Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Butt, S.I.; Umar, M.; Rashid, S.; Akdemir, A.O.; Chu, Y.M. New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals. Adv. Diff. Equa. 2020, 1, 635. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Chu, Y.M. Ostrowski type inequalities in the sense of generalized k-fractional integral operator for exponentially convex functions. AIMS Math. 2020, 5, 2629–2645. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Math. 2022, 7, 15041–15063. [Google Scholar] [CrossRef]
- Khan, M.A.; Chu, Y.; Khan, T.U.; Khan, J. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs, Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Sarıkaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comp. Mod. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demons. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Yıldız, Ç.; Yergöz, B.; Yergöz, A. On new general inequalities for s-convex functions and their applicaitons. J. Inequal. Appl. 2023, 2023, 11. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Hyder, A.A.; Budak, H.; Almoneef, A.A. Further midpoint inequalities via generalized fractional operators in Riemann–Liouville sense. Fractal Fract. 2022, 6, 496. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comp. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Diff. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Budak, H.; Hezenci, F.; Kara, H. On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals. Math. Meth. Appl. Sci. 2021, 44, 12522–12536. [Google Scholar] [CrossRef]
- Du, T.; Luo, C.; Cao, Z. On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals 2021, 29, 2150188. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. On Pólya–Szegö and Čebyšev type inequalities via generalized k-fractional integrals. Adv. Diff. Equ. 2020, 1, 125. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard inequalities for k-fractional integrals. Nonlinear Func. Anal. Appl. 2016, 21, 463–478. [Google Scholar]
- Wu, S.; Iqbal, S.; Aamir, M.; Samraiz, M.; Younus, A. On some Hermite-Hadamard inequalities involving k-fractional operators. J. Inequal. Appl. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard-Type inequalities for k-fractional integrals. Konuralp J. Math. 2016, 4, 79–86. [Google Scholar]
- Set, E.; Tomar, M.; Sarikaya, M.Z. On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comp. 2015, 269, 29–34. [Google Scholar] [CrossRef]
- Khurshid, Y.; Khan, M.A.; Chu, Y.M.; Khan, Z.A. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions. J. Func. Spac. 2019, 10, 3146210. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Revisiting the Hermite-Hadamard fractional integral inequality via a Green function. AIMS Math. 2020, 5, 6087–6108. [Google Scholar] [CrossRef]
- Khan, M.A.; Iqbal, A.; Muhammad, S.; Chu, Y.M. Hermite-Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, 2018, 161. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Jleli, M.; Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 1, 55. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite–Hadamard type inequalities involving k-fractional operator for (h,m)-convex functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Mehmood, N.; Agarwal, R.P.; Butt, S.I.; Pečarić, J.E. New generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity. J. Inequal. App. 2017, 2017, 108. [Google Scholar] [CrossRef]
- Song, Y.Q.; Chu, Y.M.; Khan, M.A.; Iqbal, A. Hermite-Hadamard inequality and Green’s functions with applications. J. Comp. Anal. Appl. 2020, 28, 685. [Google Scholar]
- Li, Y.; Samraiz, M.; Gul, A.; Vivas-Cortez, M.; Rahman, G. Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function. Fractal Fract. 2022, 6, 126. [Google Scholar] [CrossRef]
- Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Quantum Hermite-Hadamard inequality by means of a Green function. Adv. Diff. Equ. 2020, 1, 99. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.A.; Chu, Y.M. Converses of the Jensen inequality derived from the Green functions with applications in information theory. Math. Meth. Appl. Sci. 2020, 43, 2577–2587. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, Ç.; Cotîrlă, L.-I. Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function. Fractal Fract. 2023, 7, 161. https://doi.org/10.3390/fractalfract7020161
Yildiz Ç, Cotîrlă L-I. Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function. Fractal and Fractional. 2023; 7(2):161. https://doi.org/10.3390/fractalfract7020161
Chicago/Turabian StyleYildiz, Çetin, and Luminiţa-Ioana Cotîrlă. 2023. "Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function" Fractal and Fractional 7, no. 2: 161. https://doi.org/10.3390/fractalfract7020161
APA StyleYildiz, Ç., & Cotîrlă, L. -I. (2023). Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function. Fractal and Fractional, 7(2), 161. https://doi.org/10.3390/fractalfract7020161