0.0502204062 0.0325020875 0.0325020875
0.4 0.0825454718 0.0515331039 0.0334241734 0.0334241734

0.1 0.6 0.0839111844 0.0524787587 0.0341170570 0.0341170570
0.8 0.0846437383 0.0530448606 0.0345706478 0.0345706478
1 0.0847452771 0.0532295274 0.0347813764 0.0347813764

0.2 0.1386150391 0.1064055404 0.0816294703 0.0816294703
0.4 0.1421027846 0.1091805284 0.0838571430 0.0838571430

0.25 0.6 0.1445063572 0.1111623891 0.0855012205 0.0855012205
0.8 0.1457962927 0.1123251454 0.0865387309 0.0865387309
1 0.1459764695 0.1126662559 0.0869633834 0.0869633834
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Figure 2. The actual and analytical results for u(ϕ, τ) at k = 2
3 , c = 1, and different values of ℘ from

Example 1.

Figure 3. The actual and analytical solutions for v(ϕ, τ) at p = 2
3 , c = 1, and different values of ℘

from Example 1.
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Table 2. Numerical analysis of v(ϕ, τ) of the example given in Example 1 with different values of ϕ,
τ, and p = 2

3 .

τ ϕ AE at ℘ = 0.5 AE at ℘ = 0.75 AE at ℘ = 1 AE at ℘ = 1

0.2 0.0365409370 0.0162647517 0.0044485940 0.0044485940
0.4 0.0372349264 0.0167576585 0.0047433264 0.0047433264

0.1 0.6 0.0378161928 0.0172017544 0.0050225392 0.0050225392
0.8 0.0382802895 0.0175933608 0.0052838629 0.0052838629
1 0.0386242276 0.0179294469 0.0055251728 0.0055251728

0.2 0.0493801887 0.0277102702 0.0109897476 0.0109897476
0.4 0.0502167121 0.0285674155 0.0116808654 0.0116808654

0.25 0.6 0.0508790642 0.0293301937 0.0123303104 0.0123303104
0.8 0.0513628857 0.0299925619 0.0129326754 0.0129326754
1 0.0516662223 0.0305498127 0.0134832205 0.0134832205

Example 2. We considered the fractional order reaction–diffusion Brusselator equation

D℘
τ u(ϕ, ρ, τ) =u2(ϕ, ρ, τ)v(ϕ, ρ, τ)− u(ϕ, ρ, τ)(A + 1) +

1
500

(
uϕϕ(ϕ, ρ, τ) + uρρ(ϕ, ρ, τ)

)
+ B,

D℘
τ v(ϕ, ρ, τ) =− u2(ϕ, ρ, τ)v(ϕ, ρ, τ) + Au(ϕ, ρ, τ) +

1
500

(
uϕϕ(ϕ, ρ, τ) + uρρ(ϕ, ρ, τ)

)
,

(26)

with the initial conditions

u(ϕ, ρ, 0) =2 +
1
4

ρ,

v(ϕ, ρ, 0) =1 +
4
5

ϕ,
(27)

where u(ϕ, ρ, τ) and v(ϕ, ρ, τ) represent the chemical concentrations of the intermediate reaction
products, and A and B are the constant concentrations of the input reagents, where A = 17

5 and
B = 1.

Using the Yang transformation on Equation (26) and applying Equation (27), we obtained

Y [D℘
τ u(ϕ, ρ, τ)] =Y [u2(ϕ, ρ, τ)v(ϕ, ρ, τ)− u(ϕ, ρ, τ)(A + 1) +

1
500

(
uϕϕ(ϕ, ρ, τ) + uρρ(ϕ, ρ, τ)

)
+ B],

Y [D℘
τ v(ϕ, ρ, τ)] =Y [−u2(ϕ, ρ, τ)v(ϕ, ρ, τ) + Au(ϕ, ρ, τ) +

1
500

(
uϕϕ(ϕ, ρ, τ) + uρρ(ϕ, ρ, τ)

)
],

(28)

U(ϕ, ρ, $) = $u(ϕ, ρ, 0) + $℘Y [u2(ϕ, ρ, τ)v(ϕ, ρ, τ)− u(ϕ, ρ, τ)(A + 1) +
1

500
(
uϕϕ(ϕ, ρ, τ) + uρρ(ϕ, ρ, τ)

)
+ B],

V(ϕ, ρ, $) = $v(ϕ, ρ, 0) + $℘Y [−u2(ϕ, ρ, τ)v(ϕ, ρ, τ) + Au(ϕ, ρ, τ) +
1

500
(
uϕϕ(ϕ, ρ, τ) + uρρ(ϕ, ρ, τ)

)
].

(29)

The kth truncate series terms were

U(ϕ, $) = $(2 +
1
4

ρ) +
ß

∑
n=1

$n℘+1 fn(ϕ, ρ),

V(ϕ, $) = $(1 +
4
5

ϕ) +
ß

∑
n=1

$n℘+1gn(ϕ, ρ),

(30)

and the kth-Yang residual functions were
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Yτ Resu,k(ϕ, ρ, $) =Uß(ϕ, ρ, $)− $2 +
1
4

ρ− 1
$℘
Yτ

[
Y−1

τ

(
U2

ß(ϕ, ρ, $)
)
Y−1

τ (Vß(ϕ, ρ, $))−Y−1
τ (Uß(ϕ, ρ, $))(A + 1)

+
1

500

(
Y−1

τ

(
Uß,ϕϕ(ϕ, ρ, $)

)
+ Y−1

τ

(
Uß,ρρ(ϕ, ρ, $)

))
+ B

]
,

Yτ Resv,k(ϕ, ρ, $) =Vß(ϕ, ρ, $)− $1 +
4
5

ϕ− 1
$℘
Yτ

[
−Y−1

τ

(
U2

ß(ϕ, ρ, $)
)
Y−1

τ (Vß(ϕ, ρ, $)) + AY−1
τ (Uß(ϕ, ρ, $))

+
1

500

(
Y−1

τ

(
Uß,ϕϕ(ϕ, ρ, $)

)
+ Y−1

τ

(
Uß,ρρ(ϕ, ρ, $)

))]
.

(31)

Now, to calculate fß(ϕ, ρ) and gß(ϕ, ρ), k = 1, 2, 3, · · · , we put the kth-truncate series (Equa-
tion (30)) into the kth-Yang residual function (Equation (31)), multiplied the solution equation
by $k℘+1, and then recursively analyzed the relations lim$→∞($k℘+1Yτ Resu,k(ϕ, ψ, $)) = 0,
and lim$→∞($k℘+1Yτ Resv,k(ϕ, ψ, $)) = 0, k = 1, 2, 3, · · · . The first few terms were defined as:

f0(ϕ, ρ) =2 +
ρ

4
,

g0(ϕ, ρ) =1 +
4ϕ

5
,

f1(ϕ, ρ) =− 1899
500

+
16ϕ

5
− ρ

10
+

4ϕρ

5
+

1ρ2

16
+

ρ2 ϕ

20
,

g1(ϕ, ρ) =
1401
500
− 16ϕ

5
− 3ρ

20
− 4ρϕ

5
− ρ2

16
− ρ2 ϕ

20
,

f2(ϕ, ρ) =
66261
5000

− 36667ϕ

1250
+

256ρ2

251
− 13ρ3

320
− ρ4

256
− ρ3 ϕ

20
+

ρ

2
+

96ϕ2ρ

25
+

16ϕ

5
+

12ϕ2ρ2

25

+
ρ3 ϕ2

50
− ρ4 ϕ

320
− 33ρ2 ϕ

50
− 9199ρϕ

1250
− 2

5
− 2399ρ2

8000
− 157ρ

1000
+

2ρϕ

5
,

g2(ϕ, ρ) =− 44021
5000

+
ρ3 ϕ

20
− 96ρϕ2

25
− 12ρ2 ϕ2

25
+

ρ4 ϕ

320
− ρ3 ∗ ϕ2

50
+

28917ϕ

1250
− 256ϕ2

25
+

13ρ3

320

+
ρ4

256
+

1899ρ2

8000
+

7699ρϕ

1250
+

61ρ2 ϕ

100
− 243ρ

1000
,

....

(32)

Putting the value of fß(ϕ, ρ) and gß(ϕ, ρ), k = 1, 2, 3, · · · , into Equation (30), we obtained

U(ϕ, ρ, $) =$(2 +
1
4

ρ) +
[
− 1899

500
+

16ϕ

5
− ρ

10
+

4ϕρ

5
+

1ρ2

16
+

ρ2 ϕ

20

]
$℘+1 +

[66261
5000

− 36667ϕ

1250
+

256ρ2

251

− 13ρ3

320
− ρ4

256
− ρ3 ϕ

20
+

ρ

2
+

96ϕ2ρ

25
+

16ϕ

5
+

12ϕ2ρ2

25
+

ρ3 ϕ2

50
− ρ4 ϕ

320
− 33ρ2 ϕ

50
− 9199ρϕ

1250

− 2
5
− 2399ρ2

8000
− 157ρ

1000
+

2ρϕ

5

]
$2℘+1 + · · · ,

V(ϕ, ρ, $) =$(1 +
4
5

ϕ) +
[1401

500
− 16ϕ

5
− 3ρ

20
− 4ρϕ

5
− ρ2

16
− ρ2 ϕ

20

]
$℘+1 +

[
− 44021

5000
+

ρ3 ϕ

20
− 96ρϕ2

25

− 12ρ2 ϕ2

25
+

ρ4 ϕ

320
− ρ3 ϕ2

50
+

28917ϕ

1250
− 256ϕ2

25
+

13ρ3

320
+

ρ4

256
+

1899ρ2

8000
+

7699ρϕ

1250

+
61ρ2 ϕ

100
− 243ρ

1000

]
$2℘+1 + · · · .

(33)

Now, applying the inverse Yang transform, we obtained
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u(ϕ, ρ, τ) =2 +
1
4

ρ +
[
− 1899

500
+

16ϕ

5
− ρ

10
+

4ϕρ

5
+

ρ2

16
+

ρ2 ϕ

20

] τ℘

Γ(℘+ 1)
+
[66261

5000
− 36667ϕ

1250
+

256ρ2

251

− 13ρ3

320
− ρ4

256
− ρ3 ϕ

20
+

ρ

2
+

96ϕ2ρ

25
+

16ϕ

5
+

12ϕ2ρ2

25
+

ρ3 ϕ2

50
− ρ4 ϕ

320
− 33ρ2 ϕ

50
− 9199ρϕ

1250

− 2
5
− 2399ρ2

8000
− 157ρ

1000
+

2ρϕ

5

] τ2℘

Γ(2℘+ 1)
+ · · · ,

v(ϕ, ρ, τ) =1 +
4
5

ϕ +
[1401

500
− 16ϕ

5
− 3ρ

20
− 4ρϕ

5
− ρ2

16
− ρ2 ϕ

20

] τ℘

Γ(℘+ 1)
+
[
− 44021

5000
+

ρ3 ϕ

20
− 96ρϕ2

25

− 12ρ2 ϕ2

25
+

ρ4 ϕ

320
− ρ3 ϕ2

50
+

28917ϕ

1250
− 256ϕ2

25
+

13ρ3

320
+

ρ4

256
+

1899ρ2

8000
+

7699ρϕ

1250

+
61ρ2 ϕ

100
− 243ρ

1000

] τ2℘

Γ(2℘+ 1)
+ · · · .

(34)

The residual power series transformation method was implemented to achieve the analyt-
ical and exact results of the strongly nonlinear fractional reaction–diffusion equation with the
initial conditions. In Figure 4, the analytical solutions of (a) u(ϕ, (τ)) and (b) v(ϕ, (τ)) of
Example 2 are shown. In Figure 5, (a) the fractional order 0.5, (b) 0.7, (c) the actual result and (d)
analytical solution of Eaxample 2 of u(ϕ, τ). Similarly, in Figure 6, (a) the fractional order 0.5, (b)
0.7, (c) the actual result and (d) analytical solution of Example 2 of v(ϕ, τ). These figures showed
that in using the residual power series transformation method, the analytical results were close to
each other. Tables 3 and 4 detail the numerical analysis of u(ϕ, τ) and v(ϕ, τ) from Example 2 with
different values of ϕ, τ, and p = 2

3 .

Figure 4. The analytical solution (a) u(ϕ, (τ)) and subplot (b) v(ϕ, (τ)) at A = 17
5 , B = 1, x = 0.1,

and y = 0.1, respectively, from Example 2.
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Figure 5. The analytical solution for u(ϕ, τ) at A = 17
5 , B = 1, and y = 1 for distinct values of ℘ from

Example 2.

Figure 6. The analytical solution for v(ϕ, τ) at A = 17
5 , B = 1, and y = 1 for different values of ℘

from Example 2.
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Table 3. Numerical analysis of u(ϕ, τ) of the example given in 2 with different values of ϕ, τ, and
p = 2

3 .

τ ϕ
Numerical Simulation at

℘ = 0.5
Numerical Simulation at

℘ = 0.75
Numerical Simulation at

℘ = 1

0.2 1.837707373 1.917052547 1.980814044
0.4 1.625576979 1.975701657 2.036756119

0.1 0.6 1.530086586 2.045377487 2.098530194
0.8 1.551236193 2.126080036 2.166136269
1 1.689025800 2.217809305 2.239574344

0.2 1.713577815 1.674859093 1.702150273
0.4 1.553928691 1.670189950 1.748038242

0.25 0.6 1.503958022 1.722897876 1.830376211
0.8 1.563665809 1.832982869 1.949164180
1 1.733052051 2.000444931 2.104402148

Table 4. Numerical analysis of v(ϕ, τ) of the example given in 2 with different values of ϕ, τ, and
p = 2

3 .

τ ϕ
Numerical Simulation at

℘ = 0.5
Numerical Simulation at

℘ = 0.75
Numerical Simulation at

℘ = 1

0.2 1.459238898 1.424447874 1.321163456
0.4 1.754369291 1.528622455 1.421371381

0.1 0.6 1.932859684 1.605050337 1.515747306
0.8 1.994710077 1.653731523 1.604291231
1 1.939920471 1.674666009 1.687003156

0.2 1.324648176 1.528861254 1.499959102
0.4 2.088050864 1.776106048 1.590008633

0.25 0.6 2.559853552 1.913672387 1.643608164
0.8 2.740056238 1.941560270 1.660757695
1 2.628658925 1.859769698 1.641457227

5. Conclusions

This paper examined the fractional reaction–diffusion and reaction–diffusion Brus-
selator equations in terms of the Caputo fractional derivative. With the aid of the RPSM,
the series solution of the investigated model was successfully attained. Plots were made of
the numerical simulations of the proposed solution using various fractional values of ℘.
The technique was applied to the suggested fractional-order systems to investigate its ana-
lytical solutions. The solutions showed that the method was inexpensive and suitable for
achieving analytical solutions. We, therefore, conclude that the suggested fractional models
connected to the Caputo fractional derivative are very helpful in efficiently investigating
the problems arising in science and engineering.
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