Next Article in Journal
Existence Results for a Differential Equation Involving the Right Caputo Fractional Derivative and Mixed Nonlinearities with Nonlocal Closed Boundary Conditions
Next Article in Special Issue
The Effects of Thermal Memory on a Transient MHD Buoyancy-Driven Flow in a Rectangular Channel with Permeable Walls: A Free Convection Flow with a Fractional Thermal Flux
Previous Article in Journal
Higher-Order Dispersive and Nonlinearity Modulations on the Propagating Optical Solitary Breather and Super Huge Waves
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Analytical Solutions of the Predator–Prey Model with Fractional Derivative Order via Applications of Three Modified Mathematical Methods

1
Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
2
Mathematics Department, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 41411, Saudi Arabia
3
Department of Mathematics, University of Education, Multan Campus, Lahore 54000, Pakistan
4
Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2023, 7(2), 128; https://doi.org/10.3390/fractalfract7020128
Submission received: 4 December 2022 / Revised: 14 January 2023 / Accepted: 19 January 2023 / Published: 30 January 2023

Abstract

:
We have investigated wave solutions of the Predator–Prey (PP) model with fractional derivative order by novel three modified mathematical methods with the help of the Mathematica platform. The derived solutions are in the form of distinct functions such as trigonometric, hyperbolic, exponential and rational functional. For the physical phenomena of fractional model, some solutions are plotted in 2-dimensional and 3-dimensional by inserting specific values to attached parameters under sufficient condition on each solution. Hence, proposed schemes are enormously superbly mathematical tools to review wave solutions of several fractional models in nonlinear science.

1. Introduction

The co-occurrence and meddlesome of biological sorts has been one of the chief trepidations in wildlife investments since the origin of time. It is in this observation that today; the modeling of natural phenomena has become a essential to well know wildlife collaborations. In most cases, inquiries concentrated on the bio-mathematical area see refs. [1,2]. Evidently, the employment of mathematical models telling the performance of these spectacles is a main benefit in bio-mathematics, but the resolution of these systems leftovers a chief concern. In this way, additional lately the well-known PP model has been examined by espousing two integration schemes. Some extra works have surveyed in refs. [1,3,4].
There are among others, Auxiliary Equation Method, Sine–Gordon Expansion Method, Rational Method, Generalized e x p [ ϕ ( ξ ) ] -Expansion Method, Sub–ODE Equation Method, Sine–Cosine Method, Sinh–Expansion Method, ( G / G ) -Expansion Method, Kudryashov Method, New sub-ODE Method, Homogenous Balance Method, New Extended Algebraic Method, Rational Hyperbolic Function Method, Hirota’s Bilinear Method, Darboux Transformation Method and Homoclinic Breather Limit Method, Reproducing Kernel Hilbert Space Method and it is different modification see refs. [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51].
Let the PP model with fractional derivative order be
U t α = U x x 2 α β U + K + 1 δ U 2 U 3 H E , E t α = E x x 2 α + K U E m E δ E 3
The animated of the natural crusade Predator–Prey mathematical model is demarcated such as: m β = 0 and 1 δ + K m = 1 . Here, U and E are used for Prey population and Predator population size, respectively. For information about the basic definitions of the derivative order see ref. [8]. we have employed three mathematical methods on PP model, see details in ref. [52].
The remaining of part of the research is managed as: In Section 2, we demonstrate the sequence of our proposed methods. In Section 3, we implement these schemes to investigate solitary solutions of Equation (1). Conclusion is declared in Section 4.

2. Formation of Methods

Let the general NLFDE have following form:
L 1 U , D t α U , D x β U , D x γ U , , D t α D t α U , D t α D x β U , D x β D x β U , D x β D x γ U , = 0 , 0 < α , β , γ 1 .
Let the fractional transformation be
U = U ( ξ ) , ξ = μ 1 t α Γ ( α + 1 ) + μ 2 x β Γ ( β + 1 ) + μ 3 y γ Γ ( γ + 1 )
Put Equation (3) into Equation (2),
L 2 U , U , U , U , = 0 ,

2.1. Modified Extended Auxiliary Equation Mapping Method

Let solution (4) be
U = i = 0 N A i Ψ i + i = 1 N B i Ψ i + i = 2 N C i Ψ i 2 Ψ + i = 1 N D i Ψ Ψ i
Let Ψ satisfy
Ψ = β 1 Ψ 2 + β 2 Ψ 3 + β 3 Ψ 4
Put (5) with (6) in (4), solve for required destination of Equation (2).

2.2. Extended Simple Equation Method

Let (4) have the solution,
U ( ξ ) = i = N N A i Ψ i ( ξ )
Let Ψ satisfy
Ψ = c 0 + c 1 Ψ + c 2 Ψ 2 + c 3 Ψ 3
Put (7) with (8) in (4). Solve the achieved system for required the solution of Equation (2).

2.3. Modified F-Expansion Method

Let the solution of (4) be
U = a 0 + i = 1 N a i F i ( ξ ) + i = 1 N b i F i ( ξ )
Let
F = A + B F + C F 2 .
Put (9) with (10) in (4). Solve obtained system to establish the required solution of (2).

3. Applications

Consider that
U = U ( ξ ) , ξ = x α α μ t α α
Putting Equation (11) into Equation (1),
U + μ U β U + K + 1 δ U 2 U 3 H E = 0 , E + μ E + K U E m E δ E 3 = 0
Let E = U δ ; the achieved the nonlinear ODE is
β U + K U 2 U 3 + U + μ U = 0

3.1. Application of Modified Extended Auxiliary Equation Mapping Method

Let the solution of (13) be
U = A 1 Ψ + A 0 + B 1 Ψ + D 1 Ψ Ψ
Put (14) with (6) in (13),
A 0 = 2 β + β 1 2 , A 1 = β 3 2 , B 1 = 0 , D 1 = 1 2 , μ = 2 β + β 1 3 / 2 2 β 2 β + β 1 + 2 β + β 1 β 1 2 β 1 , K = 2 2 β + β 1 3 / 2 + 2 2 β 2 β + β 1 + 5 2 2 β + β 1 β 1 4 β 1
Putting Equation (15) in (14),
CASE I:
U 1 = β 3 β 1 ϵ coth 1 2 β 1 ( ξ + τ ) + 1 2 β 2 + β 1 3 / 2 ϵ csc h 2 1 2 β 1 ( ξ + τ ) 2 2 β 2 β 1 ϵ coth 1 2 β 1 ( ξ + τ ) + 1 β 2 + 2 β + β 1 2 , β 1 > 0 , β 2 2 4 β 1 β 3 = 0 .
E 1 = U 1 δ , β 1 > 0 , β 2 2 4 β 1 β 3 = 0 .
CASE II:
U 2 = β 1 β 3 β 1 ϵ cosh β 1 ( ξ + τ ) cosh β 1 ( ξ + τ ) + η β 1 ϵ sinh 2 β 1 ( ξ + τ ) cosh β 1 ( ξ + τ ) + η 2 2 2 β 1 4 β 3 ϵ sinh β 1 ( ξ + τ ) cosh β 1 ( ξ + τ ) + η + 1 + 2 β + β 1 2 + β 3 β 1 4 β 3 ϵ sinh β 1 ( ξ + τ ) cosh β 1 ( ξ + τ ) + η + 1 2 , β 1 > 0 , β 3 > 0 , β 2 = 4 β 1 β 3 1 / 2 .
E 2 = U 2 δ , β 1 > 0 , β 3 > 0 , β 2 = 4 β 1 β 3 1 / 2 .
CASE III:
U 3 = β 1 β 1 ϵ cosh β 1 ( ξ + τ ) cosh β 1 ( ξ + τ ) + η P 2 + 1 β 1 ϵ sinh β 1 ( ξ + τ ) sinh β 1 ( ξ + τ ) + P cosh β 1 ( ξ + τ ) + η P 2 + 1 2 2 β 2 β 1 ϵ sinh β 1 ( ξ + τ ) + P cosh β 1 ( ξ + τ ) + η P 2 + 1 + 1 β 2 + 2 β + β 1 2 β 3 β 1 ϵ sinh β 1 ( ξ + τ ) + P cosh β 1 ( ξ + τ ) + η P 2 + 1 + 1 2 β 2 , β 1 > 0 .
E 3 = U 3 δ , β 1 > 0 .
For the physical demonstration of the model, the profiles of some solution are plotted in 2-dimensional and 3-dimensional by assigning particular values to attached parameters (Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5).

3.2. Application of Extended Simple Equation Method

Let the solution of (13) be
U = A 1 Ψ + A 1 Ψ + A 0
Put (22) with (8) in (13),
CASE 1: c 3 = 0 ,
FAMILY-I
A 1 = 0 , A 1 = c 1 2 c 1 4 4 c 0 c 1 2 c 2 2 c 0 c 2 c 1 2 + c 1 4 4 c 0 c 1 2 c 2 2 c 0 c 1 , A 0 = c 1 2 c 1 2 c 1 2 4 c 0 c 2 2 c 0 c 2 , K = c 1 2 c 1 4 4 c 0 c 1 2 c 2 2 c 0 c 2 c 1 2 + c 1 4 4 c 0 c 1 2 c 2 4 c 0 c 2 β + 2 c 1 2 8 c 0 c 2 4 c 0 c 2 4 c 0 c 2 c 1 2 , μ = c 1 4 4 c 0 c 1 2 c 2 β c 1 2 + 4 c 0 c 2 c 1 3 4 c 0 c 1 c 2
Put (23) in (22),
U 4 = c 1 2 c 1 4 4 c 0 c 1 2 c 2 2 c 0 c 2 c 1 2 + c 1 4 4 c 0 c 1 2 c 2 c 1 4 c 2 c 0 c 1 2 tan 1 2 4 c 2 c 0 c 1 2 ( ξ + τ ) 2 c 0 c 1 2 c 2 c 1 2 c 1 2 c 1 2 4 c 0 c 2 2 c 0 c 2 , 4 c 0 c 2 > c 1 2 .
E 4 = U 4 δ , 4 c 0 c 2 > c 1 2 .
FAMILY-II
A 1 = c 1 2 c 1 4 4 c 0 c 1 2 c 2 2 c 0 c 2 c 1 2 + c 1 4 4 c 0 c 1 2 c 2 2 c 1 c 2 , A 0 = c 1 2 c 1 2 c 1 2 4 c 0 c 2 2 c 0 c 2 , K = c 1 2 c 1 4 4 c 0 c 1 2 c 2 2 c 0 c 2 c 1 2 + c 1 4 4 c 0 c 1 2 c 2 4 c 0 c 2 β + 2 c 1 2 8 c 0 c 2 4 c 0 c 2 4 c 0 c 2 c 1 2 , A 1 = 0 , μ = c 1 4 4 c 0 c 1 2 c 2 β + c 1 2 4 c 0 c 2 c 1 3 4 c 0 c 1 c 2
Substitute (26) in (22),
U 5 = c 1 2 c 1 4 4 c 0 c 1 2 c 2 2 c 0 c 2 c 1 2 + c 1 4 4 c 0 c 1 2 c 2 2 c 2 2 c 1 c 2 c 1 4 c 2 c 0 c 1 2 tan 1 2 4 c 2 c 0 c 1 2 ( ξ + τ ) c 1 2 c 1 2 c 1 2 4 c 0 c 2 2 c 0 c 2 , 4 c 0 c 2 > c 1 2
E 5 = U 5 δ , 4 c 0 c 2 > c 1 2 .
CASE 2: c 0 = 0 , c 3 = 0 ,
A 1 = 0 , A 1 = 2 c 2 , A 0 = 0 , μ = β c 1 2 c 1 , K = 2 β 2 2 c 1 2 2 c 1
Put (29) in (22),
U 6 = 2 c 2 c 1 exp c 1 ( ξ + τ ) 1 c 2 exp c 1 ( ξ + τ ) , c 1 > 0 .
E 6 = U 6 δ , c 1 > 0 .
U 7 = 2 c 2 c 1 exp c 1 ( ξ + τ ) c 2 exp c 1 ( ξ + τ ) + 1 , c 1 < 0 .
E 7 = U 7 δ , c 1 < 0 .
Figure 2. Solutions of U 6 (a,b) and E 6 (c,d) with α = 1 , β = 3.01 , c 1 = 1.5 , c 2 = 0.01 , τ = 3.1 and α = 1 , β = 1 , c 1 = 1.7 , c 2 = 1 , δ = 1.1 , τ = 1.1 , respectively.
Figure 2. Solutions of U 6 (a,b) and E 6 (c,d) with α = 1 , β = 3.01 , c 1 = 1.5 , c 2 = 0.01 , τ = 3.1 and α = 1 , β = 1 , c 1 = 1.7 , c 2 = 1 , δ = 1.1 , τ = 1.1 , respectively.
Fractalfract 07 00128 g002
CASE 3: c 1 = 0 , c 3 = 0 ,
FAMILY-I
A 1 = 2 c 2 , A 0 = β 2 c 0 c 2 , μ = 2 β 2 c 0 c 2 3 / 2 + 2 β β 2 c 0 c 2 2 2 c 0 c 2 β 2 c 0 c 2 4 c 0 c 2 , K = β 2 c 0 c 2 3 / 2 β β 2 c 0 c 2 + 10 c 0 c 2 β 2 c 0 c 2 4 c 0 c 2 , A 1 = 0 ,
Put (34) in (22),
U 8 = β 2 c 0 c 2 2 c 2 c 0 c 2 tan c 0 c 2 ( ξ + τ ) c 2 , c 0 c 2 > 0 ,
E 8 = U 8 δ , c 0 c 2 > 0 ,
U 9 = β 2 c 0 c 2 2 c 2 c 0 c 2 tanh c 0 c 2 ( ξ + τ ) c 2 , c 0 c 2 < 0 .
E 9 = U 9 δ , c 0 c 2 < 0 ,
FAMILY-II
A 1 = 2 c 0 , A 0 = β 2 c 0 c 2 , μ = 2 β 2 c 0 c 2 3 / 2 + 2 β β 2 c 0 c 2 2 2 c 0 c 2 β 2 c 0 c 2 4 c 0 c 2 , K = β 2 c 0 c 2 3 / 2 β β 2 c 0 c 2 + 10 c 0 c 2 β 2 c 0 c 2 4 c 0 c 2 , A 1 = 0 .
Put (39) in (22),
U 10 = β 2 c 0 c 2 + 2 c 0 c 0 c 2 tan c 0 c 2 ( ξ + τ ) c 2 , c 0 c 2 > 0 ,
E 10 = U 10 δ , c 0 c 2 > 0 ,
U 11 = β 2 c 0 c 2 + 2 c 0 c 0 c 2 tanh c 0 c 2 ( ξ + τ ) c 2 , c 0 c 2 < 0 .
E 11 = U 11 δ , c 0 c 2 < 0 .
FAMILY-III
A 1 = 2 c 2 , A 0 = β 8 c 0 c 2 , μ = 2 β 8 c 0 c 2 3 / 2 + 2 β β 8 c 0 c 2 + 8 2 c 0 c 2 β 8 c 0 c 2 16 c 0 c 2 , K = β 8 c 0 c 2 3 / 2 β β 8 c 0 c 2 + 40 c 0 c 2 β 8 c 0 c 2 16 c 0 c 2 , A 1 = 2 c 0 ,
Put (44) in (22),
U 12 = β 8 c 0 c 2 + 2 c 2 c 0 c 2 tan c 0 c 2 ( ξ + τ ) c 2 2 c 0 c 0 c 2 tan c 0 c 2 ( ξ + τ ) c 2 , c 0 c 2 > 0 ,
E 12 = U 12 δ , c 0 c 2 > 0 .
U 13 = β 8 c 0 c 2 + 2 c 2 c 0 c 2 tanh c 0 c 2 ( ξ + τ ) c 2 2 c 0 c 0 c 2 tanh c 0 c 2 ( ξ + τ ) c 2 , c 0 c 2 < 0 .
E 13 = U 13 δ , c 0 c 2 < 0 .
Figure 3. Solutions of U 13 (a,b) and E 13 (c,d) with α = 1 , β = 0.01 , c 0 = 1.1 , c 2 = 0.0001 , τ = 0.01 and α = 1 , β = 3.1 , c 0 = 2.1 , c 2 = 0.01 , δ = 0.5 , τ = 0.01 , respectively.
Figure 3. Solutions of U 13 (a,b) and E 13 (c,d) with α = 1 , β = 0.01 , c 0 = 1.1 , c 2 = 0.0001 , τ = 0.01 and α = 1 , β = 3.1 , c 0 = 2.1 , c 2 = 0.01 , δ = 0.5 , τ = 0.01 , respectively.
Fractalfract 07 00128 g003

3.3. Application of Modified F-Expansion Method

Let (13) have solution
U = a 0 + a 1 F + b 1 F
Put (49) in (13) with (10).
A = 0, B = 1, C = −1,
a 1 = 2 , a 0 = 0 , b 1 = 0 , μ = β 1 , K = 1 2 2 β + 2 2
Put (50) in (49),
U 14 = 2 1 2 tanh ξ 2 + 1 2
E 14 = U 14 δ
A = 0, C = 1, B = −1,
a 1 = 2 , a 0 = 0 , b 1 = 0 , μ = 1 β , K = 1 2 2 β + 2 2
Put (53) into (49),
U 15 = 2 1 2 1 2 coth ξ 2
E 15 = U 15 δ
A = 1/2, B = 0, C = −1/2
FAMILY-I
a 1 = 1 2 , a 0 = 1 2 , b 1 = 0 , μ = β 1 , K = 1 2 2 ( β ) 2 2
Substitute (56) into (49),
U 16 , 1 = cot ( ξ ) + csc ( ξ ) 2 1 2
E 16 , 1 = U 16 , 1 δ
FAMILY-II
a 1 = 0 , a 0 = 1 2 , b 1 = 1 2 , μ = β 1 , K = 1 2 2 β + 2 2
Put (59) in (49),
U 16 , 2 = 1 2 ( cot ( ξ ) + csc ( ξ ) ) + 1 2
E 16 , 2 = U 16 , 2 δ
FAMILY-III
a 1 = 1 2 , a 0 = 2 , b 1 = 1 2 , μ = β 4 2 , K = 1 4 2 β + 8 2
Put (63) in (49),
U 16 , 3 = ( cot ( ξ ) + csc ( ξ ) ) + 1 cot ( ξ ) + csc ( ξ ) 2 + 2
E 16 , 3 = U 16 , 3 δ
A = 1, B = 0, C = −1
FAMILY-I
a 1 = 2 , a 0 = 2 , b 1 = 0 , μ = 4 β 2 , K = 1 4 2 ( β ) 8 2
Put (65) in (49),
U 17 , 1 = 2 tanh ( ξ ) 2
E 17 , 1 = U 17 , 1 δ
FAMILY-II
a 1 = 0 , a 0 = 2 , b 1 = 2 , μ = 4 β 2 , K = 1 4 2 ( β ) 8 2
Put (68) in (49),
U 17 , 2 = 2 tanh ( ξ ) 2
E 17 , 2 = U 17 , 2 δ
FAMILY-III
a 1 = 2 , a 0 = 2 2 , b 1 = 2 , μ = β 16 4 , K = 1 8 2 β + 32 2
E 13 = U 13 δ , c 0 c 2 < 0 .
Figure 4. Solutions of U 17 , 1 (a,b) and E 17 , 1 (c,d) with α = 1 , β = 3.5 and α = 1 , β = 0.5 , δ = 0.01 , respectively.
Figure 4. Solutions of U 17 , 1 (a,b) and E 17 , 1 (c,d) with α = 1 , β = 3.5 and α = 1 , β = 0.5 , δ = 0.01 , respectively.
Fractalfract 07 00128 g004
Put (71) in (49),
U 17 , 3 = 2 tanh ( ξ ) + 1 tanh ( ξ ) + 2 2
E 17 , 3 = U 17 , 3 δ
A = C = 1/2, B = 0,
FAMILY-I
a 1 = 1 2 , a 0 = 2 β 1 2 , b 1 = 0 , μ = 1 2 ( 2 β 1 ) 3 / 2 + 2 β 2 β 1 + 2 β 1 , K = 1 2 ( 2 β 1 ) 3 / 2 2 2 β 2 β 1 + 5 2 β 1 2
Put (75) in (49),
U 18 , 1 = 2 β 1 2 + tan ( ξ ) + sec ( ξ ) 2
E 18 , 1 = U 18 , 1 δ
FAMILY-II
a 1 = 0 , a 0 = 2 β 1 2 , b 1 = 1 2 , μ = 1 2 ( 2 β 1 ) 3 / 2 2 β 2 β 1 2 β 1 , K = 1 2 ( 2 β 1 ) 3 / 2 2 2 β 2 β 1 + 5 2 β 1 2
Put (78) in (49),
U 18 , 2 = 2 β 1 2 + 1 2 ( tan ( ξ ) + sec ( ξ ) )
E 18 , 2 = U 18 , 2 δ
FAMILY-III
a 1 = 1 2 , a 0 = β 2 , b 1 = 1 2 , μ = 1 2 ( β 2 ) 3 / 2 2 2 β 2 β 2 β 2 , K = 1 4 ( β 2 ) 3 / 2 β 2 β + 10 β 2
Put (81) in (49),
U 18 , 3 = β 2 ( tan ( ξ ) + sec ( ξ ) ) 1 tan ( ξ ) + sec ( ξ ) 2
E 18 , 3 = U 18 , 3 δ
A = C = −1/2, B = 0,
FAMILY-I
a 1 = 1 2 , a 0 = 2 β 1 2 , b 1 = 0 , μ = 1 2 ( 2 β 1 ) 3 / 2 2 β 2 β 1 2 β 1 , K = 1 2 ( 2 β 1 ) 3 / 2 2 2 β 2 β 1 + 5 2 β 1 2
Put (84) in (49),
U 19 , 1 = 2 β 1 2 + sec ( ξ ) tan ( ξ ) 2
E 19 , 1 = U 19 , 1 δ
FAMILY-II
a 1 = 0 , a 0 = 2 β 1 2 , b 1 = 1 2 , μ = 1 2 ( 2 β 1 ) 3 / 2 2 β 2 β 1 2 β 1 , K = 1 2 ( 2 β 1 ) 3 / 2 2 2 β 2 β 1 + 5 2 β 1 2
Put (87) in (49),
U 19 , 2 = 2 β 1 2 1 2 ( sec ( ξ ) tan ( ξ ) )
E 19 , 2 = U 19 , 2 δ
FAMILY-III
a 1 = 1 2 , a 0 = β 2 , b 1 = 1 2 , μ = 1 2 ( β 2 ) 3 / 2 2 2 β 2 β 2 β 2 , K = 1 4 ( β 2 ) 3 / 2 β 2 β + 10 β 2
Put (90) in (49),
U 19 , 3 = β 2 + ( sec ( ξ ) tan ( ξ ) ) 1 sec ( ξ ) tan ( ξ ) 2
E 19 , 3 = U 19 , 3 δ
A = C = −1, B = 0,
FAMILY-I
a 1 = 2 , a 0 = β 2 , b 1 = 0 , μ = 1 4 2 ( β 2 ) 3 / 2 2 β 2 β 2 2 β 2 , K = 1 4 ( β 2 ) 3 / 2 + β β 2 10 β 2
Put (93) in (49),
U 20 , 1 = β 2 2 tan ( ξ )
E 20 , 1 = U 20 , 1 δ
FAMILY-II
a 1 = 0 , a 0 = β 2 , b 1 = 2 , μ = 1 4 2 ( β 2 ) 3 / 2 + 2 β β 2 + 2 2 β 2 , K = 1 4 ( β 2 ) 3 / 2 β 2 β + 10 β 2
Put (96) in (49),
U 20 , 2 = 2 tan ( ξ )
E 20 , 2 = U 20 , 2 δ
FAMILY-III
a 1 = 2 , a 0 = β 8 , b 1 = 2 , μ = 1 16 2 ( β 8 ) 3 / 2 2 β 8 β 8 2 β 8 , K = 1 16 ( β 8 ) 3 / 2 + β β 8 40 β 8
Put (99) in (49),
U 20 , 3 = β 8 2 tan ( ξ ) 1 tan ( ξ )
E 20 , 3 = U 20 , 3 δ
A = B = 0
a 1 = 2 C , a 0 = β , b 1 = 0 , μ = 2 β , K = 2 β
Put (102) in (49),
U 21 = β + 2 c 1 C ξ + η
E 21 = U 21 δ
B = C = 0
a 1 = 0 , a 0 = β , b 1 = 2 A , μ = 2 β , K = 2 β
Put (105) in (49),
U 22 = 2 A A ξ + β
E 22 = U 22 δ
C = 0
a 1 = 0 , a 0 = 2 B , b 1 = 2 A β 4 2 A B 2 4 B 2 β , μ = β B 2 B , K = 2 2 β 2 16 2 B 4 + 2 β 3 4 B 2 β 6 2 β 2 B 2 4 B 2 β 4 2 β B 2 + 32 2 B 6 4 B 2 β 2 4 B 3 β B
Put (108) in (49),
U 23 = 2 A β 4 2 A B 2 4 B 2 β ( exp ( B ξ ) A ) B 2 B ( exp ( B ξ ) A ) B
E 23 = U 23 δ
Figure 5. Solutions of U 22 (a,b) and E 22 (c,d) with α = 1 , β = 0.1 and α = 1 , β = 3.1 , δ = 5.05 , respectively.
Figure 5. Solutions of U 22 (a,b) and E 22 (c,d) with α = 1 , β = 0.1 and α = 1 , β = 3.1 , δ = 5.05 , respectively.
Fractalfract 07 00128 g005

4. Conclusions

We have explored progressive and efficient solitary wave solutions of f PP system via successfully implementation of three mathematical methods. For the physical demonstration of the model, the profiles of some solution are plotted in 2-dimensional and 3-dimensional by assigning particular values to attached parameters. Hence, the offered techniques are meritoriously pertinent for advance studies for other NFPDEs.

Author Contributions

Methodology, A.R.S.; Formal analysis, A.F.A. (Amal F. Alharbi); Investigation, A.A.; Writing—original draft, A.F.A. (Abdulrahman F. AlJohani); Writing—review & editing, M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia (S-1442-0159).

Data Availability Statement

I hereby declare that this manuscript is the result of my independent creation under the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published or written by other individuals or groups.

Acknowledgments

The authors would like to acknowledge support for this work from the Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia, under Grant no. S-1442-0159.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wagner, J.P.; Schreiner, P.R. London dispersion in molecular chemistry-reconsidering steric effects. Angew. Chem. Int. Ed. 2015, 54, 12274. [Google Scholar] [CrossRef] [PubMed]
  2. Kaplan, G.; Menzio, G. The morphology of price dispersion. Int. Econ. Rev. 2015, 56, 1165. [Google Scholar] [CrossRef] [Green Version]
  3. Abbagari, S.; Houwe, A.; Saliou, Y.; Douvagaï; Chu, Y.M.; Inc, M.; Doka, S.Y. Analytical survey of the Predator-Prey model with fractional derivative order. AIP Adv. 2021, 11, 035127. [Google Scholar] [CrossRef]
  4. Dubey, B. A Prey-Predator Model with a Reserved Area. Nonlinear Anal. Model. Control 2007, 12, 479. [Google Scholar] [CrossRef] [Green Version]
  5. Nikan, O.; Avazzadeh, Z. Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 2021, 169, 303–320. [Google Scholar] [CrossRef]
  6. Oderinu, R.A.; Owolabi, J.A.; Taiwo, M. Approximate solutions of linear time-fractional differential equations. J. Math. Comput. Sci. 2023, 29, 60–72. [Google Scholar] [CrossRef]
  7. AlAhmad, R.; AlAhmad, Q.; Abdelhadi, A. Solution of fractional autonomous ordinary differential equations. J. Math. Comput. Sci. 2022, 27, 59–64. [Google Scholar] [CrossRef]
  8. Akram, T.; Abbas, M.; Ali, A. A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation. J. Math. Comput. Sci. 2021, 22, 85–96. [Google Scholar] [CrossRef]
  9. Alphonse, H.; Jamilu, S.; Zakia, H.; Doka, S.Y. Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line. Phys. Scr. 2020, 95, 045203. [Google Scholar]
  10. Rizvi, S.T.; Seadawy, A.R.; Batool, T.; Ashraf, M.A. Homoclinic breaters, mulitwave, periodic cross-kink and periodic cross-rational solutions for improved perturbed nonlinear Schrödinger’s with quadratic-cubic nonlinearity. Chaos Solitons Fractals 2022, 161, 112353. [Google Scholar] [CrossRef]
  11. Shihua, C.; Fabio, B.; Jose, M.S.; Yi, L.; Philippe, G. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations. Phys. Rev. E 2016, 93, 062202. [Google Scholar]
  12. Sharma, V.K. Chirped soliton-like solutions of generalized nonlinear Schrödinger equation for pulse propagation in negative index material embedded into a Kerr medium. J. Phys. 2016, 90, 1271. [Google Scholar] [CrossRef]
  13. Goyal, A.; Gupta, R.; Kumar, C.N.; Raju, T.S. Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 2011, 84, 063830. [Google Scholar]
  14. Elsayed, M.E.; Mohamed, E.M.A. Application of newly proposed Sub-ODE method to locate chirped optical solutions to Triki-Biswas equation. Optik 2020, 207, 164360. [Google Scholar]
  15. He, J.; Xu, S.; Porsezian, K. Rogue waves of the FOKAS-LENELLS equation. J. Phys. Soc. Jpn. 2012, 81, 124007. [Google Scholar] [CrossRef] [Green Version]
  16. Alphonse, H.; Malwe, B.H.; Nestor, S.; Dikwa, J.; Mibaile, J.; Gambo, B.; Doka, S.Y.; Kofane, T.C.; Salam, K.; Biwas, A.; et al. Optical solitons for higher-order nonlinear Schrödingers equation with three exotic integration architectures. Optik 2019, 179, 861. [Google Scholar] [CrossRef]
  17. Min, X.; Yang, R.; Tian, J.; Xue, W.; Christian, J.M. Exact dipole solitary wave solution in metamaterials with higher-order dispersion. J. Mod. Opt. 2016, 63, S44. [Google Scholar] [CrossRef] [Green Version]
  18. Michael, S.; Maxim, S.S.; Neset, A.; Evgeni, Y.P.; Giuseppe, D.; Nadia, M.; Mark, J.B.; Aleksei, M.Z. Generalized Nonlinear Schrödinger Equation for Dispersive Susceptibility and Permeability: Application to Negative Index Materials. Phys. Rev. Lett. 2005, 95, 013902. [Google Scholar]
  19. Korkmaz, A.; Hepson, E.; Hosseini, K.O.; Rezazadeh, H.; Eslami, M. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud-Univ.-Sci. 2020, 32, 567. [Google Scholar] [CrossRef]
  20. Li, P.; Yang, R.; Xu, Z. Gray solitary-wave solutions in nonlinear negative-index materials. Phys. Rev. E 2010, 82, 046603. [Google Scholar] [CrossRef] [Green Version]
  21. Yakada, S.; Depelair, B.; Gambo, B.; Serge, Y.D. Miscellaneous new traveling waves in metamaterials by means of the new extended direct algebraic method. Optik 2019, 197, 163108. [Google Scholar] [CrossRef]
  22. Abbagari, S.; Alper, K.; Hadi, R.; Paulin, T.M.S.; Ahmet, B. Soliton solutions in different classes for the Kaup-Newell model equation. Mod. Phys. Lett. B 2020, 34, 2050038. [Google Scholar]
  23. Houwe, A.; Inc, M.; Doka, S.Y.; Akinlar, M.A.; Baleanu, D. Chirped solitons in negative index materials generated by Kerr nonlinearity. Results Phys. 2020, 17, 103097. [Google Scholar] [CrossRef]
  24. Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 2248. [Google Scholar] [CrossRef] [Green Version]
  25. Zayed, E.M.E.; Arnous, A.H. DNA Dynamics Studied Using the Homogenous Balance Method. Chin. Phys. Lett. 2012, 29, 080203. [Google Scholar] [CrossRef]
  26. Houwe, A.; Abbagari, S.; Salathiel, Y.; Inc, M.; Doka, S.Y.; Crepin, K.T.; Baleanu, D. Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations. Results Phys. 2020, 17, 103127. [Google Scholar] [CrossRef]
  27. Kudryashov, N.A.; Ryabov, P.N.; Fedyanin, T.E.; Kutukov, A.A. Analytical and numerical solutions of the generalized dispersive Swift-Hohenberg equation. Phys. Lett. A 2013, 377, 753. [Google Scholar] [CrossRef]
  28. Kudryashov, N.A. Quasi-exact solutions of the dissipative Kuramoto-Sivashinsky equation. Appl. Math. Comput. 2013, 219, 9245. [Google Scholar] [CrossRef]
  29. Ryabov, P.N.; Sinelshchikov, D.I.; Kochanov, M.B. Exact solutions of the Kudryashov-Sinelshchikov equation using the multiple (G/G)-expansion method. Appl. Math. Comput. 2011, 218, 3965. [Google Scholar]
  30. Houwe, A.; Abbagari, S.; Inc, M.; Betchewe, G.; Doka, S.Y.; Crépin, K.T.; Nisar, K.S. Chirped solitons in discrete electrical transmission line. Results Phys. 2020, 18, 103188. [Google Scholar] [CrossRef]
  31. Wang, M.; Li, X.; Zhang, J. The (G/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417. [Google Scholar] [CrossRef]
  32. Ismail, A.; Turgut, O. Analytic study on two nonlinear evolution equations by using the (G/G)-expansion method. Appl. Math. Comput. 2009, 209, 425. [Google Scholar]
  33. Nestor, S.; Nestor, G.B.; Inc, M.; Doka, S.Y. Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations. Eur. Phys. J. Plus 2020, 135, 380. [Google Scholar] [CrossRef]
  34. Canabarro, A.; Santos, B.; Bernardo, B.D.; Moura, A.L.; Soares, W.C.; Lima, E.D.; Gléria, I.; Lyra, M.L. Modulation instability in noninstantaneous Kerr media with walk-off and cross-phase modulation for mixed group velocity dispersion regimes. Phys. Rev. A 2016, 93, 023834. [Google Scholar] [CrossRef]
  35. Nestor, S.; Abbagari, S.; Houwe, A.; Betchewe, G.; Doka, S.Y. Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers. Commun. Theor. Phys. 2020, 72, 065501. [Google Scholar] [CrossRef]
  36. Nestor, S.; Houwe, A.; Rezazadeh, H.; Bekir, A.; Betchewe, G.; Doka, S.Y. New solitary waves for the Klein-Gordon-Zakharov equations. Mod. Phys. Lett. B 2020, 34, 2050246. [Google Scholar] [CrossRef]
  37. Nestor, S.; Houwe, A.; Betchewe, G.; Inc, M.; Doka, S.Y. A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrodinger equation. Phys. Scr. 2020, 95, 085108. [Google Scholar] [CrossRef]
  38. Nestor, S.; Betchewe, G.; Rezazadeh, H.; Bekir, A.; Doka, S.Y. Exact optical solitons to the perturbed nonlinear equation with Schrödinerh dual-power law of nonlinearity. Opt. Quantum Electron. 2020, 52, 318. [Google Scholar]
  39. Rezazadeh, H.; Souleymanou, A.; Korkmaz, A.; Khater, M.M.A.; Mukam, S.P.T.; Kuetche, V.K. New exact solitary waves solutions to the fractional Fokas-Lenells equation via Atangana-Baleanu derivative operator. Mod. Phys. Lett. B 2020, 34, 2050309. [Google Scholar] [CrossRef]
  40. Souleymanou, A.; Ali, K.K.; Rezazadeh, H.; Eslami, M.; Mirzazadeh, M.; Korkmaz, A. The propagation of waves in thin-film ferroelectric materials. Pramana-J. Phys. 2019, 93, 27. [Google Scholar] [CrossRef]
  41. Souleymanou, A.; Kuetche, V.K.; Bouetou, T.B.; Kofane, T.C. Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System. Chin. Phys. Lett. 2011, 28, 120501–120504. [Google Scholar] [CrossRef]
  42. Souleymanou, A.; Kuetche, V.K.; Bouetou, T.B.; Kofane, T.C. Traveling Wave-Guide Channels of a New Coupled Integrable Dispersionless System. Commun. Theor. Phys. 2012, 57, 10. [Google Scholar] [CrossRef]
  43. Souleymanou, A.; Youssoufa, S.; Tchokouansi, H.T.; Kuetche, V.K.; Bouetou, T.B.; Kofane, T.C. N-Rotating Loop-Soliton Solution of the Coupled Integrable Dispersionless Equation. J. Appl. Math. Phys. 2017, 5, 1370. [Google Scholar]
  44. Souleymanou, A.; Mukam, S.P.T.; Houwe, A.; Kuetche, V.K.; Inc, M.; Doka, S.Y.; Almohsen, B.; Bouetou, T.B. Controllable rational solutions in nonlinear optics fibers. Eur. Phys. J. Plus 2020, 135, 633. [Google Scholar]
  45. Yepez-Martinez, H.; Rezazadeh, H.; Souleymanou, A.; Mukam, S.P.T.; Eslami, M.; Kuetche, V.K.; Bekir, A. The Extended Modified Method Appliedto Optical Solitons solutions in Birefringent Fibers with weak nonlocal nonlinearity and four wave mixing. Chin. J. Phys. 2019, 58, 137. [Google Scholar] [CrossRef]
  46. Mukam, S.P.T.; Souleymanou, A.; Kuetche, V.K.; Bouetou, T.B. Rogue wave dynamics in barotropic relaxing media. Pramana J. Phys. 2018, 91, 56. [Google Scholar] [CrossRef]
  47. Inc, M.; Akgül, A.; Geng, F. Reproducing Kernel Hilbert Space Method for Solving Bratu’s Problem. Bull. Malays. Math. Sci. Soc. 2015, 38, 271. [Google Scholar] [CrossRef]
  48. Akgül, A.; Kilicman, A.; Inc, M. Improved (G/G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations. Abstr. Appl. Anal. 2013, 2013, 414353. [Google Scholar] [CrossRef] [Green Version]
  49. Akgül, A.; Inc, M.; Karatas, E.; Baleanu, D. Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Adv. Differ. Equ. 2015, 2015, 220. [Google Scholar] [CrossRef] [Green Version]
  50. Akgül, A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 2018, 2014, 478. [Google Scholar] [CrossRef]
  51. Baleanu, D.; Fernandez, A.; Akgül, A. On a Fractional Operator Combining Proportional and Classical Differintegrals. Mathematics 2020, 8, 360. [Google Scholar] [CrossRef]
  52. Seadawy, A.R.; Ali, A.; Helal, M.A. Analytical wave solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli and Boiti-Leon-Manna-Pempinelli equations by mathematical methods. Math. Methods Appl. Sci. 2021, 44, 14292–14315. [Google Scholar] [CrossRef]
Figure 1. Solutions U 1 (a,b) and E 1 (c,d) with α = β 1 = β 3 = 1 β 2 = 2 , , β = 0.5 , τ = 0.01 , ϵ = 1 and α = β 1 = β 3 = 1 , β 2 = 2 , β = 0.1 , δ = 1.5 , τ = 0.01 , ϵ = 1 , respectively.
Figure 1. Solutions U 1 (a,b) and E 1 (c,d) with α = β 1 = β 3 = 1 β 2 = 2 , , β = 0.5 , τ = 0.01 , ϵ = 1 and α = β 1 = β 3 = 1 , β 2 = 2 , β = 0.1 , δ = 1.5 , τ = 0.01 , ϵ = 1 , respectively.
Fractalfract 07 00128 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Areshi, M.; Seadawy, A.R.; Ali, A.; Alharbi, A.F.; Aljohani, A.F. Analytical Solutions of the Predator–Prey Model with Fractional Derivative Order via Applications of Three Modified Mathematical Methods. Fractal Fract. 2023, 7, 128. https://doi.org/10.3390/fractalfract7020128

AMA Style

Areshi M, Seadawy AR, Ali A, Alharbi AF, Aljohani AF. Analytical Solutions of the Predator–Prey Model with Fractional Derivative Order via Applications of Three Modified Mathematical Methods. Fractal and Fractional. 2023; 7(2):128. https://doi.org/10.3390/fractalfract7020128

Chicago/Turabian Style

Areshi, Mounirah, Aly R. Seadawy, Asghar Ali, Amal F. Alharbi, and Abdulrahman F. Aljohani. 2023. "Analytical Solutions of the Predator–Prey Model with Fractional Derivative Order via Applications of Three Modified Mathematical Methods" Fractal and Fractional 7, no. 2: 128. https://doi.org/10.3390/fractalfract7020128

APA Style

Areshi, M., Seadawy, A. R., Ali, A., Alharbi, A. F., & Aljohani, A. F. (2023). Analytical Solutions of the Predator–Prey Model with Fractional Derivative Order via Applications of Three Modified Mathematical Methods. Fractal and Fractional, 7(2), 128. https://doi.org/10.3390/fractalfract7020128

Article Metrics

Back to TopTop