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Abstract: This paper presents a detailed investigation of a stochastic model that rules the spreading
behavior of the measles virus while accounting for the white noises and the influence of immuniza-
tions. It is hypothesized that the perturbations of the model are nonlinear, and that a person may
lose the resistance after vaccination, implying that vaccination might create temporary protection
against the disease. Initially, the deterministic model is formulated, and then it has been expanded
to a stochastic system, and it is well-founded that the stochastic model is both theoretically and
practically viable by demonstrating that the model has a global solution, which is positive and
stochastically confined. Next, we infer adequate criteria for the disease’s elimination and permanence.
Furthermore, the presence of a stationary distribution is examined by developing an appropriate
Lyapunov function, wherein we noticed that the disease will persist for Rs>1

0 and that the illness will
vanish from the community when Rs<1

0 . We tested the model against the accessible data of measles
in Pakistan during the first ten months of 2019, using the conventional curve fitting methods and
the values of the parameters were calculated accordingly. The values obtained were employed in
running the model, and the conceptual findings of the research were evaluated by simulations and
conclusions were made. Simulations imply that, in order to fully understand the dynamic behavior
of measles epidemic, time-delay must be included in such analyses, and that advancements in every
vaccine campaign are inevitable for the control of the disease.

Keywords: stochastic measles epidemic model; stationary distribution; parameter estimation; real data;
Pakistan measles outbreak

1. Introduction

Measles is still a major worldwide health issue, particularly in the less developed
countries. Measles (also known as Rubella or morbilli) is an extremely contagious illness
caused mostly by the Morbillivirus genus in the Paramyxovirus [1,2]. Although efficient
vaccines against this severe illness are commonly accessible, still measles is a leading cause
of death among children below five of years of age [3]. The disease infecting hundreds of
millions of children each year and resulting in a high mortality and morbidity in the child
population, owing primarily to complicated conditions that exist side by side with the
disease like malnutrition, diarrhea, and pneumonia [4]. Sneezing and coughing, touching
the nasal or aerosol fluids, or close physical touch with an infected person are all ways
to spread measles. It can stay extremely contagious for a maximum of two hours in
the atmosphere and on the surfaces. Clinical manifestations include soar throat, cough,
nasal congestion, blurred vision, and small white patches in the mouth; these signs and
symptoms often develop within 10–12 days post-infection. Subsequently, a rash appears,
extending downward out of the nose. The period of peak infectivity (virus shed) starts four
days before that and four days just after commencement of the rashes. The usual incubation
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time is 14 days; however, it can range from 7–18 days [5]. In reality, even vaccinated people
may still be susceptible if the immunization fails or existing immunity from the vaccine
wears off. Despite the fact that vaccination has cut worldwide measles fatalities by 73%
between 2000–2018, measles continues to remain a widespread in many underdeveloped
nations, particularly in Asia and Africa. Around 140,000 individuals died from the measles
in 2018. During 2000–2018, worldwide measles immunization results in an 85 percent drop
in measles transmission [6,7]. Despite the abundance of a safe and effective vaccination in
2017, around 110,000 deaths occurred from measles, primarily children under the age of
six, as per the report of the World Health Organization (WHO) [8]. Vaccination is amongst
the most successful health promotion strategy for reducing death rates and the spreading
of epidemics; it has been demonstrated that vaccination saves over 3 million people only
in Nigeria every year. The vaccination will work with the immune system of the body to
establish the body’s natural defenses, reducing the likelihood of relapse [9]. The MMR
vaccination can protect against measles, which is a vaccine-preventable illness. The MMR
vaccines are highly effective at protecting both adults and children from the epidemic
measles. Only one dose of the MMR vaccines is roughly 92% successful in suppressing
the measles, whereas two doses are around 95% effective. The MMR vaccine also protects
against rubella and mumps [10]. This disease is an endemic one in Nigeria, with epidemics
occurring at regular intervals. Measles is present across Nigeria at all seasons; however, it
is more widespread in the summer months.

Pakistan is one of the most measles-affected nations in Asia [11]. Every 8–10 years, the
nation has a recurring measles epidemic. In fact, 2845 identified measles infections were
reported in Pakistan during the year 2016. This figure increased to 6791 in 2017 and, in the
year 2018, 33,007 cases were reported. These results represent about 44, 20, and 51 percent
of the total number of cases recorded in the East Mediterranean, which includes 22 nations.
In 2017, over 130 children lost their lives due to this infection, with the figure rising to
nearly 300 in 2018 [12].

It is strongly advised to employ the methods of mathematical modeling to examine
the transmission process and prevention of an epidemic disease [7,13–15], modeling with
fractional differential equations also have several applications in all fields of science [16–18].
While depicting the natural history of an infectious disease, the tools of modeling can create
a balance among the data and its real biology. Thus far, models responsible for describing
the dynamics of measles both from population to outbreak levels have demonstrated a
wide variety of disease patterns. External noise is usually the main significant feature of
physical processes and bio-systems. It has been discovered that environmental variables
have a significant impact on the dynamics of measles disease spread [19]. Because of the
uncertainty of person-to-person interactions or inherent characteristics of the population,
outbreak onset and propagation are fundamentally unpredictable. As a result, the condition
of the disease is influenced by the environment’s heterogeneity and uncertainty.

Changes in the environment likewise have a significant impact on the parasites’ persis-
tence and distribution. Because the stochasticity of parameters and states depicts the exact
dynamic behavior of an infectious disease, it is regarded as an essential part in epidemio-
logical studies. Even though the perturbations are varying, these should be autocorrelated
in a positive way. Furthermore, the perturbations may be estimated theoretically using
the linked problem’s probability density function [20–23]. There are two main techniques
to epidemic modeling: the deterministic modeling and stochastic modeling. Stochastic
differential equation (SDE) models are recommended over deterministic models for mathe-
matical modeling of biological functions because they may provide a higher level of reality
than their deterministic equivalents [23–26]. We may choose to use SDEs to generate a
distribution of the predicted output(s); for example, the number of infected individuals
over time t. Moreover, when tested numerous times, a stochastic model produces more
useful outputs than a deterministic one. A deterministic model, on the other hand, will
produce only one outcome irrespective of the number of experiments. To explain the
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viral evolution of COVID-19, numerous deterministic infectious disease models have been
suggested; for example, see [27,28].

The rest of the manuscript is organized in the following manner: Section 2 deals with
the formulation of the proposed stochastic model for the spreading of the epidemic measles.
The uniqueness and existence problem for obtaining a positive global solution is presented in
Section 3. In Sections 4 and 5, we characterized sufficient criteria for the stationary distribution
and extinction of the disease. We optimize the proposed model using data from Pakistan
compiled in the first ten months of 2019 in Section 6. We quantitatively compared the obtained
analytical results, and graphical illustrations were presented in Section 7. We concluded the
work in Section 8 by presenting the future directions and a comprehensive summary.

2. Model Formulation

Olumuyiwa et al. [29] have recently developed a model of the transmission of rubella
disease by using the differential equations. Keeping in view the work of Olumuyiwa et al., here
we intend to extend the model to a stochastic model. Furthermore, by considering different
stages during the measles epidemic, we stratified the total population into six disjoint classes,
namely: susceptible, vaccinated, exposed, infectious, hospitalized and recovered individuals
whose sizes in mathematical terms are, respectively, S(t),V(t),E(t), I(t),H(t), and R(t).

The entrance of new persons through this population is captured by the rate φ and
will be kept in the susceptible compartment. People in the vulnerable group start receiving
a vaccination at a rate τ and setback immune function at a vaccine wane rate ω. The contact
rate of susceptible persons is α, and thus the term force of infection becomes αSI, with
the transition again from exposures to infection stages occurring at a rate of β. People
who are infected with the measles seek medical attention at a rate of ρ and recover from
the infection after the successful treatment supplemented at a rate of γ. We consider two
types of death rates: the natural µ (that is constant for all classes) and the disease-induced
mortality rate δ. This study assumes the recovery from measles that is possible due to the
treatment only, that is, the study considering no natural recovery. The movements between
the compartments are depicted via a flowchart in Figure 1. The above assumptions will
lead to the following deterministic system:

dS(t)
t

= φ− αS(t)I(t) + ωV(t)− (τ + µ)S(t),

dV(t)
t

= τS(t)− (µ + ω)V(t),

dE(t)
t

= αS(t)I(t)− (µ + β)E(t),

dI(t)
t

= βE(t)− (µ + δ + ρ)I(t),

dH(t)
t

= ρI(t)− (δ + γ + µ)H(t),

dR(t)
t

= γH(t)− µR(t).

(1)

The threshold parameter has the following expression for model (1) as

R0 =
(µ + ω)φβα

(µ + β)(µ + δ + ρ)(µ + ω + τ)µ
. (2)
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Figure 1. Flow chart of the measles model (1) [29].

In order to consider the noises due the environment in the study (i.e., model (1)),
we shall take into account the standard Brownian motions Wi(t) for i = 1, · · · , 6 with
Wi(0) = 0. Furthermore, system (1) is modified by considering the incidence rate of
bi-linear form αS(t)I(t)

N(t) . For the noise intensities, we have taken ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 as the
relative weights. By considering these stochastic terms, the deterministic model (1) takes
the form

dS =

[
φ− αS(t)I(t)

N(t) + ωV(t)− (τ + µ)S(t)
]

dt + ξ1S(t)dW1(t),

dV =

[
τS(t)− (µ + ω)V(t)

]
dt + ξ2VdW2(t),

dE =

[
αS(t)I(t)
N(t) − (µ + β)E(t)

]
dt + ξ3E(t)dW3(t),

dI =
[

βE(t)− (µ + δ + ρ)I(t)
]

dt + ξ4I(t)dW4(t),

dH =

[
ρI(t)− (µ + δ + γ)H(t)

]
dt + ξ5I(t)dW5(t),

dR =

[
γH(t)− µR(t)

]
dt + ξ6R(t)dW6(t).

(3)

Keeping in view system (3), the authors have a keen interest to find the possible
answers to the following questions:

Q1 : What role do the random noises play in the transmission measles?
Q2 : What role contaminated vaccination in the spreading of measles disease?
Q3 : Under what condition(s) will the disease tend to go extinct?
Q4 : Under what condition(s) will the epidemic measles persist in the population?

3. Stochastic Model Analysis

This section investigates the existence/uniqueness of solutions, global asymptotic
behavior, derivation of conditions under which the disease tends to go extinct, and the
presence of an ergodic stationary distribution for the proposed stochastic model.

Positive Global Solution of the Model

The very first crucial question in studying the dynamic behavior is whether there is
a possibility of the existence of a global solution to the model. Furthermore, for a system
modeling the population dynamics, the nature of the solution’s value is of major relevance.
In addition, we demonstrate in this section that the solution of randomized system (3) is
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global in nature and positive. It is well established that, for every given initial amount, the
coefficients of a stochastic equation must fulfill the normal growth constraint and the local
Lipschitz criterion in order to have a unique global solution (i.e., without any explosion in
a limited period).

Theorem 1. There exists a unique solution (S(t),V(t),E(t), I(t),H(t),R(t)) of system (3) for
t ≥ 0 under the initial conditions from the state R6

+. Moreover, the solution remains in the same
space (i.e., R6

+) surely for ∀t ≥ 0.

Proof. Keeping in view the Lipschitzness of the coefficients used in the model and from
the fact ((S(0),V(0),E(0), I(0),H(0),R(0))) ∈ R6

+, we can say that the proposed system
has a unique local solution in [0, τe) and t ≥ 0. The term τe stands for the explosion time,
and readers are referred to [30,31] for a detailed analysis. By showing that, actually τe = ∞,
we reach the conclusion that such a solution is global in nature. To do so, it is necessary
that we assume a large k0 > 0 in such a way that [ 1

k0
, k0] contains all parts of the solution.

Assume k0 ≤ k and let us define

τk = in f {t ∈ [0, τe) :
1
k
≥ min{S(t),V(t),E(t), I(t),H(t),R(t)} or

k ≤ max{S(t),V(t),E(t), I(t),H(t),R(t)}.
(4)

Whenever φ represents the empty set, then we shall write inf φ = ∞. By increasing the
value of k, one can notice that it increases τk. We apply the limit k → ∞ and assume that
the τk → τ∞ and a.s. τe ≥ τ∞. Thus, if we show τ∞ = ∞ a.s., it ensures τe = ∞. Proving
all these guarantees that (S(t),V(t),E(t), I(t),H(t),R(t)) ∈ R6

+ for any time t ≥ 0. Let us
assume the contrary case that τe 6= ∞; then, there must exist positive real numbers T and
ε ∈ (0, 1) in such a way

ε < P{τ∞ ≤ T}. (5)

Thus, for an integer k0 ≤ k1, we have

P{T ≥ τk} ≥ ε, ∀ k1 ≤ k.

To begin, first let us establish a Lyapunov function of the type

G = (S− 1− logS) + (E− logE− 1) + (I − log I− 1) + (H− logH− 1) + (R− logR− 1), (6)

By utilizing the formula due to Itô, letting k0 ≤ k and assuming a very large non-
negative real T, Equation (6) can be written in the form of

dG(S,V,E, I,H,R) = LG(S,V,E, I,H,R)dt + ξ1(S− 1)dW1(t) + ξ2(V− 1)dW2(t) + ξ3(E− 1)dW3(t)

+ ξ4(I− 1)dW4(t) + ξ5(H− 1)dW5(t) + ξ6(R− 1)dW6(t).
(7)

In Equation (23), the LV operator is from the space R6
+ to R+.

The remaining parts of the proof are merely similar to Theorem 2.1 in [26,30]. Thus,
it is very simple for the reader to follow the result and and hence, is not completely
proved here.

4. Extinction

While modeling the dynamical aspects of any epidemic diseases, it is important to
investigate the situations under which the disease will become exterminated or tend to
become extinct in the community. Within this section, we demonstrate that, when the white
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noises are large enough, the solution of the associated stochastic model (3) surely vanishes.
Let us define

〈B(t)〉 = 1
t

∫ t

0
B(s)ds.

Lemma 1. (Strong Law) [32,33] Let Z = {Z}0≤t be continuous and real valued along with a local
martingale, which vanishes as t→ 0, then

lim
t→∞

〈
Z,Z

〉
t = ∞, a.s., ⇒ lim

t→∞

Zt〈
Z,Z

〉
t
= 0, a.s.

lim
t→∞

sup

〈
Z,Z

〉
t

t
< 0, a.s., ⇒ lim

t→∞

Zt

t
= 0, a.s.

(8)

Lemma 2. Assume that (S,V,E, I,H,R) corresponds to initial data S(0),V(0),E(0), I(0),H(0),
R(0)) in the space R6

+ and is a solution of model (3). Then,

lim sup
t→∞

lnS(t)
t

= 0, lim sup
t→∞

V(t)
t

= 0, lim sup
t→∞

lnE(t)
t

= 0,

lim sup
t→∞

ln I(t)
t

= 0, lim sup
t→∞

lnH(t)
t

= 0, lim sup
t→∞

lnR(t)
t

= 0, a.s. (9)

Furthermore, if µ >
ξ2

1∨ξ2
2∨ξ2

3∨ξ2
4

2 , and d >
ξ2

5
2 , then

lim
t→∞

∫ t
0 S(s)dW1(s)

t
= 0, lim

t→∞

∫ t
0 V(u)dW2(u)

t
= 0, lim

t→∞

∫ t
0 E(u)dW3(u)

t
= 0,

lim
t→∞

∫ t
0 I(s)dW4(s)

t
= 0, lim

t→∞

∫ t
0 H(s)dW5(s)

t
= 0, lim

t→∞

∫ t
0 R(s)dW6(s)

t
= 0, a.s. (10)

Then, the solution of (3)

lim sup
t→∞

S(t) = (µ + ω)φ

(µ + ω + τ)µ
,

lim sup
t→∞

V(t) = φτ

(µ + ω + τ)µ
,

lim sup
t→∞

E(t) = 0,

lim sup
t→∞

I(t) = 0,

lim sup
t→∞

H(t) = 0,

lim sup
t→∞

R(t) = 0, a.s.

(11)

To prove Lemma 2, we follow almost the same techniques as performed in proving
Lemmas 2.1 and 2.2 carried out in the work of Zhao [32], and thus the readers can simply
prove the results.

Next, to develop the extinction theory related to model (3), we first define the threshold
quantity Rs for the proposed stochastic model which can be written in the form of

Rs =
α[

(µ + β)(µ + δ + ρ) +
ξ2

3
2 +

ξ2
4

2

] . (12)
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Theorem 2. The exposed population E(t) and infected population I(t) of system ((3) tends to zero
exponentially almost surely if Rs < 1, where Rs is given by Equation (12).

Proof. Let (S(t),V(t),E(t), I(t),H(t),R(t)) correspond to initial data S(0),V(0),E(0),
I(0),H(0),R(0)) in the space R6

+, being a solution of model (3).
Define

G1(t) = βE(t) + (µ + β)I(t). (13)

Differentiating Equation (13) following Ito’s formula, one can obtain

d(lnG1(t)) =
1

G1

[
αβSI
N − (µ + β)(µ + δ + ρ)I

]
−

β2E2ξ2
3 + (µ + β)2ξ2

4I2

2(G1)2

+
βξ3

[βE(t) + (µ + β)I]EdW3(t) +
(µ + β)ξ4

[E+ (µ + β)I] IdW4(t),

≤ 1
G1

[
αβI− (µ + β)(µ + δ + ρ)I

]
−

β2E2ξ2
3

2(G1)2 −
(µ + β)2ξ2

4I2

2(G1)2

+
βξ3

[βE(t) + (µ + β)I]EdW3(t) +
(µ + β)ξ4

[E+ (µ + β)I] IdW4(t), [∵ S ≤ N]

≤ 1
(µ + β)

[
α− (µ + β)(µ + δ + ρ)

]
−

ξ2
3

2
−

ξ2
4

2

+
βξ3

[βE(t) + (µ + β)I]EdW3(t) +
(µ + β)ξ4

[E+ (µ + β)I] IdW4(t). [∵ I ≤ I+ βE
(µ + β)

]

(14)

By taking the integral of either sides of the above inequality over the interval [0, t],
we have

lnG1(t) ≤
1

(µ + β)

{
α−

[
(µ + β)(µ + δ + ρ) +

ξ2
3

2
+

ξ2
4

2

]}
+
∫ t

0

βξ3EdW3(t)
[βE(t) + (µ + β)I] +

∫ t

0

(µ + β)ξ4IdW4(t)
[E+ (µ + β)I] ,

≤ 1
(µ + β)

{
α−

[
(µ + β)(µ + δ + ρ) +

ξ2
3

2
+

ξ2
4

2

]}
+
∫ t

0

βξ3EdW3(t)
[βE(t) + (µ + β)I] +

∫ t

0

(µ + β)ξ4IdW4(t)
[E+ (µ + β)I] ,

≤

[
(µ + β)(µ + δ + ρ) +

ξ2
3

2 +
ξ2

4
2

]
(µ + β)

[
Rs − 1

]
+
∫ t

0

βξ3EdW3(t)
[βE(t) + (µ + β)I] +

∫ t

0

(µ + β)ξ4IdW4(t)
[E+ (µ + β)I] .

(15)

By assuming the lim sup as t → ∞ and multiplying both sides of relation (15) by 1
t

while considering Lemma 2, we obtain

lim sup
t→∞

(lnG1(t)) ≤

[
(µ + β)(µ + δ + ρ) +

ξ2
3

2 +
ξ2

4
2

]
(µ + β)

[
Rs − 1

]
.

(16)

If Rs < 1, then limt→∞ G1 = limt→∞[βE(t) + (µ + β)I(t)] = 0, a.s if Rs < 1. Again,
β > 0, (µ + β) > 0, and we assert that limt→∞[βE(t) + (µ + β)I(t)] = 0 =⇒ limt→∞ E =
limt→∞ I = 0—hence the result.

5. The Stationary Distribution of the Disease

We understand that there are no endemic states in stochastic models. As a result, the
stability of the system cannot be used to predict how long an illness would endure. As a



Fractal Fract. 2023, 7, 130 8 of 24

result, one must concentrate on the existence/uniqueness assumption of the stationary
distribution. In certain aspects, this assists the illness with survival. For this purpose, we
employ a well-known method due to Hasminskii [34].

Assume a homogeneously time-dependent Markov process X(t) in the space Rn
+ that

satisfies the below stochastic model

dX(t) = b(X)dt +
k

∑
r

σrdBr(t).

The diffusion matrix can be demonstrated as:

A(X) = [aij(κ)], aij(κ) =
k

∑
r=1

σi
r(κ)σr

j (κ).

Lemma 3. [34]. The process X(t) has a one and only one stationary distribution m(.) whenever
there is a bounded domain having a regular boundary in such a way that Ū ∈ Rd \ Ū closure
Ū ∈ Rd, and having the below characteristics

1. The smallest eigenvalue of the matrix A(t) is bounded below from the origin in the open
domain U and in its neighborhood.

2. For κ ∈ Rd \U, the average time period τ (at which a path starts from κ reaching the set U)
is bounded, and for every compact subset K ⊂ Rn, we have Supκ∈kEκτ < ∞. When f (.) is
an integrable function with the measure pi, then we have

P
{

lim
T→∞

1
T

∫ T

0
f (Xκ(t))dt =

∫
Rd

f (κ)π(dx)
}

= 1,

for all κ ∈ Rd.

Let us define the following parameter for our future use:

Rs
0 =

µβα(
ξ + µ + σ2

2

2

)(
α + µ + σ3

2

2

)(
δ + µ + σ4

2

2

) . (17)

Theorem 3. For Rs
0 > 1, then a solution (S(t),V(t),E(t), I(t),H(t),R(t)) of system (3) is

ergodic and has one and only one stationary distribution π(.).

Proof. For verifying condition (2) of Lemma (3), we must develop a positive C2−function
G2 : R6

+ → R+. To do so, we first formulate

G2 = S+V+E+ I+H+R− a1 lnS− a2 lnE− a3 ln I,

where a1, a2 and a3 are all real and positive constants, and must be calculated later on. By
assuming the formula due to Itô’s and keeping in view system (3), we obtain
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L(V+ S+ I+E+H+R) =φ− µ(V+ S+ I+E+H+R)− δ(I+H),

L(− lnS) =− Π
S +

αI
N −

ωV
S + (τ + µ) +

ξ2
1

2
,

L(− lnV) =− τS
V + (µ + ω) + µ +

ξ2
2

2
,

L(− lnE) =− αSI
EN + (µ + β) +

ξ2
3

2
,

L(− ln I) =− βE
I + (µ + δ + ρ) +

ξ2
4

2
,

L(− lnH) =− ρI
H + (γ + δ + µ) +

ξ2
5

2
,

L(− lnR) =− γH
R

+ µ +
ξ2

6
2

.

(18)

Hence,

LG2 = φ− µ(V+ S+ I+E+H+R)− δ(I+H)− a1Π
S +

a1αI
N − a1ωV

S + a1(τ + µ) +
a1ξ2

1
2

− a2αSI
EN + a2(µ + β) +

a2ξ2
3

2
− a3βE

I + a3(µ + δ + ρ) +
a3ξ2

4
2

.

The preceding calculation indicates that

LG2 ≤− 4
[

µN× a1φ

S ×
a2αSI
EN × a3βE

I

] 1
4

+ a1(τ + µ +
ξ2

1
2
) + a2(µ + β +

ξ2
3

2
) + a3(µ + δ + ρ +

ξ2
4

2
)

+ φ +
a1αI
N − a1ωV

S − δ(I+H).

Suppose

a1(τ + µ +
ξ2

1
2
) = a2(µ + β +

ξ2
3

2
) = a3(µ + δ + ρ +

ξ2
4

2
) = φ.

Namely,

a1 =
φ

(τ + µ +
ξ2

1
2 )

,

a2 =
φ

(µ + β +
ξ2

3
2 )

,

a3 =
φ

(µ + δ + ρ +
ξ2

4
2 )

.

(19)

As a result,

LG2 ≤ −4


 φ4µαβ

(τ + µ +
ξ2

1
2 )(µ + β +

ξ2
3

2 )(µ + δ + ρ +
ξ2

4
2 )

 1
4

− φ

+
a1αI
N − a1ωV

S − δ(I+H),

LG2 ≤ −4Π
[
(Rs

0)
1/4 − 1

]
+

a1αI
N − a1ωV

S − δ(I+H).

Furthermore, we obtain
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G2 = a4(E+ S+V+H+ I+R− a1 lnS− a2 lnE− a3 ln I)− lnS− lnV− lnH− lnR
E+ S+V+H+ I+R,

= (a4 + 1)(E+ S+V+H+ I+R)− (a1a4 + 1) lnS− a2a4 lnE− a3a4 ln I− lnV− lnH− lnR,

where a4 > 0 is an unknown real number and must be determined later. It is very helpful
to state

lim inf
(S,V,E,I,H,R)∈R6

+\Uk

G3(S,V,E, I,H,R) = +∞, as k→ ∞, (20)

where Uk = ( 1
k , k)× ( 1

k , k)× ( 1
k , k).

In the below steps, we show that actually the function G3(S,V,E, I,H,R) has the min-
imum value, G3(S(0),V(0),E(0), I(0),H(0),R(0)). The partial derivatives of the function
G3 with respect to the state variables are given by:

∂G3(S,V,E, I,H,R)
∂S = 1 + a4 −

1 + a1a4

S ,

∂G3(S,V,E, I,H,R)
∂V = 1 + a4 −

1
V ,

∂G3(S,V,E, I,H,R)
∂E = 1 + a4 −

a2a4

E ,

∂G3(S,V,E, I,H,R)
∂I = 1 + a4 −

a3a4

I ,

∂G3(S,V,E, I,H,R)
∂H = 1 + a4 −

c3c4

H ,

∂G3(S,V,E, I,H,R)
∂R = 1 + a4 −

1
R .

One can verify very easily that the function G3 has only one stagnation point.

(S(0),V(0),E(0), I(0),H(0),R(0)) =
(

1 + a1a4

1 + a4
,

1
1 + a4

,
a2a4

1 + a4
,

a3a4

1 + a4
,

1
1 + a4

,
1

1 + a4

)
. (21)

Furthermore, at (S(0),V(0),E(0), I(0),H(0),R(0)) for V2(S,V,E, I,H,R), the Hessian
matrix is as follows:

B =



1+a1a4
S2(0) 0 0 0 0 0

0 1
V2(0) 0 0 0 0

0 0 a2a4
E2(0) 0 0 0

0 0 0 a3a4
I2(0) 0 0

0 0 0 0 1
H2(0) 0

0 0 0 0 0 1
R2(0)


. (22)

The Hessian matrix is obviously positive definite. As a result, the minimum value of
G3(S,V,E, I,H,R) is G3(S(0),V(0),E(0), I(0),H(0),R(0)). We may assert that G3(S,V,E, I,
H,R) has one and only one minimum value G3(S(0),V(0),E(0), I(0),H(0),R(0)) inside
R6
+ based on Equation (20) and the continuity of G3(S,V,E, I,H,R). Then, as follows, we

delineate a non-negative C2−function G : R6
+ → R+:

G(S,V,E, I,H,R) = G3(S,V,E, I,H,R)− G3(S(0),V(0),E(0), I(0),H(0),R(0)).

Using Ito′s formula and the suggested system, we arrive at
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L(G) ≤ a4

{
− 4Π

[
(Rs

0)
1/4 − 1

]
+

a1αI
N − a1ωV

S − δ(I+H)

}
+ φ− µ(S+V+E+ I+H+R)− δ(I+H)− Π

S +
αI
N −

ωV
S + (τ + µ) +

ξ2
1

2

− τS
V + (µ + ω) + µ +

ξ2
2

2
− ρI

H + (γ + δ + µ) +
ξ2

5
2
− γH

R
+ µ +

ξ2
6

2
.

(23)

Based on the above result, we have the following assertion:

LV ≤ −a4a5 + (a1a4 + 1)
αI
N − (a1a4 + 1)

ωV
S − δ(a4 + 1)(I+H)

}
+ φ− µN− Π

S

+ (τ + µ) +
ξ2

1
2
− τS

V + (µ + ω) + µ +
ξ2

2
2
− ρI

H + (γ + δ + µ) +
ξ2

5
2
− γH

R
+ µ +

ξ2
6

2
,

(24)

where

a5 = 4φ

[
(Rs

0)
1/4 − 1

]
> 0.

Overall, for the solution to the model, we have the following set

D = {ε1 < S <
1
ε2

, ε1 < V <
1
ε2

, ε1 < E <
1
ε2

, ε1 < I < 1
ε2

, ε1 < H <
1
ε2

, ε1 < R <
1
ε2
},

where εi > 0 are extremely small positive real values to be calculated later on. For the sake
of simplicity, the whole set was partitioned into the following subsets:

D1 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < S ≤ ε1

}
,

D2 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < V ≤ ε1,S > ε2

}
,

D3 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < E ≤ ε1,V > ε2

}
,

D4 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < I ≤ ε1,E > ε2

}
,

D5 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < H ≤ ε1, I > ε2

}
,

D6 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < R ≤ ε1, I > ε2

}
,

D7 =

{
(S,V,E, I,H,R) ∈ R6

+,S ≥ 1
ε2

}
,

D8 =

{
(S,V,E, I,H,R) ∈ R6

+,V ≥ 1
ε2

}
,

D9 =

{
(S,V,E, I,H,R) ∈ R6

+,E ≥ 1
ε2

}
,

D10 =

{
(S,V,E, I,H,R) ∈ R6

+, I ≥ 1
ε2

}
,

D11 =

{
(S,V,E, I,H,R) ∈ R6

+,H ≥ 1
ε2

}
,

D12 =

{
(S,V,E, I,H,R) ∈ R6

+,R ≥ 1
ε2

}
.
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Then, we show that LG(S,V,E, I,H,R) < 0 on R6
+\D, which is the same is displaying

the solution on the eight sub-regions.
Case 1. If (S, V, E, I, R) ∈ D1, then, by Equation (24), we obtain

LG ≤ −a4a5 + (a1a4 + 1)
αI
N − (a1a4 + 1)

ωV
S − δ(a4 + 1)(I+H)

}
+ φ− µN− Π

S

+ (τ + µ) +
ξ2

1
2
− τS

V + (µ + ω) + µ +
ξ2

2
2
− ρI

H + (γ + δ + µ) +
ξ2

5
2
− γH

R
+ µ +

ξ2
6

2
,

≤ +(a1a4 + 1)
αI
N

}
+ φ− Π

ε1
+ (τ + µ) +

ξ2
1

2
+ (µ + ω) + µ +

ξ2
2

2
+ (γ + δ + µ) +

ξ2
5

2
+ µ +

ξ2
6

2
,

For every (S,V,E, I,H,R) ∈ D1., picking ε1 > 0, returns LG < 0.
Just as in the proof above, we conclude that LG < 0 for (S,V,E, I,H,R) ∈ Di,

i = 2, 3...12..
As a result, we arrived to the point that there must be positive constant W > 0 in such

a way
LG(S,V,E, I,H,R) < −W < 0 for all (S,V,E, I,H,R) ∈ R6

+\D.

Thus,

dG(S,V,E, I,H,R) < −Wdt + [(a4 + 1)S− (a1a4 + 1)ξ1]dW1(t) + [(a4 + 1)V− ξ2]dW2(t)

+ [(a4 + 1)E− a2a4ξ3]dW3(t) + [(a4 + 1)I − a3a4ξ4]dW4(t)

+ [(a4 + 1)H− ξ5]dW5(t) + [(a4 + 1)R− ξ5]dW6(t).

(25)

Consider (S(0),V(0),E(0), I(0),H(0),R(0)) = (κ1,κ2,κ3,κ4,κ5) = κ ∈ R6
+\D, and

τκ is the amount of time it takes for a path to start from κ to achieve set D,

τn = in f {t : |X(t)| = n} & τ(n)(t) = min{τκ , t, τn}.

The next relation could be obtained if one integrates the above inequality from 0 to
τ(n)(t), considering the expectation and using Dynkin’s formula:

EG(S(τ(n)(t)),V(τ(n)(t)),E(τ(n)(t)), I(τ(n)(t)),H(τ(n)(t)),R(τ(n)(t)))− G(κ)

= E
∫ τ(n)(t)

0
LG(S(u),V(u),E(u), I(u), H(u),R(u))du,

≤ E
∫ τ(n)(t)

0
−Wdu = −WEτ(n)(t).

Hence, G(κ) is non-negative; then,

Eτ(n)(t) ≤ V(κ)
W

.

We have P{τe = ∞} = 1 as a result of the proof of Theorem (3). This also shows
that model (3) is regular and, consequently, by letting n, t → ∞, almost surely we have
τ(n)(t)→ τκ .

Moreover, by utilizing the Fatou’s lemma, we have

Eτ(n)(t) ≤ G(κ)
W

< ∞,

supκ∈KEτκ < ∞, where K is the compact set, i.e., a subset of R6
+. This proves the condi-

tion (2) of Lemma (3) in an alternative approach.
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Additionally, the diffusion matrix for the system (3) is

B =



ξ2
1S2 0 0 0 0 0
0 ξ2

2V2 0 0 0 0
0 0 ξ2

3E2 0 0 0
0 0 0 ξ2

4I2 0 0
0 0 0 0 ξ2

5H2 0
0 0 0 0 0 ξ2

6R2

.

Taking M = min(S,V,E,I,H,R)∈D∈R6
+
{ξ2

1S2, ξ2
2V2, ξ2

3E2, ξ2
4I2, ξ2

3E2, ξ2
5H2, , ξ2

6R2}, we ob-
tain

6

∑
i,j=1

aij(S,V,E, I,H,R)ξiξ j = ξ2
1S2σ2 + ξ2

2V2σ2
2 + ξ2

3E2σ2 + ξ2
4ξ2

4I2 + ξ2
5σ2

5 + ξ2
6σ2

6R2 ≥ M|σ|2,

(S,V,E, I,H,R) ∈ D,

where ξ = (σ1, σ2, σ3, σ4, σ5, σ6) ∈ R6
+. Similarly, this proves condition (1) of Lemma (3).

Keeping in view the previous statements, the ergodicity of model (3) is insured by Lemma (3)
and hence proving that the model has stationary distribution.

6. Parameter Estimation

Among the most important processes to carry through out the testing process is the
utilization of real data (if available) to acquire findings for certain unidentified biological
factors used in the epidemiology system under study. Real-world measles cases, as shown in
Table 1, are used to test the proposed rubella model and to choose the best fitted parameters
for numerous unknown biological parameters that emerge in the system. Considering the
2018 statistics of WHO, the natural death rate of a Pakistani individual is 1/66.5 since the life
expectancy of a Pakistani is 66.5. In addition, the entire size of the country is 207, 862, 518,
whereas the recruitment rate is calculated to be Π = 207, 862, 518×µ ≈ 260, 479. Additionally,
Memon et al. [13] indicates that the rate of measles vaccination is generally 97 percent
effective, implying that the vaccines’ effectiveness τ equals 0.97. Some values of the parameters
are estimated and others were fitted against the data, and these were presented in Table 2.
In Figure 2, the results via simulations for measles resurgence cases obtained by adapting
the proposed model (3) with real data from the first ten months of the year 2019 are shown.
As shown in Figure 2, it gives a rather good match, lending veracity to the predictions generated

from the proposed measles model (3). We employed the relation 1
10 ∑10

k=1

∣∣∣∣κreal
k −κapproximate

k
κreal

k

∣∣∣∣ ≈
1.4685× 10−1 to measure the associated relative error for fitting the model against the data.

Table 1. Real cases of the measles epidemic in Pakistan during January and October 2019.

Jan (01) Feb (02) Mar (03) Apr (04) May (05) June (06) July (07) Aug (08) Sep (09) Oct (10)

237 252 397 399 276 168 70 28 23 19

Table 2. Values of the parameters estimated and fitted against the real measles cases.

Parameter Description Source

φ 260,479 Estimated
α 1.253133 × 10−3 Estimated
ω 0.97 Estimated
τ 1.60056 × 10−7 Fitted
µ 9.3408 Fitted
β 9.2373 × 10−1 Fitted
δ 5.8306 × 10−1 Fitted
ρ 0 Estimated
γ 5.8306 × 10−1 Fitted
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Figure 2. The figure shows the fitting of both ODE and SDE models against the real data by using
values of the parameters shown in Table 2.

7. Numerical Simulations and Discussion

It is of great concern to simulate each mathematical model against the real data and
to verify theoretical results, and this step is very important when dealing with modeling
biological problems. The researchers seek to simulate problem (3) employing classic
numerical algorithms that rapidly converged. Almost all of the theoretical conclusions are
quantitatively validated by using the well-known RK-4 approach.

Si+1 = Si +

[
φ− αSiIi + ωVi − (τ + µ)Si

]
4 t + ξ1Si

√
4tς1,i +

ξ2
1

2
Si(ς

2
1,i − 1)4 t,

Vi+1 = Vi +

[
τSi − (µ + ω)Vi

]
4 t + ξ2Vi

√
4tς2,i +

ξ2
2

2
Vi(ς

2
2,i − 1)4 t,

Ei+1 = Ei +

[
αSiIi − (µ + β)Ei

]
4 t + ξ3Ei

√
4tς3,i +

ξ2
3

2
Ei(ς

2
3,i − 1)4 t,

Ii+1 = Ii +

[
βEi − (µ + δ + ρ)Ii

]
4 t + ξ4Ii

√
4tς4,i +

ξ2
4

2
Ii(ς

2
4,i − 1)4 t,

Hi+1 = Hi +

[
ρIi − (γ + δ + µ)Hi

]
4 t + ξ5Hi

√
4tς5,i +

ξ2
5

2
Hi(ς

2
5,i − 1)4 t,

Ri+1 = Ri +

[
γHi − µRi

]
4 t + ξ6Ri

√
4tς5,i +

ξ2
6

2
Ri(ς

2
6,i − 1)4 t.

(26)

where ςi,j(i = 1, 2, 3, 4, 5, 6) stands for the standard Gaussian stochastic variables, having
distribution N(0, 1), and ∆t is the constant time-step. The terms ξi > 0, (i = 1, 2, 3, 4, 5, 6)
reflect the intensities of the white noises.

To quantitatively validate the analytical conclusions, we require the parameters’ value
being used in model (3). In Example 1 and 2, we established two sets of parameters’ values
for this reason, and the population levels of each compartment at t = 0 were displayed.
For every scenario, we simulated the model over the interval [0, 80].

We formulated Theorem 2 based on the stochastic theory of stability, which indicates
that, under the condition of Rs < 1, the infection would continue to perish from the
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community regardless of the levels of the variables at t = 0. Furthermore, the theory
demonstrates that the infection will be eradicated from the community with unit probability.
Figure 3 shows that the random curves reach the infection-free state after a limited period
of time, confirming the analytical results.

Example 1. The values of the parameter are assumed as: φ = 0.12, τ = 0.002, β = 0.008,
ω = 0.09, µ = 0.005, δ = 0.005, α = 0.02, γ = 0.004 and ρ = 0.05, where the initial values of the
state vector are S(0) = 50,V(0) = 30,E(0) = 10, I(0) = 15,H(0) = 25,R(0) = 20. Similarly,
the intensities of the white noises are: ξ1 = 0.55, ξ2 = 0.25, ξ3 = 0.25, ξ4 = 0.33, ξ5 = 0.55,
ξ6 = 0.50. Using those same model parameters, we estimated Rs, which was found to be lower than 1.
As a result, the assumption of Theorem 2 is met, and hence the components of the solution of the
model adhere to the following relations:

lim
t→∞

sup
logE(t)

t
≤ 0, a.s.

lim
t→∞

sup
logI(t)

t
≤ 0, a.s.

Essentially, these relations explain the elimination of the virus from the community, as seen by
Figure 3. As a consequence, the derived research findings on elimination are valid and may be relied on.
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(a) Derministic System (1)
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(b) Stochastic System (3)

Figure 3. Sample solutions of stochastic systems (3) with its associated deterministic counterpart.

Likewise, Theorem 3 guarantees the disease’s prevalence in the population given
permissible limits. By considering data from Example 2, we calculated the value of Rs

0, and
it was found that it is greater than unity. Figure 4 depicts the numerical results based on the
theorem’s assumptions. The figure implies that the infection persists inside the population,
and that there is persistence of the solution of the proposed model (3). This verifies the
conclusion of Theorem 3 in the case of deterministic model (1). These results further
elaborate that, when the related threshold parameter of the perturbed system exceeds unity,
the solution of the model (3) lies within the neighborhood of endemic equilibrium. Thus,
policymakers must provide strong preventative measures against various variations in
order to restrict the spreading of multiple strains throughout the community. Moreover,
Theorem 3 ensures the existence of an ergodic stationary distribution for model (3), and it
is confirmed by Figure 5.

Example 2. In this case, the chosen parameter values are of the form: φ = 2.12, β = 0.08,
ω = 0.07, µ = 0.001, δ = 0.005, α = 0.2, ρ = 0.004 and γ = 0.08. Similarly, the initial
population sizes of the state variables are S(0) = 50,V(0) = 30,E(0) = 10, I(0) = 15,H(0) = 25,



Fractal Fract. 2023, 7, 130 16 of 24

R(0) = 20, whereas the intensities are given by ξ1 = 0.50, ξ2 = 0.35, ξ3 = 0.70, ξ4 = 0.50,
ξ5 = 0.41, ξ5 = 0.45. Considering the measles data and hence the estimated and fitted parameters,
we find that Rs

0 exceeds unity. It is also explored that the model parameters taken in this example
satisfy the premise of Theorem 3. We tested the model using this input, and the outcomes are
displayed visually in Figure 4. The figure shows that the disease tends to stay inside the community,
and the model exhibits a homogeneous stationary distribution in this situation.
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Figure 4. Sample solution profiles of the system (3) correspond to its deterministic counterpart.
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Figure 5. Ergodic stationary distribution of (3).

From Theorem 3, there is a single stationary distribution of system (3). To numerically
illustrate this statistical property, we present in Figure 4 and 5, the trajectories and the
associated joint density function for each class of the population. For a good visibility, we
offer the 3D and upper view of the aforementioned joint densities in Figures 6–10. This
indicates that the infection is still present in the population over time. We talk here about
persistence in the mean of the epidemic. In Figure 4, we illustrate the continuation of
all groups of the studied population. We remark that the stochastic trajectories fluctuate
around the deterministic solution with reasonable distances according to magnitude of
the noises.
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(f) S(t) individuals and I(t) individuals

Figure 6. The right panel of the figure shows the joint two-dimensional densities at t = 3000 of
individuals S, V, E and I of system (3) correspond to data from Example 2—Test 2 (2nd column),
where different colors depict the density sizes. The panel on the left demonstrates the 3D graph of
the two-dimensional densities of S, V, E and I collectively (in this case, α = 1.99).
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(a) S(t) individuals and H(t) individuals
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(d) S(t) individuals and R(t) individuals
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(f) V(t) individuals and E(t) individuals

Figure 7. The right panel of the figure shows the joint two-dimensional densities at t = 3000
of individuals S, H, R, V and E of system (3) correspond to data from Example 2—Test 2
(2nd column), where different colors depict the density sizes. The panel on the left demonstrates the
3D graph of the two-dimensional densities of S, H, R, V and E collectively (in this case, α = 1.99).
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(a) V(t) individuals and I(t) individuals
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(d) V(t) individuals and H(t) individuals
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(f) V(t) individuals and R(t) individuals

Figure 8. The right panel of the figure shows the joint two-dimensional densities at t = 3000 of
individuals V, I, H, and R of system (3) correspond to data from Example 2—Test 2 (2nd column),
where different colors depict the density sizes. The panel on the left demonstrates the 3D graph of
the two-dimensional densities of V, I, H, and R collectively (in this case, α = 1.99).
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(a) E(t) individuals and I(t) individuals
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(f) E(t) individuals and R(t) individuals

Figure 9. The right panel of the figure shows the joint two-dimensional densities at t = 3000 of
individuals E, I, H, and R of system (3) correspond to data from Example 2—Test 2 (2nd column),
where different colors depict the density sizes. The panel on the left demonstrates the 3D graph of
the two-dimensional densities of E, I, H, and R, collectively (in this case, α = 1.99).
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(a) I(t) individuals and H(t) individuals
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(f) H(t) individuals and R(t) individuals

Figure 10. (First part) The right panel of the figure shows that the joint two-dimensional densities
at t = 3000 of individuals I, H, and R of system (3) correspond to data from Example 2–Test 2
(2nd column), where different colors depict the density sizes. The panel on the left demonstrates the
3D graph of the two-dimensional densities of I, H, and R collectively (in this case, α = 1.99).

8. Conclusions and Future Research

In this study, we presented a detail analysis of a stochastic model that describes the
spreading behavior of the measles virus while accounting for the white noises and the
influence of immunizations. It is assumed that the randomness being used in the model
is nonlinear, and that a person may lose the resistance after vaccination, implying that
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vaccination might create temporary protection against the disease. First of all, we formu-
lated a deterministic model and then it was expanded to a stochastic model. It is shown
that the stochastic model is both theoretically and practically viable by demonstrating that
the model has a global solution which is positive and stochastically bounded. Next, we
developed sufficient criteria for the disease’s elimination and permanence. Furthermore,
the presence of a stationary distribution is examined by constructing a suitable Lyapunov
function, wherein we noticed that the disease will persist for Rs>1

0 and that the illness will
vanish from the community for Rs<1

0 . We simulated the model against the available data of
measles in Pakistan during the first ten months of 2019, by using the conventional curve
fitting methods, and the values of the parameters were calculated therein. These values
of the parameters were used in simulating the model, and the theoretical findings of the
research were evaluated and conclusions were made. Simulations of the study suggest that,
in order to fully understand the dynamic behavior of the measles epidemic, time-delay
must be included in such analyses, and that advancements in every vaccine campaign are
unavoidable in order to stop or minimize the spreading of the disease.

We fit both stochastic and determinism models to known data on rubella in Pakistan
during the first ten months of 2019, and the values of parameters were obtained using
lsqcurvefit methods. These model parameters are used, and the threshold number, which is
around 13, is determined. This demonstrates that measles is extremely harmful and might
have a negative impact on this community if adequate control tactics are not implemented
in time. It also suggests that, if no appropriate measures are implemented, the cases of
the measles may increase in the coming years. To further reduce the transmission rate,
health authorities and lawmakers must launch awareness campaigns, mass immunizations,
particularly among youngsters, and, most crucially, care and treatment for people having
chronic conditions. This was also discovered that α serves as the most critical indicator to
the threshold parameter; thus, lowering the disease spreading co-efficient (by lowering the
household and sexual interactions of chronic patients with vulnerable) for acutely infected
individuals who become chronic is also an effective control to reduce the spread of measles.

In the next research studies, the authors intend to use fractional calculus and modify
this and the related model while utilizing different definitions of fractional derivatives such
as Riesz, Caputo, Atangana–Baleanu, Caputo–Fabrizio, and many others for capturing the
real dynamics of such and related diseases.
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