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Abstract: This paper is concerned with a class of ten time-fractional polynomial evolution equations.
The one-parameter Lie point symmetries of these equations are found and the symmetry reductions
are provided. These reduced equations are transformed into nonlinear ordinary differential equations,
which are challenging to solve by conventional methods. We search for power series solutions and
demonstrate the convergence properties of such a solution.
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1. Introduction

Decades ago, Fujimoto-Watanabe [1] derived a complete list of the third-order poly-
nomial evolution equations that admit nontrivial Lie–Bäcklund symmetries. Recursion
operators map symmetries to symmetries so that certain integrable evolution equations admit
infinitely many symmetries [2]. If the recursion operator is hereditary [3], the infinite series
of symmetries commute with each other (see [1], Equation (2.7), p. 2). Most of these equa-
tions possess a hereditary recursion operator so that the Lie algebras of their Lie–Bäcklund
symmetries are infinitely dimensional and commutative. From the third-order equations, all
except the seventh equation admit a recursion operator (see Remark 1 in [1], p. 3).

Further, two fifth-order equations were also presented. In this work, we consider the
time-fractional version of this class of equations. They are the following eight equations:

∂αu
∂tα

= u3
xuxxx + au4

x, (1)

∂αu
∂tα

= u3
xuxxx + au3

x, (2)

∂αu
∂tα

= u3uxxx + 3u2uxuxx + a(u3uxx + u2u2
x) +

2
9

a2u3ux, (3)

∂αu
∂tα

= u3uxxx + 3u2uxuxx + 4au3ux, (4)

∂αu
∂tα

= u3uxxx + 3u2uxuxx + 3au2ux, (5)

∂αu
∂tα

= u3uxxx + au3ux, (6)

∂αu
∂tα

= u3uxxx +
3
2

u2uxuxx + a(u3uxx + u2u2
x) +

2
9

a2u3ux, (7)

∂αu
∂tα

= u3uxxx +
3
2

u2uxuxx + au2ux, (8)
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where a > 0 is a constant, and also two fifth-order equations that do not belong to the
above hierarchies of equations

∂αu
∂tα

= u5uxxxxx + 5u4(uxuxxxx + 2uxxuxxx), (9)

∂αu
∂tα

= u5uxxxxx + 5u4(uxuxxxx +
1
2

uxxuxxx) +
15
4

u3u2
xuxxx. (10)

Moreover, it is possible to construct chains of differential substitutions that connect
the Fujimoto-Watanabe equations with the KdV, Sawada–Kotera, and Kaup equations [4].
These equations find applications in different areas such as mathematical physics, but they
are primarily studied from the perspective of waves and ocean science [5].

Lie symmetry analysis has been widely applied to investigate nonlinear differential
equations arising in both mathematics and physics [6,7], particularly for constructing their
exact solutions. A Lie symmetry group of a system of differential equations is a group
of transformations. The group of transformations relies on continuous parameters and
maps any solution to another solution of the system. Lie group analysis is a systematic and
direct method for deriving new exact and explicit solutions. The above equations were
considered in [5,8] from the classical integer derivative perspective. Fractional derivatives
are of superior interest in recent literature, see for example [9–13]. FDEs are often considered
superior to classical integer-order equations since the latter experience memory effects
and FDEs allow for the study of intermediate evolutionary behaviour at fractional time.
Fractional differential equations, or FDEs, may most commonly contain Riemann and
Liouville or Caputo derivatives. Symmetry methods have been extended to FDEs [14–17].

The plan of the paper is as follows. In Section 2, we define the preliminary mathe-
matical notation and definitions required for this study. Thereafter, in Section 3, we list
the symmetries for each of the ten equations under study. Section 4 contains the series
solutions and reductions of the equations. A demonstration for testing of convergence of
the series is given, and finally, in Section 5, we conclude.

2. Fractional Calculus and Symmetries

In this section, we present the mathematical framework required in subsequent sec-
tions of this paper. In existence, there are several different definitions of fractional deriva-
tives. Time-fractional derivatives are commonly discussed in terms of Caputo, Grünwald–
Letnikov, or Riemann–Liouville derivatives [18–20]. In this work, we limit ourselves to the
latter—that is, we shall introduce the linear operators of differentiation in the framework
of Riemann–Liouville fractional calculus, followed by the procedure for determining point
symmetries of time-fractional PDEs.

G :=
∂αu
∂tα
− κ(x, t, u, ux, uxx, . . .) = 0. (11)

Here, 0 < α < 1 is the parameter describing the order of the fractional time derivative.
The Riemann–Liouville fractional derivative is defined by

Dα
t u(t, x) =

{
∂nu
∂tn , α = n ∈ N

1
Γ(n−α)

∂n

∂tn

∫ t
0

u(θ,x)
(t−θ)α+1−n dθ, n− 1 ≤ α ≤ n, n ∈ N (12)

where Γ(z) is the Euler gamma function.
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Suppose that (1) is invariant under the one-parameter Lie group of point transformations

t̄ = t + ετ(x, t, u) + O(ε2),

x̄ = x + εξ(x, t, u) + O(ε2),

ū = u + εη(x, t, u) + O(ε2),
∂αū
∂t̄α

= ∂αu
∂tα + εη0

α(x, t, u) + O(ε2),

∂ū
∂x̄

= ∂u
∂x + εηx(x, t, u) + O(ε2),

∂2ū
∂x̄2 = ∂2u

∂x2 + εηxx(x, t, u) + O(ε2),

... (13)

where ε is an infinitesimal parameter and, for example, the individual terms in the above
expression are

ηx = ηx + ηuux − (ξx + ξuux)ux − (τx + τuux)ut,

ηxx = ηxx + 2 ηxuux − 2 ξxuux
2 − ξxxux − 2 τuxutux − τxxut − ξuuux

3

−τuuux
2ut + ηuuux

2 − 3 ξuuxuxx − τuutuxx + ηuuxx − 2 ξxuxx

−2 τuuxutx − 2 τxutx. (14)

Using the generalised Leibniz rule [21–23] and a generalisation of the chain rule, we have
that [15]

η0
α =

∂αη

∂tα
+ (η − αDt(τ))

∂αu
∂tα
− u

∂αηu

∂tα
+ µ +

∞

∑
n=1

(
α

n

)
Dn

t (ξ)Dα−n
t (ux)

+
∞

∑
n=1

[(
α

n

)
∂n

∂tn ηu −
(

α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t . (15)

The Dα
t is the total fractional derivative operator, and

µ = ∑∞
n=2 ∑n

m=2 ∑m
k=2 ∑k−1

r=0 (
α
n)(

n
m)(

k
r)

1
k!

tn−α

Γ(n+1−α)

× (−u)r ∂m

∂tm

(
uk−r

)
∂n−m+kη

∂tn−m∂uk . (16)

It is important to remark that by convention in the literature, η(x, t, u) is taken to be linear
in the variable u so that µ vanishes. We adopt this idea in the work hereafter as well.

Let the generator

X = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
, (17)

span the associated Lie algebra—that is,

τ(x, t, u) =
dt∗

dε

∣∣∣
ε=0

, ξ(x, t, u) =
dx∗

dε

∣∣∣
ε=0

, η(x, t, u) =
du∗

dε

∣∣∣
ε=0

.

The infinitesimal criterion for invariance is given by XG = 0, when G = 0, where
X is extended to all derivatives appearing in the equation through an appropriate prolon-
gation. Moreover, it is essential that the transformation (13) leaves the lower limit of the
fractional derivative invariant ∂αu

∂tα , which translates into the additional constraint condition

τ(x, t, u)
∣∣∣
t=0

= 0. (18)
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We further require the following two definitions. The definition of the Erdélyi–Kober
fractional integral operator given by

(
Kl,m

β g
)
(z) =

g(z), m = 0,
1

Γ(m)

∫ ∞
1 (u− 1)m−1u−(l+m)g(zu

1
β )du, m > 0,

(19)

and the Erdélyi–Kober fractional differential operator is

Pq,r
β w =

n−1

∏
j=0

(
q + j− 1

β
z

∂

∂t

)(
Kq+r,n−r

β w
)
(z), (20)

At this stage, we also recall the formula [24]

dαxβ

dxα
=

x−α+βΓ(1 + β)

Γ(1− α + β)
, β > −1, (21)

which is useful in the reduction of the FDE.
In the next two sections, we shall study the main equations of the paper. The definitions

and formulas discussed above will be used to investigate each of the cases.

3. Symmetry Analysis

The application of the theory of Section 2 shows that we have the following symmetries
(see Table 1) corresponding to each of the above ten Equations (1)–(10), corresponding to
Cases 1–10. Detailed calculations of these symmetries are omitted due to their volume.

Table 1. Lie point symmetries of Equations (1)–(10).

Case Symmetries Dimension

1 X1 = ∂x, X2 = 3t∂t − uα∂u, Xu = ∂u, The Lie algebra spanned by point symmetries
is 3 dimensional.

2 X1, X3 = −3t∂t + 3uα∂u + xα∂x, Xu, The Lie algebra spanned by point symmetries
is 3 dimensional.

3 X1, X2, Xa = e−
ax
3 u∂u − 3

a e−
ax
3 ∂x, The Lie algebra spanned by point symmetries

is 3 dimensional.

4 X1, X2, The Lie algebra spanned by point symmetries
is 2 dimensional.

5,8 X1, X4 = −3t∂t + 2uα∂u + xα∂x, The Lie algebra spanned by point symmetries
is 2 dimensional.

6 X1, X2, X5 = u cos(
√

ax)
√

a∂u + sin(
√

ax)∂x, The Lie algebra spanned by point symmetries
X6 = u sin(

√
ax)
√

a∂u − cos(
√

ax)∂x, is 4 dimensional.

7 X1, X2, Xaa = 2e−
2ax

3 u∂u − 3
a e−

2ax
3 ∂x, The Lie algebra spanned by point symmetries

is 3 dimensional.

9, 10 X1, X7 = 5t∂t − αu∂u, X8 = u∂u + x∂x, X9 = 2ux∂u + x2∂x, The Lie algebra spanned by point symmetries
is 4 dimensional.

The Lie brackets are given in Tables 2–8. As for Cases 1, 3, and 7, the algebra is solvable.
Case 4 is abelian, nilpotent, and solvable—all commutators vanish. Cases 2, 5, and 8 are
indecomposable and solvable. Cases 6, 9, and 10 are decomposable.
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Table 2. Lie brackets for Case 1.

[,] X1 X2 Xu

X1 0 0 0
X2 0 0 αXu
Xu 0 −αXu 0

Table 3. Lie brackets for Case 2.

[,] X1 X3 Xu

X1 0 αX1 0
X3 −αX1 0 −3αXu
Xu 0 3αXu 0

Table 4. Lie brackets for Case 3.

[,] X1 X2 Xa

X1 0 0 − a
3 Xa

X2 0 0 0
Xa

a
3 Xa 0 0

Table 5. Lie brackets for Cases 5 and 8.

[,] X1 X4

X1 0 αX1
X4 −αX1 0

Table 6. Lie brackets for Case 6.

[,] X1 X2 X5 X6

X1 0 0 −
√

aX6
√

aX5
X2 0 0 0 0
X5

√
aX6 0 0

√
aX1

X6 −
√

aX5 0 −
√

aX1 0

Table 7. Lie brackets for Case 7.

[,] X1 X2 Xaa

X1 0 0 − 2a
3 Xaa

X2 0 0 0
Xaa

2a
3 Xaa 0 0

Table 8. Lie brackets for Cases 9 and 10.

[,] X1 X7 X8 X9

X1 0 0 X1 2 X8
X7 0 0 0 0
X8 −X1 0 0 X9
X9 −2 X8 0 −X9 0

4. Reductions and Power Series Solutions

In this section, we consider several transformed equations via the symmetries listed
above. The solutions are found with power series or, alternatively, the equation is reduced
with the use of Erdélyi–Kober operators. We consider Cases 1, 3, 4, 6, 7, and Cases 9 and 10,
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which admit the symmetries X2 and where the last two cases admit X7. The symmetry X2
produces the invariants

u(x, t) = w(x)t−
α
3 , (22)

while X7 produces the invariants

u(x, t) = w(x)t−
α
5 . (23)

In each case, these invariants will provide us with a fractional-order ODE, whereupon the
fractional terms are manipulated with the application of (21) to obtain an integer-order
ODE. The latter ODE is solved using the power series method [25]. The convergence and
uniqueness of the solution can then be determined via the implicit functional theorem. Case
1 is performed in detail. Cases 2, 5, and 8 are best reduced with Erdélyi–Kober operators
given the symmetries they admit.

4.1. Case 1

Consider Equation (1), a reduction using (22) followed by application of (21) generates
the following ODE to solve, viz.

w(x)Γ
(

1− α

3

)(
Γ
(

1− 4 α

3

))−1
−
(

d
dx

w(x)
)3 d3

dx3 w(x)− a
(

d
dx

w(x)
)4

= 0. (24)

This ODE is very difficult to solve using most techniques. We show that power series are
highly effective. Thus, the power series

w(x) =
∞

∑
r1=0

ar1 xr1 , (25)

is substituted into (24). We find that a0, a1, a2 are arbitrary and that a solution may be
expressed as

w(x) = a0 + a1x + a2x2 +

x3
a0Γ
(
1− α

3
)
− aa4

1Γ
(

1− 4α
3

)
6a3

1Γ
(

1− 4α
3

) +

x4
−8aa2a2

1Γ
(

1− 4α
3

)
− 6a2(a0Γ(1− α

3 )−aa4
1Γ(1− 4α

3 ))
a2

1
+ Γ

(
1− α

3
)

24a2
1Γ
(

1− 4α
3

)
+ . . . (26)

with graphical solution expressed in Figure 1.

Figure 1. We let a0 = a1 = a2 = a = 1, α = 1
2 , for the graphical solution.
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Testing for Convergence

A natural question that arises is whether or not the above series solution converges.
The following illustrates how to test for convergence. Suppose we consider (24) with the
power series (25) substituted into it; then, we have that

∞

∑
r1=0

(
ar1 Γ

(
1− α

3

)
Γ
(

1− 4 α

3

)−1
−

r1+6

∑
r2=3

r2

∑
r3=1

r3

∑
r4=1

r4ar4(r3 − r4)ar3−r4(r2 − r3)ar2−r3(r1 + 6− r2)(r1 +−r2)(r1 +−r2)ar1+6−r2 − (27)

a
r1+4

∑
r2=3

r2

∑
r3=1

r3

∑
r4=1

r4ar4(r3 − r4)ar3−r4(r2 − r3)ar2−r3(r1 + 4− r2)ar1+4−r2

)
xr1 = 0.

Hence, by formal calculations we have that, in general, the coefficients in the above
sum are given by

ar1+3 =

ar1 Γ(1− α
3 )

Γ(1− α
3 )

a3
1(r1 + 3)(r1 + 2)(r1 + 1)

−
∑r1+6

r2=4 ∑r2
r3=1 ∑r3

r4=1 r4ar4(r3 − r4)ar3−r4(r2 − r3)

a3
1(n1 + 3)(r1 + 2)(r1 + 1)

×

ar2−r3(r1 + 6− r2)(r1 + 5− r2)(r1 + 4− r2)ar1+6−r2

−
a ∑r1+4

r2=2 ∑r2
r3=1 ∑r3

r4=1 r4ar4(r3 − r4)ar3−r4(r2 − r3)ar2−r3(r1 + 4− r2)ar1+4−r2

a3
1(r1 + 3)(r1 + 2)(r1 + 1)

, (28)

for r1 ≥ 0, such that (26) reads as

w(x) = a0 + a1x + a2x2 +
∞

∑
r1=0

ar1+3xr1+3. (29)

Next, we prove the convergence of the power series solution (29). From (28), we obtain

|ar1+3| ≤ M

(
|ar1 |+

r1+6

∑
r2=4

r2

∑
r3=1

r3

∑
r4=1
|ar4 ||ar3−r4 ||ar2−r3 ||ar1+6−r2 |

+
r1+4

∑
r2=2

r2

∑
r3=1

r3

∑
r4=1
|ar4 ||ar3−r4 ||ar2−r3 ||ar1+4−r2 |

)
, (30)

where r1 = 0, 1, 2..., and M = max{ Γ(1− α
3 )

Γ(1− α
3 )

, |a|
a3

1
}.

Suppose we have the power series µ = R(x) = Σ∞
r1=0 pr1 xr1 where

pk = |ak|, k = 0, 1, 2 (31)

and

pr1+3 = M

(
pr1 +

r1+6

∑
r2=4

r2

∑
r3=1

r3

∑
r4=1

pr4 pr3−r4 pr2−r3 pr1+6−r2

+
r1+4

∑
r2=2

r2

∑
r3=1

r3

∑
r4=1

pr4 pr3−r4 pr2−r3 pr1+4−r2

)
. (32)
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Hence,
|ar1 | ≤ pr1 , r1 = 0, 1, 2... (33)

Next, we prove that µ is convergent in a neighbourhood of a point. Note that µ is a majorant
series of Equation (29) and can be written as follows:

R(x) = p0 + p1x + p2x2 +
∞

∑
r1=0

pr1+3xr1+3

= p0 + p1x + p2x2 +

M
∞

∑
r1=0

(
pr1 +

r1+6

∑
r2=4

r2

∑
r3=1

r3

∑
r4=1

pr4 pr3−r4 pr2−r3 pr1+6−r2

+
r1+4

∑
r2=2

r2

∑
r3=1

r3

∑
r4=1

pr4 pr3−r4 pr2−r3 pr1+4−r2

)
xr1+3

= p0 + p1x + p2x2

+M[R4 + R2ρ(x) + Rσ(x) + ν(x)], (34)

where ν(x) = θ(x)− p4
0 and θ(x), ρ(x), and σ(x) are polynomials with each term having a

degree of x of at least one. Hence, let

F(x, µ) = µ− p0 − p1x− p2x2

−M[R4 + R2ρ(x) + Rσ(x) + ν(x)], (35)

be the implicit function equation, where we obtain that F(0, p0) = 0 and Fµ(0, r0) =
1− 4Mp3

0 6= 0. By virtue of the implicit function theorem [26], µ = R(x) is analytic and
convergent in a neighbourhood of the point (0, p0) in the plane and with a positive radius.
Then, the power series solution (29) is convergent in the neighbourhood of a point (0, p0).

Therefore, (29) can be written as

w(x) = a0 + a1x + a2x2 +

Σ∞
r1=0

( ar1 Γ(1− α
3 )

Γ(1− α
3 )

a3
1(r1 + 3)(r1 + 2)(r1 + 1)

−
∑r1+6

r2=4 ∑r2
r3=1 ∑r3

r4=1 r4ar4(r3 − r4)ar3−r4(r2 − r3)

a3
1(n1 + 3)(r1 + 2)(r1 + 1)

×

ar2−r3(r1 + 6− r2)(r1 + 5− r2)(r1 + 4− r2)ar1+6−r2 (36)

−
a ∑r1+4

r2=2 ∑r2
r3=1 ∑r3

r4=1 r4ar4(r3 − r4)ar3−r4(r2 − r3)ar2−r3(r1 + 4− r2)ar1+4−r2

a3
1(r1 + 3)(r1 + 2)(r1 + 1)

)
xr1+3.

Thus, the exact power series solution of Equation (1) can be written as

u(x, t) =
(

a0 + a1x + a2x2 + Σ∞
r1=0ar1+3xr1+3

)
t−

α
3 (37)

where a0 6= 0, a1, a2, are arbitrary constants and the rest of the constants are to be determined
by (28). This produces the solution (26).

Similarly, and very tediously, we can construct convergent power series solutions
to all reduced equations in this paper. The solutions can then be transformed back into
original variables, given the invertible transformations stated for each reduction. Due to
how lengthy the above test for convergence is, we omit the convergence details for all
other cases.
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4.2. Case 2

As mentioned above, this case is best reduced by the elegant Erdélyi–Kober operators
instead of the how we treated Case 1. Suppose we take X3; then, we have the invariants
z = xt

α
3 and u(x, t) = w(x, t)t−α. Now, we transform the LHS of (2) using the following

transformation:

uα
t =

∂n

∂tn

[
1

Γ(n− α)

∫ t

0
(t− s)n−α−1w(s−

α
3 x)s−αds

]
. (38)

Let s = t/v; then, ds = −−t
v2 dv so that the above becomes

uα
t =

∂n

∂tn

[
1

Γ(n− α)

∫ 1

∞

(
t− t

v

)n−α−1
w

((
t
v

)− α
3

x

)(
t
v

)−α(
− t

v2

)
dv

]

=
∂n

∂tn

[
1

Γ(n− α)

∫ 1

∞

(
t− t

v

)n−α−1
w

((
t
v

)− α
3

x

)(
t
v

)−α(
− t

v2

)
dv

]

=
∂n

∂tn

[
tn−2α

Γ(n− α)

∫ ∞

1
(v− 1)n−α−1w

(
zv

α
3

)
(v)−(n−2α−1)dv

]
.

Then, by the definition of the Erdélyi–Kober fractional integral operator (19), β = 3
α and

m = n− α, and from the powers of v we have −(n− 2α + 1) =⇒ −[(n− α)− 1− α] =⇒
−[m + l], where l = −1− α.

So, the above becomes

uα
t =

∂n

∂tn

[
tn−2α

Γ(n− α)

(
K−1−α,n−α

3
α

w
)
(z)
]

. (39)

From z = xt−
α
3 , by the chain rule, we obtain

t
∂

∂t
φ(z) = −α

3
z

∂

∂t
. (40)

Therefore, the RHS of (39) is

∂n

∂tn

[
tn−2α

(
K1−α,n−α

3
α

w
)
(z)
]
=

∂n−1

∂tn−1

[
∂

∂t
tn−2α

(
K−1−α,n−α

3
α

w
)
(z)
]

, (41)

which by product rule gives

∂n−1

∂tn−1

[
(n− 2α)tn−2α−1

(
K−1−α,n−α

3
α

w
)
(z) + tn−2α−1t

(
K−1−α,n−α

3
α

w
)′

(z)

]
. (42)

Now, we will have

∂n−1

∂tn−1

[
(n− 2α)tn−2α−1

(
n− 2α− α

3
z

∂

∂t

)(
K−1−α,n−α

3
α

w
)
(z)
]

.

Then, by repeating this n− 1 times, we obtain

∂n

∂tn

[
tn−2α

(
K−1−α,n−α

3
α

w
)
(z)
]
= t−2α

n−1

∏
j=0

(
1 + j− 2α− α

3
z

∂

∂t

)
K−1−α,n−α

3
α

. (43)
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By the definition of the fractional operator (20) and by comparing the subscripts in the
Kq+r,n−r

β term, we have that r = α and q = −1− 2α, and (43) can be written as

∂n

∂tn

[
tn−2α

(
K−1−α,n−α

3
α

w
)
(z)
]
= t−2α

(
P−1−2α,α

3
α

w
)
(z). (44)

Then, from (39), we will have

uα
t = t−2α

(
P−1−2α,α

3
α

w
)
(z). (45)

Hence, Equation (2) transforms to(
P−1−2α,α

3
α

w
)
(z) =

(
w′(z)

)3(w′′′(z) + a
)
.

4.3. Case 3

Similar to Case 1, consider a reduction using (22) followed by application of (21) to
generate the following ODE

w(x)Γ
(

1− α

3

)(
Γ
(

1− 4 α

3

))−1
− (w(x))3 d3

dx3 w(x)− 3 (w(x))2
(

d2

dx2 w(x)
)

d
dx

w(x)

−a

(
(w(x))3 d2

dx2 w(x) + (w(x))2
(

d
dx

w(x)
)2
)
−

2 a2(w(x))3 d
dx w(x)

9
= 0,

which we solve with a power series w(x) =
∞

∑
r1=0

ar1 xr1 to obtain a0, a1, a2 as arbitrary

and where

w(x) = a0 + a1x + a2x2 +

x3

54a3
0Γ
(

1− 4α
3

)(− 2a2a1a3
0Γ
(

1− 4α

3

)
− 18aa2a3

0Γ
(

1− 4α

3

)

−9aa2
1a2

0Γ
(

1− 4α

3

)
− 54a1a2a2

0Γ
(

1− 4α

3

)
+ 9a0Γ

(
1− α

3

))
+ . . . (46)

with graphical solution expressed in Figure 2.

Figure 2. We let a0 = 1, a1 = 1, a2 = 1, α = 1
2 , a = 1.
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4.4. Case 4

In this case again, consider a reduction using (22) followed by application of (21) to
generate the following ODE

w(x)Γ
(

1− α

3

)(
Γ
(

1− 4 α

3

))−1
− (w(x))3 d3

dx3 w(x)− 3 (w(x))2
(

d2

dx2 w(x)
)

d
dx

w(x)

−4 a(w(x))3 d
dx

w(x) = 0,

which we solve with a power series w(x) =
∞

∑
r1=0

ar1 xr1 to obtain a0, a1, a2 as arbitrary

and where

w(x) = a0 + a1x + a2x2 +

x3

6a2
0Γ
(

1− 4α
3

)(− 4aa1a2
0Γ
(

1− 4α

3

)

−9aa2
1a2

0Γ
(

1− 4α

3

)
− 54a1a2a2

0Γ
(

1− 4α

3

)
+ 9a0Γ

(
1− α

3

))
+ . . . (47)

with graphical solution expressed in Figure 3.

Figure 3. We let a0 = 1, a1 = 1, a2 = 1, α = 1
2 , a = 1.

4.5. Case 5

This case admits the symmetry X4, which gives the invariants z = xt
α
3 and w(z) = ut

2α
3 .

This case was considered in [27] with a = 1, where it is shown that

uα
t = t

−5α
3

(
P−1− 5α

3 ,α
3
α

w
)
(z). (48)

Hence, for our case, using the above, we obtain that (5) transforms to(
P−1−2α,α

3
α

w
)
(z) = 3w2(z)

(
(a + w′′(z))w′(z)− 1

3
w(z)w′′′(z)

)
.

4.6. Case 6

Similar to Case 1, consider a reduction using (22) followed by application of (21) to
generate the following ODE

w(x)Γ
(

1− α

3

)(
Γ
(

1− 4 α

3

))−1
− (w(x))3 d3

dx3 w(x)− a(w(x))3 d
dx

w(x) = 0,
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which we solve with a power series w(x) =
∞

∑
r1=0

ar1 xr1 to obtain a0, a1, a2 as arbitrary and

where

w(x) = a0 + a1x + a2x2 +

x3

6a3
1Γ
(

1− 4α
3

)(a0Γ
(

1− α

3

)
− aa0a1Γ

(
1− 4α

3

))
+ . . . (49)

with graphical solution expressed in Figure 4.

Figure 4. We let a0 = 1, a1 = 1, a2 = 1, α = 1
2 , a = 1.

4.7. Case 7

Similar to Case 1, consider a reduction using (22) followed by application of (21) to
generate the following ODE

w(x)Γ
(
1− α

3
)(

Γ
(

1− 4 α
3

))−1
− (w(x))3 d3

dx3 w(x)−
3 (w(x))2

(
d2

dx2 w(x)
)

d
dx w(x)

2

−a
(
(w(x))3 d2

dx2 w(x) + (w(x))2
(

d
dx w(x)

)2
)
− 2 a2(w(x))3 d

dx w(x)
9 = 0,

which we solve with a power series w(x) =
∞

∑
r1=0

ar1 xr1 to obtain a0, a1, a2 as arbitrary

and where

w(x) = a0 + a1x + a2x2 +

x3

54a3
0Γ
(

1− 4α
3

)(− 2a2a1a3
0Γ
(

1− 4α

3

)
− 18aa2a3

0Γ
(

1− 4α

3

)

−9aa2
1a2

0Γ
(

1− 4α

3

)
− 27a1a2a2

0Γ
(

1− 4α

3

)
+ 9a0Γ

(
1− α

3

))
+ . . . (50)

with graphical solution expressed in Figure 5.
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Figure 5. We let a0 = 1, a1 = 1, a2 = 1, α = 1
2 , a = 1.

4.8. Case 8

This case shares the symmetry X4 with Case 5; hence, the reduction is the same for the
LHS of the equation, but the RHS differs, so that (8) transforms to(

P−1−2α,α
3
α

w
)
(z) = w2(z)

(
(a +

3
2

w′′(z))w′(z) + w(z)w′′′(z)
)

.

4.9. Case 9

Similar to Case 1, consider a reduction using (22) followed by application of (21) to
generate the following ODE

w(x)Γ
(
1− α

5
)(

Γ
(
1− 6 α

5
))−1 − (w(x))5 d5

dx5 w(x)− 5 (w(x))4
((

d4

dx4 w(x)
)

d
dx w(x)

+2
(

d2

dx2 w(x)
)

d3

dx3 w(x)
)
= 0,

which we solve with a power series w(x) =
∞

∑
r1=0

ar1 xr1 to obtain a0, a1, a2, a3, a4 as arbi-

trary and where

w(x) = a0 + a1x + a2x2 + a3x3 + a4x4

x5

120a4
0Γ
(
1− 6α

5
)(− 120a2a3a3

0Γ
(

1− 6α

5

)

−120a1a4a3
0Γ
(

1− 6α

5

)
+ Γ

(
1− α

5

))
+ . . . (51)

with graphical solution expressed in Figure 6.

Figure 6. We let a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1, α = 1
2 , a = 1.
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4.10. Case 10

Finally, consider a reduction using (22) followed by application of (21) to generate the
following ODE

w(x)Γ
(
1− α

5
)(

Γ
(
1− 6 α

5
))−1 − (w(x))5 d5

dx5 w(x)

−5 (w(x))4
((

d4

dx4 w(x)
)

d
dx w(x) + 1/2

(
d2

dx2 w(x)
)

d3

dx3 w(x)
)

−
15 (w(x))3( d

dx w(x))
2 d3

dx3 w(x)
4 = 0,

which we solve with a power series w(x) =
∞

∑
r1=0

ar1 xr1 to obtain a0, a1, a2, a3, a4 as arbi-

trary and where

w(x) = a0 + a1x + a2x2 + a3x3 + a4x4 +

x5

240a5
0Γ
(
1− 6α

5
)(− 60a2a3a4

0Γ
(

1− 6α

5

)
−240a1a4a4

0Γ
(

1− 6α

5

)
− 45a2

1a3a3
0Γ
(

1− 6α

5

)
+2a0Γ

(
1− α

5

))
+ . . . (52)

with graphical solution expressed in Figure 7.

Figure 7. We let a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1, α = 1
2 , a = 1.

5. Concluding Remarks

It has remained a topic of debate as to how to find the solutions of highly nonlinear
equations. There are many challenges associated with finding reductions and solutions
of FDEs in particular. We have shown that Lie symmetries combined with power series
methods are extremely effective in the analysis. The purpose of this study is to show
how power series may be applied to Lie symmetry reductions. We have restricted our
attention to FDEs with the Riemann–Liouville derivative; however, reductions from Caputo
fractional derivatives will work in practice. In this regard, power series may be used to
address problems in solving reduced equations obtained from other methods as well.
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