Higher-Order Dispersive and Nonlinearity Modulations on the Propagating Optical Solitary Breather and Super Huge Waves
Abstract
:1. Introduction
2. Optical Solitary Solution
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biondini, G.; El, G.A.; Hoefer, M.A.; Miller, P.D. Dispersive hydrodynamics: Preface. Physica D 2016, 333, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.J.; Engels, P.; Hoefer, M.A. Formation of dispersive shock waves by merging and splitting Bose-Einstein condensates. Phys. Rev. Lett. 2008, 101, 170404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutton, Z.; Budde, M.; Slowe, C.; Hau, L.V. Observation of quantum shock waves created with ultra-vompressed slow light pulses in a Bose-Einstein condensate. Science 2001, 293, 663–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, G.P. Nonlinear Fiber Optics; Academic: San Francisco, CA, USA, 1995. [Google Scholar]
- Triki, H.; Bensalem, C.; Biswas, A.; Khan, S.; Zhou, Q.; Adesanya, S.; Moshokoa, S.P.; Belic, M. Self-similar optical solitons with continuous-wave background in a quadratic-cubic non-centrosymmetric waveguide. Opt. Commun. 2019, 437, 392–398. [Google Scholar] [CrossRef]
- Nakkeeran, K. Bright and dark optical solitons in fiber media with higher-order effects. Chaos Solitons Fractals 2002, 13, 673–679. [Google Scholar] [CrossRef]
- Guan, W.Y.; Li, B.Q. New observation on the breather for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in inhomogeneous optical fiber. Optik 2019, 181, 853–861. [Google Scholar] [CrossRef]
- Yang, J. Nonlinear Waves in Integrable and Nonintegrable Systems; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Li, B.Q.; Ma, Y.L. Periodic and N-kink-like optical solitons for a generalized Schrödinger equation with variable coefficients in an inhomogeneous fiber system. Optik 2019, 179, 854–860. [Google Scholar] [CrossRef]
- Alharbi, Y.F.; Abdelrahman, M.A.E.; Sohaly, M.A.; Inc, M. Stochastic treatment of the solutions for the resonant nonlinear Schrödinger equation with spatio-temporal dispersions and inter-modal using beta distribution. Eur. Phys. J. Plus 2020, 135, 368. [Google Scholar] [CrossRef]
- Abdelwahed, H.G.; El-Shewy, E.K.; Abdelrahman, M.A.E.; Alsarhana, A.F. On the physical nonlinear (n+1)-dimensional Schrödinger equation applications. Results Phys. 2021, 21, 103798. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Abdelrahman, M.A.E.; Abdo, N.F. On the nonlinear new wave solutions in unstable dispersive environments. Phys. Scripta 2020, 95, 045220. [Google Scholar] [CrossRef]
- Abdelwahed, H.G.; Abdelrahman, M.A.E.; Alghanim, S.; Abdo, N.F. Higher-order Kerr nonlinear and dispersion effects on fiber optics. Results Phys. 2021, 26, 104268. [Google Scholar] [CrossRef]
- Chen, J.; Pelinovsky, D.E.; Upsal, J. Modulational instability of periodic standing waves in the derivative NLS equation. J. Nonlinear Sci. 2021, 31, 58. [Google Scholar] [CrossRef]
- McDonald, G.D.; Kuhn, C.C.N.; Hardman, K.S.; Bennetts, S.; Everitt, P.J.; Altin, P.A.; Debs, J.E.; Close, J.D.; Robins, N.P. Bright solitonic matter-wave interferometer. Phys. Rev. Lett. 2014, 113, 013002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.L. Nth-order rogue wave solutions for a variable coefficient Schrödinger equation in inhomogeneous optical fibers. Optik 2022, 251, 168103. [Google Scholar] [CrossRef]
- Li, B.Q.; Ma, Y.L. Interaction properties between rogue wave and breathers to the manakov system arising from stationary self-focusing electromagnetic systems. Chaos Solitons Fractals 2022, 156, 111832. [Google Scholar] [CrossRef]
- Husakou, A.V.; Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 2001, 87, 203901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.; Bhadra, S.K.; Agrawal, G.P. Perturbation of higher-order solitons by fourth-order dispersion in optical fibers. Opt. Commun. 2009, 282, 3798–3803. [Google Scholar] [CrossRef]
- Liu, C. Exact solutions for the higher-order nonlinear Schrödinger equation in nonlinear optical fibres. Chaos Solitons Fractals 2005, 23, 949–955. [Google Scholar] [CrossRef]
- Tamilthiruvalluvar, R.; Wamba, E.; Subramaniyan, S.; Porsezian, K. Impact of higher-order nonlinearity on modulational instability in two-component Bose-Einstein condensates. Phys. Rev. E 2019, 99, 032202. [Google Scholar] [CrossRef]
- Alharbi, Y.F.; Sohaly, M.A.; Abdelrahman, M.A.E. Fundamental solutions to the stochastic perturbed nonlinear Schrödinger’s equation via gamma distribution. Results Phys. 2021, 25, 104249. [Google Scholar] [CrossRef]
- Alkhidhr, H.A.; Abdelwahed, H.G.; Alghanim, M.A.E.A.S. Some solutions for a stochastic NLSE in the unstable and higher order dispersive environments. Results Phys. 2022, 34, 105242. [Google Scholar] [CrossRef]
- Ma, Y.L. Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 2019, 97, 95–105. [Google Scholar] [CrossRef]
- Li, B.Q. Phase transitions of breather of a nonlinear Schrödinger equation in inhomogeneous optical fiber system. Optik 2020, 217, 164670. [Google Scholar] [CrossRef]
- Li, B.Q.; Ma, Y.L. Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 2020, 386, 125469. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Whitham, G.B. On the propagation of weak shock waves. J. Fluid Mech. 1956, 1, 290–318. [Google Scholar] [CrossRef]
- Musher, S.L.; Rubenchik, A.M.; Zakharov, V.E. Weak Langmuir turbulence. Phys. Rep. 1995, 252, 178–274. [Google Scholar] [CrossRef]
- XGao, Y.; Guo, Y.J.; Shan, W.R. Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl. Math. Lett. 2021, 120, 107161. [Google Scholar]
- Li, B.Q.; Ma, Y.L. N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics. Nonlinear Dyn. 2020, 101, 2449–2461. [Google Scholar] [CrossRef]
- Gao, X.Y.; Guoa, Y.J.; Shanb, W.R. Looking at an open sea via a generalized (2+1)-dimensional dispersive long-wave system for the shallow water: Scaling transformations, hetero-Bäcklund transformations, bilinear forms and N solitons. Eur. Phys. J. Plus 2021, 136, 893. [Google Scholar] [CrossRef]
- Stepanyants, Y.A.; Zakharov, D.V.; Zakharov, V.E. Lump interactions with plane solitons. Radiophys Quantum El 2022, 64, 665–680. [Google Scholar] [CrossRef]
- Kachulin, D.; Dyachenko, A.; Zakharov, V.E. Soliton turbulence in approximate and exact models for deep water waves. Fluids 2020, 5, 67. [Google Scholar] [CrossRef]
- Dyachenko, S.A.; Nabelek, P.; Zakharov, D.V.; Zakharov, V.E. Primitive solutions of the Korteweg–de Vries equation. Theor Math Phys. 2020, 202, 334–343. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.S. Exotic wave patterns in Riemann problem of the high-order Jaulent-Miodek equation: Whitham modulation theory. Stud. Appl. Math. 2022, 149, 588–630. [Google Scholar] [CrossRef]
- Cheemaa, N.; Younis, M. New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system. Nonlinear Dyn. 2016, 83, 1395–1401. [Google Scholar] [CrossRef]
- Alomair, R.A.; Hassan, S.Z.; Abdelrahman, M.A.E. A new structure of solutions to the coupled nonlinear Maccari’s systems in plasma physics. AIMS Math. 2022, 7, 8588–8606. [Google Scholar] [CrossRef]
- Kourakis, I.; Shukla, P.K. Exact theory for localized envelope modulated electrostatic wavepackets in space and dusty plasmas. Nonlinear Process. Geophys. 2005, 12, 407–423. [Google Scholar] [CrossRef]
- Noman, A.A.; Islam, M.K.; Hassan, M.; Banik, S.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Dust-ion-acoustic rogue waves in a dusty plasma having super-thermal electrons. Gases 2021, 1, 106–116. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J.M. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 2009, 80, 026601. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahed, H.G.; Alsarhana, A.F.; El-Shewy, E.K.; Abdelrahman, M.A.E. Higher-Order Dispersive and Nonlinearity Modulations on the Propagating Optical Solitary Breather and Super Huge Waves. Fractal Fract. 2023, 7, 127. https://doi.org/10.3390/fractalfract7020127
Abdelwahed HG, Alsarhana AF, El-Shewy EK, Abdelrahman MAE. Higher-Order Dispersive and Nonlinearity Modulations on the Propagating Optical Solitary Breather and Super Huge Waves. Fractal and Fractional. 2023; 7(2):127. https://doi.org/10.3390/fractalfract7020127
Chicago/Turabian StyleAbdelwahed, H. G., A. F. Alsarhana, E. K. El-Shewy, and Mahmoud A. E. Abdelrahman. 2023. "Higher-Order Dispersive and Nonlinearity Modulations on the Propagating Optical Solitary Breather and Super Huge Waves" Fractal and Fractional 7, no. 2: 127. https://doi.org/10.3390/fractalfract7020127
APA StyleAbdelwahed, H. G., Alsarhana, A. F., El-Shewy, E. K., & Abdelrahman, M. A. E. (2023). Higher-Order Dispersive and Nonlinearity Modulations on the Propagating Optical Solitary Breather and Super Huge Waves. Fractal and Fractional, 7(2), 127. https://doi.org/10.3390/fractalfract7020127