A Robust Study of Tumor-Immune Cells Dynamics through Non-Integer Derivative
Abstract
:1. Introduction
2. Tumor-Immune Cells Dynamics
3. Fractional Theory
4. Novel Numerical Technique for The System
5. Results and Discussion
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Jemal, A. Cancer Facts & Figures; American Cancer Society, Inc.: Atlanta, GA, USA, 2013. [Google Scholar]
- Rihan, F.A.; Safan, M.; Abdeen, M.A.; Abdel Rahman, D. Qualitative and computational analysis of a mathematical model fo tumor-immune interactions. J. Appl. Math. 2012, 2012, 475720. [Google Scholar] [CrossRef]
- Abbas, A. Cellular and Molecular Immunology; Abbas, A.K., Lichtman, A.H., Pober, J.S., Eds.; University of Michigan: Ann Arbor, MI, USA, 1997. [Google Scholar]
- Nani, F.; Freedman, H.I. A mathematical model of cancer treatment by immunotherapy. Math. Biosci. 2000, 163, 159–199. [Google Scholar] [CrossRef]
- Kuznetsov, V.A.; Makalkin, I.A.; Taylor, M.A.; Perelson, A.S. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 1994, 56, 295–321. [Google Scholar] [CrossRef] [PubMed]
- Robertson-Tessi, M.; El-Kareh, A.; Goriely, A. A mathematical model of tumorimmune interactions. J. Theor. Biol. 2012, 294, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Eftimie, R.; Bramson, J.L.; Earn, D.J. Interactions between the immune system and cancer: A brief review of non-spatial mathematical models. Bull. Math. Biol. 2011, 73, 2–32. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Shah, Z.; Deebani, W.; Alzahrani, E. Analysis and dynamical behavior of a novel dengue model via fractional calculus. Int. J. Biomath. 2022, 15, 2250036. [Google Scholar] [CrossRef]
- Jan, R.; Xiao, Y. Effect of partial immunity on transmission dynamics of dengue disease with optimal control. Math. Method. Appl. Sci. 2019, 42, 1967–1983. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Z. Analysis of an influenza A (H1N1) epidemic model with vaccination. Arab. J. Math. 2012, 1, 267–282. [Google Scholar] [CrossRef]
- Das, P.; Upadhyay, R.K.; Das, P.; Ghosh, D. Exploring dynamical complexity in a time-delayed tumor-immune model. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 123118. [Google Scholar] [CrossRef]
- Chaplain, M.A. Multiscale mathematical modelling in biology and medicine. IMA J. Appl. Math. 2011, 76, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.B.; Fisher, M.E.; Minchin, R.F.; Teo, K.L. A mathematical model of cancer chemotherapy with an optimal selection of parameters. Math. Biosci. 1990, 99, 205–230. [Google Scholar] [CrossRef] [PubMed]
- Deisboeck, T.S.; Wang, Z.; Macklin, P.; Cristini, V. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 2011, 13, 127–155. [Google Scholar] [CrossRef] [PubMed]
- Woelke, A.L.; Murgueitio, M.S.; Preissner, R. Theoretical modeling techniques and their impact on tumor immunology. Clin. Dev. Immunol. 2010, 2010, 271794. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Agrawal, T. Chaos in a tumor growth model with delayed responses of the immune system. J. Appl. Math. 2012, 2012, 891095. [Google Scholar] [CrossRef]
- Zhivkov, P.; Waniewski, J. Modelling tumour-immunity interactions with different stimulation functions. Int. J. Appl. Math. Comput. Sci. 2003, 13, 307–315. [Google Scholar]
- Galach, M. Dynamics of the tumor-immune system competition-the effect of time delay. Int. J. Appl. Math. Comput. Sci. 2003, 13, 395–406. [Google Scholar]
- Babbs, C.F. Predicting success or failure of immunotherapy for cancer: Insights from a clinically applicable mathematical model. Am. J. Cancer Res. 2012, 2, 204–213. [Google Scholar]
- d’Onofrio, A.; Gatti, F.; Cerrai, P.; Freschi, L. Delay-induced oscillatory dynamics of tumour-immune system interaction. Math. Comput. Model. 2010, 51, 572–591. [Google Scholar] [CrossRef]
- Letellier, C.; Denis, F.; Aguirre, L.A. What can be learned from a chaotic cancer model. J. Theor. Biol. 2013, 322, 7–16. [Google Scholar] [CrossRef]
- Rocha, A.M.A.; Costa, M.F.P.; Fernandes, E.M. On a multiobjective optimal control of a tumor growth model with immune response and drug therapies. Int. Trans. Oper. Res. 2018, 25, 269–294. [Google Scholar] [CrossRef]
- Tripathi, C.; Tewari, B.N.; Kanchan, R.K.; Baghel, K.S.; Nautiyal, N.; Shrivastava, R.; Kaur, H.; Bhatt, M.L.B.; Bhadauria, S. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014, 5, 5350. [Google Scholar] [CrossRef] [PubMed]
- Italiani, P.; Boraschi, D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol. 2014, 5, 514. [Google Scholar] [CrossRef] [PubMed]
- Laoui, D.; Movahedi, K.; Van Overmeire, E.; Van den Bossche, J.; Schouppe, E.; Mommer, C.; Nikolaou, A.; Morias, Y.; De Baetselier, P.; Van Ginderachter, J.A. Tumorassociated macrophages in breast cancer: Distinct subsets, distinct functions. Int. J. Dev. Biol. 2011, 55, 861–867. [Google Scholar] [CrossRef]
- Boulaaras, S.; Jan, R.; Khan, A.; Ahsan, M. Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals X 2022, 8, 100072. [Google Scholar] [CrossRef]
- Jan, R.; Khan, A.; Boulaaras, S.; Ahmed Zubair, S. Dynamical Behaviour and Chaotic Phenomena of HIV Infection through Fractional Calculus. Discret. Dyn. Nat. Soc. 2022, 2022, 5937420. [Google Scholar] [CrossRef]
- Jan, R.; Boulaaras, S. Analysis of fractional-order dynamics of dengue infection with non-linear incidence functions. Trans. Inst. Meas. Control 2022. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Mandal, M.; Jana, S.; Nandi, S.K.; Kar, T.K. Modelling and control of a fractionalorder epidemic model with fear effect. Energy Ecol. Environ. 2020, 5, 421–432. [Google Scholar] [CrossRef]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Liu, Y.; Fan, E.; Yin, B.; Li, H. Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative. Aims Math. 2020, 5, 1729–1744. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, A.; Li, X. A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative. Int. J. Comput. Math. 2018, 95, 396–411. [Google Scholar] [CrossRef]
- Atangana, A.; Owolabi, K.M. New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 2018, 13, 3. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, R.; Boulaaras, S.; Ahmad, H.; Jawad, M.; Zubair, S.; Abdalla, M. A Robust Study of Tumor-Immune Cells Dynamics through Non-Integer Derivative. Fractal Fract. 2023, 7, 164. https://doi.org/10.3390/fractalfract7020164
Jan R, Boulaaras S, Ahmad H, Jawad M, Zubair S, Abdalla M. A Robust Study of Tumor-Immune Cells Dynamics through Non-Integer Derivative. Fractal and Fractional. 2023; 7(2):164. https://doi.org/10.3390/fractalfract7020164
Chicago/Turabian StyleJan, Rashid, Salah Boulaaras, Hussain Ahmad, Muhammad Jawad, Sulima Zubair, and Mohamed Abdalla. 2023. "A Robust Study of Tumor-Immune Cells Dynamics through Non-Integer Derivative" Fractal and Fractional 7, no. 2: 164. https://doi.org/10.3390/fractalfract7020164
APA StyleJan, R., Boulaaras, S., Ahmad, H., Jawad, M., Zubair, S., & Abdalla, M. (2023). A Robust Study of Tumor-Immune Cells Dynamics through Non-Integer Derivative. Fractal and Fractional, 7(2), 164. https://doi.org/10.3390/fractalfract7020164