
Citation: Alaroud, M.; Alomari,

A.-K.; Tahat, N.; Ishak, A. Analytical

Computational Scheme for

Multivariate Nonlinear

Time-Fractional Generalized

Biological Population Model. Fractal

Fract. 2023, 7, 176. https://

doi.org/10.3390/fractalfract7020176

Academic Editors: Xiaoli Chen and

Dongfang Li

Received: 19 December 2022

Revised: 19 January 2023

Accepted: 7 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Analytical Computational Scheme for Multivariate Nonlinear
Time-Fractional Generalized Biological Population Model
Mohammad Alaroud 1 , Abedel-Karrem Alomari 2, Nedal Tahat 3 and Anuar Ishak 4,*

1 Department of Mathematics, Faculty of Arts and Science, Amman Arab University, Amman 11953, Jordan
2 Department of Mathematics, Faculty of Science, Yarmouk University, Irbid 22163, Jordan
3 Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127,

Zarqa 13133, Jordan
4 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan

Malaysia (UKM), Bangi 43600, Malaysia
* Correspondence: anuar_mi@ukm.edu.my; Tel.: +60-389215785

Abstract: This work provides exact and analytical approximate solutions for a non-linear time-
fractional generalized biology population model (FGBPM) with suitable initial data under the time-
Caputo fractional derivative, in view of a novel effective and applicable scheme, based upon elegant
amalgamation between the Laplace transform operator and the generalized power series method. The
solution form obtained by the proposed algorithm of considered FGBPM is an infinite multivariable
convergent series toward the exact solutions for the integer fractional order. Some applications of
the posed model are tested to confirm the theoretical aspects and highlight the superiority of the
proposed scheme in predicting the analytical approximate solutions in closed forms compared to
other existing analytical methods. Associated figure representations and the results are displayed
in different dimensional graphs. Numerical analyses are performed, and discussions regarding the
errors and the convergence of the scheme are presented. The simulations and results report that the
proposed modern scheme is, indeed, direct, applicable, and effective to deal with a wide range of
non-linear time multivariable fractional models.

Keywords: time-fractional generalized biology population model; Laplace fractional power series
method; time-Caputo fractional derivative; Laplace residual error

1. Introduction

In the past few years, the topic of fractional calculus (FC), including differentiation and
integration of non-integer order, is being employed comprehensively in various scientific
sectors and is growing uncommonly vast in the evolution of novel models because of its
connection with memory and fractal kinds which are profuse in physical phenomena [1–4].
The beauty of FC is in incorporating fractional-order derivatives into the considered model
reduces inaccuracy caused by unawareness of the parameters for the model structure.
Moreover, it allows for a better degree of freedom in models of physical phenomena compared
with ordinary systems. Recently, numerous models in dynamics and biology [5–7] have been
modeled with the help of fractional-order derivatives which express the behavior of real-life
phenomena suitably and applicably. Fractional differential equations (FDEs) are armed
with magnificent approaches for describing hereditary and memory features which are
disregarded by ordinary systems.

Non-linear fractional and ordinary differential equations play a prime role in diverse
scopes such as biology, physics, engineering, and fluid mechanics. Obtaining analytical
solutions to these problems is not always possible [8–14]. Thereby, it is considerable to
handle these problems appropriately and solve them or develop solutions. In this orien-
tation, many researchers have proposed and employed several analytical and numerical
techniques, including the variational iteration method (VIM) [15,16], fractional wavelet
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method (FWM) [17], homotopy analysis method (HAM) [18,19], and fractional power series
method (FPSM) [20–23].

The main theme work is to analyze and provide the exact and analytical approximate
solutions for the time non-linear biological population model with time-fractional Caputo-
derivative. To this end, we consider the time non-linear fractional biological population
model (FBPM) form as follows:

Dα
t ω(η, t) = D2

xω2(η, t) + D2
yω2(η, t) +F (ω), α ∈ (0, 1], t ≥ 0, (1)

with initial condition ω(η, 0) = ρ0(η), where Dα
t is the α-th time-fractional Caputo-derivative,

and ω(η, t) is the population density, which is defined by the three parameters, the positions
η = (x, y), and the time t, and provides the individual number per unit volume. While
F (ω) represents the population supply due to births and deaths. When α→ 1 , various
merits of FGBPM (1), such as Hölder estimates of its solutions, are studied in [24]. The
population supply function F (ω) has the following constitutive cases:

• If F (ω) = kω, then FBPM (1) reduces to Malthusian law [25] and k constant;
• If F (ω) = kω − lω2, then FBPM (1) reduces to Verhulst law [24] and k, l positive

constants;
• If F (ω) = kωϑ, then FBPM (1) reduces to porous media [26], k positive constants, and

ϑ ∈ (0, 1).

More specifically, we consider and discuss the more general form of F in (1) as
F (ω) = λωp(1− rωq), where λ, r, p, and q are real numbers. Thus, the time non-linear
FBPM is extended to the following time non-linear generalized FBPM (FGBPM):

Dα
t ω(η, t) = D2

xω2(η, t) + D2
yω2(η, t) + λωp(1− rωq), α ∈ (0, 1], t ≥ 0, (2)

Various numeric–analytic methods have been applied to solve the time non-linear
FBPM (1) and FGBPM (2) with numerous fractional derivatives [27–30]. In this article, a
novel solution scheme is proposed to gain the exact and analytical approximate solutions
using the methodology of Laplace FPSM [31,32]. It is a superb amalgamation of Laplace
transform (LT) and FPSM to treat several non-linear fractional models arising in physics
and engineering fields, including the time-fractional Broer–Kaup–Burger model [33], time-
fractional Kolmogorov and Rosenau–Hyman models [34], temporal time-fractional gas
dynamics models [35], and complex fuzzy fractional population dynamics models [36]. The
recommended method produces the analytical approximate solutions in the fast conver-
gent form of the fractional series expansion after solving the considered model in Laplace
space via employing the residual error concept and utilizing the limit concept with no
required restrictive assumptions and reduces mathematical calculations notably. Thus,
what characterizes the Laplace FPSM is solving the target fractional model in the Laplace
space, making it easier than solving it with the original space and considering the concept
of the limit at infinity when finding the proposed expansion coefficients, and replacing the
fractional derivation stage, as is the case in FPSM [37,38]. Consequently, the superiority of
the novel solution approach appears in its capability to generate closed-form and accurate
approximate solutions. Hereinafter, some fundamental definitions and primary results
concerning the FC topic and Laplace multivariate FS representations have been reported
briefly. In Section 3, a basic methodology of multivariate Laplace FPSM is designed and
clarified for solving nonlinear time FGBPM (2). In Section 4, the applicability and perfor-
mance of the proposed scheme are achieved by performing it on attractive applications of
the posed model. Lastly, some concluding remarks on our findings are drawn.

2. Preliminary Mathematical Concepts

This segment is aimed to highlight the basic definitions and some preliminary results
of FC theory with its features. Furthermore, a revisiting of the multivariate Laplace FPSM
in the Caputo fractional derivative sense is undertaken.
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Definition 1. The α-th time fractional Riemann–Liouville integral operator of multivariable
ω ∈ Cδ, δ ≥ −1, denoted byJ α

t and given by [2]:

J α
t ω(η, t) = 1

Γ(α)

t∫
0

ω(η,ϑ)
(t−ϑ)1−α dϑ, α ∈ (n− 1, n), n ∈ N,

J 0
t ω(η, t) = ω(η, t).

(3)

Definition 2 ([2]). The α-th time fractional derivative in the Caputo sense of multivariable
ω ∈ Cδ, δ ≥ −1, denoted byDα

t and given by:

Dα
t ω(η, t) =

{
∂n

∂xn ω(η, t), α = 0

J n−α
t

(
∂n

∂ηn ω(η, t)
)

, α ∈ (n− 1, n), n ∈ N
, (4)

Definition 3 ([31]). Assume that ω(η, t) : R2 × [0, ∞)→ R . The LT of ω(η, t) is defined as:

W(η, ξ) = L{ω(η, t)} =
+∞∫
0

ω(η, t)e−ξtdt, ξ > ρ, (5)

and the inverse LT of the new functionW(η, ξ) is defined as:

ω(x, t) = L−1{W(η, ξ)} =
ε+i∞∫

ε−i∞

W(η, ξ)eξtdξ, ε = Re(ξ) > ε0, (6)

with the following characteristics:

• L{tmα} = Γ(mα+1)
ξmα+1 , α > −1.

• lim
ξ→+∞

ξW(η, ξ) = ω(η, 0).

• L{aω(η, t) + bz(η, t)} = aW(η, ξ) + bZ(η, ξ), for any a, b ∈ R.
• L−1{aW(η, ξ) + bZ(η, ξ)} = aω(η, t) + bz(η, t).

where W(η, ξ) = L{ω(η, t)}, and Z(η, ξ) = L{z(η, t)}.

Lemma 1. Suppose that ω(η, t) : R2 × [0, ∞)→ R and the exponential order. Then,

i. L{Dα
t ω(η, t)} = ξαW(η, ξ)−

n−1
∑

k=0
ξα−k−1ω

(k)
t (η, 0), α ∈ (n− 1, n], n ∈ N.

ii. L{Dmα
t ω(η, t)} = ξmαW(η, ξ)−

m−1
∑

k=0
ξ(m−k)α−1Dkα

t ω(η, 0), α ∈ (0, 1], m ∈ N.

Theorem 1 ([31]). Suppose that ω(η, t) is a continuous multivariable function on R2 × [0,+∞) ,
then the transform function W(η, ξ) could be expressed in the following Laplace fractional expansion
(FE):

W(η, ξ) =
∞

∑
n=0

ωn(η)

ξnα+1 , ξ > 0, α ∈ (0, 1], (7)

where the coefficients ωn(η) = Dnα
t ωn(η).

Remark 1. The inverse LT of the Laplace FE (7) has the following fractional series solution (FSS):
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ω(η, t) =
∞

∑
n=0

Dnα
t ωn(η)

Γ(nα + 1)
t
nα

,t ≥ 0, α ∈ (0, 1] , (8)

where ω(η, t) is infinitely the time-fractional derivative in Caputo sense at any pointt ∈ (0,∇ 1
α ].

Theorem 2 ([31]). Let
∣∣∣ξL[D(n+1)α

t ω(η, t)
]∣∣∣ ≤ l(η) , on Rm × (δ , γ] where0 < α ≤ 1 . Then,

the remainder of the fractional series solution (FSS)(8) satisfies the following inequality:

|Rn(η, ξ)| ≤ l(η)
l1+(n+1)α

, η ∈ Rm, δ < ξ ≤ γ. (9)

3. Principle of the Laplace FPSM

The Laplace FPSM is an analytical computational scheme that has been suggested,
particularly in [31], to handle emerging time-fractional PDEs in various nonlinear dynam-
ical phenomena. The proposed scheme is a promotion of FPSM with an LT operator. It
is based on solving the studied model in the Laplace space using the simulation FPSM in
obtaining the expansion unknown functions via a new procedure easier than the traditional
FPSM. In this segment, a novel algorithm is designed and developed for generating the
analytical approximate FSS of the nonlinear time-FGBPM (2) with initial conditions in a
specific space–time domain. To reach our main theme, we convert (2) into the Laplace
space, and using Lemma 1 part (ii), we have:

W(x, y, ξ) =
ω0(x,y)

ξ + 1
ξαL

{(
L−1D2

xW(x, y, ξ)
)2
}

+ 1
ξαL

{(
L−1D2

yW(x, y, ξ)
)2
}
+ λ

ξαL
{(
L−1W(x, y, ξ)

)p
}

− λr
ξαL

{(
L−1W(x, y, ξ)

)p+q
}

.

(10)

The proposed solution of (10) has the Laplace FE series:

W(x, y, ξ) =
∞

∑
n=0

ωn(x, y)
ξnα+1 , ξ > 0, α ∈ (0, 1], (11)

provided that ω0(x, y) = ρ0(x, y). Thus, the j-th truncated Laplace FE series Wj(x, y, ξ),
could be expressed as:

Wj(x, y, ξ) = ρ0(x, y) +
j

∑
n=1

ωn(x, y)
ξnα+1 , ξ > 0, α ∈ (0, 1], (12)

To find out the unknown function ωn(x, y), we define the so-called Laplace–residual
error function (L-REF) of (10) as:

L{ResW(x, y, ξ)} = W(x, y, ξ)− ω0(x,y)
ξ − 1

ξαL
{(
L−1D2

xW(x, y, ξ)
)2
}

− 1
ξαL

{(
L−1D2

yW(x, y, ξ)
)2
}
− λ

ξαL
{(
L−1W(x, y, ξ)

)p
}

+ λr
ξαL

{(
L−1W(x, y, ξ)

)p+q
}

.

(13)
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Meanwhile, the j-th truncated the L-REF of (13) will be:

L
{

Resj
W(x, y, ξ)

}
= Wj(x, y, ξ)− ω0(x,y)

ξ − 1
ξαL

{(
L−1D2

xWj(x, y, ξ)
)2
}

− 1
ξαL

{(
L−1D2

yWj(x, y, ξ)
)2
}
− λ

ξαL
{(
L−1Wj(x, y, ξ)

)p
}

+ λr
ξαL

{(
L−1Wj(x, y, ξ)

)p+q
}

.

(14)

To explain the presence of the main idea of the proposed scheme in detecting the
analytical approximate FSS of the considered model (2), the following underlying algorithm
is dedicated:

Step I: Assume that the solution of the new Laplace Equation (10) has the Laplace FE
series (12).

Step II: Define the j-th truncated Laplace FE series Wj(x, y, ξ), as in (13).

Step III: Define the j-th truncated L-REF L
{

Resj
W(x, y, ξ)

}
of (13), as given in (14).

Step IV: Substitute the j-th truncated Laplace FE series Wj(x, y, ξ) obtained in Step II

into L
{

Resj
W(x, y, ξ)

}
, obtained in Step III, as follows:

L
{

Resj
W(x, y, ξ)

}
=

j
∑

n=1

ωn(x,y)
ξnα+1 − 1

ξαL


(
L−1D2

x

(
ρ0(x, y) +

j
∑

n=1

ωn(x,y)
ξnα+1

))2


− 1
ξαL


(
L−1D2

y

(
ρ0(x, y) +

j
∑

n=1

ωn(x,y)
ξnα+1

))2


− λ
ξαL

{(
L−1

(
ρ0(x, y) +

j
∑

n=1

ωn(x,y)
ξnα+1

))p}

+ λr
ξαL


(
L−1

(
ρ0(x, y) +

j
∑

n=1

ωn(x,y)
ξnα+1

))p+q
.

Step V: Multiply the obtained equation in Step IV by the factor ξ jα+1, and then solve
the system lim

ξ→+∞
ξnα+1L

{
Resj

W(x, y, ξ)
}

for ωj(x, y).

Step VI: Cumulate the unknown functions ωj(x, y) determined in Step V in terms
of j-th truncated Laplace FE series Wj(x, y, ξ) (12). When j→ ∞ , the Laplace FE series
W(x, y, ξ) (11) can be obtained.

Step VII: Eventually, running the inverse LT to the obtained Laplace expansion in
Step VI yields the analytical approximate FSS of the studied model (2).

4. Applications

In this section, the applicability of the Laplace FPSM is investigated to construct the
analytical exact and approximate FSS of certain special cases of nonlinear time FGBPM (2)
with suitable ICs. Further, simulations and graphical representations were investigated for
the obtained results of the studied models. Symbolic and computations were performed
using Mathematica 12.

Application 1. Consider the nonlinear time-FBPM given as:

Dα
t ω = D2

xω2 + D2
yω2 + λω, α ∈ (0, 1], (15)
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According to the previous discussion, by first applying LT to Equation (15) with
Lemma 1, part (ii), we obtain:

W(x, y, ξ) =
ω0(x,y)

ξ + 1
ξαL

{(
L−1D2

xW(x, y, ξ)
)2
}
+ 1

ξαL
{(
L−1D2

yW(x, y, ξ)
)2
}

+ λ
ξα W(x, y, ξ).

(16)

Hence, the L-REF of (17) can be identified as:

L{ResW(x, y, ξ)} = W(x, y, ξ)− ω0(x,y)
ξ − 1

ξαL
{(
L−1D2

xW(x, y, ξ)
)2
}

− 1
ξαL

{(
L−1D2

yW(x, y, ξ)
)2
}
− λ

ξα W(x, y, ξ).
(17)

Meanwhile, the j-th truncated L-REF can be expressed as:

L
{

Resj
W(x, y, ξ)

}
= Wj(x, y, ξ)− ω0(x,y)

ξ − 1
ξαL

{(
L−1D2

xWj(x, y, ξ)
)2
}

− 1
ξαL

{(
L−1D2

yWj(x, y, ξ)
)2
}
− λ

ξα Wj(x, y, ξ).
(18)

where the j-th transform function Wj(x, y, ξ) takes the Laplace FE form:

Wj(x, y, ξ) =
j

∑
m=0

ωm(x, y)
ξmα+1 ξ > 0, (19)

Now, to investigate the analytical solution to the main problem, we should find out
the form of the unknown functions ωm(x, y) for m = 0, 1, 2, ..j. To this end, we substitute
the j-th transform function Wj(x, y, ξ) (20) into the j-th truncated L-REF (19) such that:

L
{

Resj
W(x, y, ξ)

}
=

j
∑

m=1

ωm(x,y)
ξmα+1 − 1

ξαL


(
L−1D2

x

(
j

∑
m=0

ωm(x,y)
ξmα+1

))2


− 1
ξαL


(
L−1D2

y

(
j

∑
m=0

ωm(x,y)
ξmα+1

))2
− λ

ξα

j
∑

m=0

ωm(x,y)
ξmα+1 .

(20)

Multiply both sides of the obtained Equation (20) by the factor ξmα+1, and we have:

ξmα+1L
{

Resj
W(x, y, ξ)

}
= ωj(x, y)− λωj−1(x, y)
−Γ((j− 1)α

+1)

(
j−1
∑

i=0

2Dyωi(x,y)Dyωj−i−1(x,y)+D2
yωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

yωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

+
j−1
∑

i=0

2Dxωi(x,y)Dxωj−i−1(x,y)+D2
xωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

xωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

)
.

(21)

After that, we can solve (21) for ωj(x, y) to obtain the following recurrence relation:

ωj(x, y) = λωj−1(x, y)
+Γ((j− 1)α

+1)

(
j−1
∑

i=0

2Dyωi(x,y)Dyωj−i−1(x,y)+D2
yωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

yωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

+
j−1
∑

i=0

2Dxωi(x,y)Dxωj−i−1(x,y)+D2
xωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

xωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

)
.

(22)
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Using Mathematica Software 12 and considering the initial condition ω0(x, y) =
√

xy
into (22), we can easily find out the forms of ωj(x, y) for j = 1, 2, . . . . In this direction, more
unknown functions could be computed.

ω1(x, y) = λ
√

xy,
ω2(x, y) = λ2√xy,
ω3(x, y) = λ3√xy,
...
ωj(x, y) = λj√xy.

So, by grouping the obtained ωj(x, y) in terms of expansion (19), we can predict the
j-th Laplace FE of (16) in the form:

Wj(x, y, ξ) =

(
√

xy +
λ
√

xy
ξα+1 +

λ2√xy
ξ2α+1 + . . . +

λj√xy
ξ jα+1

)
. (23)

When j→ ∞ , the Laplace FE of (16) takes the form:

W(x, y, ξ) =
√

xy
(

1 +
λ

ξα+1 +
λ2

ξ2α+1 + . . . +
λj

ξ jα+1 + . . .
)
=
√

xy
∞

∑
m=0

λm

ξmα+1 . (24)

As the last step in finding the analytical approximate FSS, we convert the fractional
expansion (24) into the main space by performing the inverse LT on the result (24). Conse-
quently, the analytical approximate FSS of the nonlinear time-FBPM (15) could be formu-
lated in the following closed form:

ω(x, y, t) =
√

xy
∞

∑
m=0

(λtα)m

Γ(mα + 1)
=
√

xyEα(λtα). (25)

Particularly, for α = 1, the analytical approximate FSS (26) reduces to the exact solution:

ω(x, y, t) =
√

xy
∞

∑
m=0

(λt)m

Γ(m + 1)
=
√

xyeλt, (26)

which meets the results provided by [19].
In the following, numerical simulations of the gained results of the nonlinear time-

FBPM (15) are provided in Tables 1 and 2, where Table 1 shows the comparisons of ab-
solute errors

∣∣ω−ωj
∣∣ at fixed values of (x, y) and some grid point of t in [0, 3]. Whereas

Tables 2 and 3 exhibit some numerical findings at various values of the parameter α of the
6th and 12th FSS for the posed model. From these results, the efficiency and accuracy of the
presented scheme are confirmed. Graphically, the gained analytical approximate solution
is plotted in a two-dimensional graph, as in Figure 1, over t ∈ [0, 3] and [0, 6] for a fixed
value of (x, y) = (2, 3). From this graphical representation, the influence of the non-integer
parameter α on the approximate solutions coincidences with respect to the time t.

Table 1. Comparison of absolute errors of the nonlinear time-FBPM (15).

t |ω − ω6| |ω − ω12| |ω − ω18|
0.5 3.061708664375828× 10−8 4.44089209850063× 10−16 4.440892098500626× 10−16

1 4.048135929579644× 10−6 4.97379915032070× 10−14 0.0
1.5 7.150407740663667× 10−5 9.87299131338659× 10−12 8.881784197001252× 10−16

2 5.542531561681940× 10−4 4.23460377874108× 10−10 0.0
2.5 2.736956864421103× 10−3 7.851848948803308× 10−9 1.776356839400250× 10−15

3 1.016540163180935× 10−2 8.566345144345178× 10−8 4.973799150320701× 10−14
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Table 2. Numerical solutions of the 6th FSS for the nonlinear time-FBPM (15).

ti Exact
6th-FSS

α = 1 α = 0.95 α = 0.85

0.5 3.145207087649518 3.145207057032432 3.195437680739461 3.306493306455880
1 4.038525841288411 4.038521793152482 4.105554824617641 4.245814688736310

1.5 5.185569826164564 5.185498322087158 5.253448925361035 5.386794675631956
2 6.658403456804333 6.657849203648165 6.708096482666050 6.792504963679339

2.5 8.549559273098282 8.546822316233861 8.553458937008319 8.531511130094565
3 10.97785140813657 10.96768600650476 10.89318588408218 10.68360229862708

Table 3. Numerical solutions of the 12th FSS for the nonlinear time-FBPM (15).

t α = 0.7 α = 0.5 α = 0.3 α = 0.1

0.5 1.4304426170 1.5670592359 1.7436227777 1.9399857896
1 1.8249850566 1.9523604092 2.0620071729 2.0768077222

1.5 2.2750673796 2.3476620568 2.3420796264 2.1709283161
2 2.8038430557 2.7742779826 2.6090467681 2.2453761878

2.5 3.4320723970 3.2440756075 2.8723526367 2.3081488661
3 4.1824947771 3.7667181702 3.1368482479 2.3630675139
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Figure 1. The behaviour of the analytical approximate FSS for nonlinear time-FBPM (15) at various
values of α and λ = 0.5; (a) for t ∈ [0, 3], (b) for t ∈ [0, 6].

Application 2. Consider the nonlinear time-FBPM given as:

Dα
t ω = D2

xω2 + D2
yω2 + λω, α ∈ (0, 1], (27)

For solving the nonlinear time-FBPM (27) using the process of Laplace FPSM, we
should convert (27) into the new Laplace space; that is:

W(x, y, ξ) =
ω0(x,y)

ξ + 1
ξαL

{(
L−1D2

xW(x, y, ξ)
)2
}
+ 1

ξαL
{(
L−1D2

yW(x, y, ξ)
)2
}

+ λ
ξα W(x, y, ξ).

(28)
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As we do in Application 1 with initial dataω(x, y, 0) =
√

sin (x)sinh(y), the unknown
functions ωj(x, y), of the proposed solution (19) could be determined by utilizing the
obtained recurrence formula (22). So, the first few j-th Laplace FE forms for the Laplace
Equation (28) are given as:

W1(x, y, ξ) =

(√
sin (x)sinh(y) + λ

√
sin (x)sinh(y)

ξα+1

)
,

W2(x, y, ξ) =

(√
sin (x)sinh(y) + λ

√
sin (x)sinh(y)

ξα+1 +
λ2
√

sin (x)sinh(y)
ξ2α+1

)
,

W3(x, y, ξ) =

(√
sin (x)sinh(y) + λ

√
sin (x)sinh(y)

ξα+1 +
λ2
√

sin (x)sinh(y)
ξ2α+1 +

λ3
√

sin (x)sinh(y)
ξ3α+1

)
,

W4(x, y, ξ) =

(√
sin (x)sinh(y) + λ

√
sin (x)sinh(y)

ξα+1 +
λ2
√

sin (x)sinh(y)
ξ2α+1 +

λ3
√

sin (x)sinh(y)
ξ3α+1 +

λ4
√

sin (x)sinh(y)
ξ4α+1

)
,

W5(x, y, ξ) =

(√
sin (x)sinh(y) + λ

√
sin (x)sinh(y)

ξα+1 +
λ2
√

sin (x)sinh(y)
ξ2α+1 +

λ3
√

sin (x)sinh(y)
ξ3α+1 +

λ4
√

sin (x)sinh(y)
ξ4α+1 +

λ5
√

sin (x)sinh(y)
ξ5α+1

)
.

The rest of the j-th Laplace FE series for each j ≥ 6 of the LT Equation (28) can be
computed similarly. Therefore, the Laplace FE series of (28) could be expressed in the
following infinite series:

W(x, y, ξ) = lim
j→∞

Wj(x, y, ξ) =
√

sin (x)sinh(y)
(

1 + λ
ξα+1 +

λ2

ξ2α+1 +
λ3

ξ3α+1 + · · ·
)

=
√

sin (x)sinh(y)
∞
∑

m=0

λm

ξmα+1 .
(29)

Finally, by running the inverse LT of (29), we obtain the analytical approximate FSS of
the nonlinear time-FBPM (27), which could be provided in the following expansion form:

ω(x, y, t) =
√

sin (x)sinh(y)
∞

∑
m=0

(λtα)m

Γ(mα + 1)
=
√

sin (x)sinh(y)Eα(λtα). (30)

Particularly for α = 1, the analytical approximate FSS (30) reduces to the exact solution:

ω(x, y, t) =
√

sin (x)sinh(y)
∞

∑
m=0

(λt)m

Γ(m + 1)
=
√

sin (x)sinh(y)eλt. (31)

which agrees with the results provided by [19].
Next, the agreement between the exact and fifth FSS for nonlinear time-FBPM (27) is

achieved by calculating the absolute errors |ω−ω5| at ordinary order α = 1, as in Table 4.
Furthermore, Figure 2 exhibits the matching of the geometric behaviour between the exact
and FSS solutions at diverse values of the fractional parameter α. Furthermore, Figure 3
shows the impact of fractional derivative on the obtained FSS solutions over α ∈ (0, 1], at
fixed values of x, and y.

Table 4. Numerical results for the non-linear time-FBPM (27) when α = 1 .

(x, y, ti) ω ω5 |ω − ω5|
(30, 1, 1) 0.8471699886414954 0.8471699875614395 1.080055933577739× 10−9

(30, 1, 2) 0.9362676341130575 0.9362675639786114 7.013444602854690× 10−8

(30, 1, 3) 1.0347357607572423 1.0347349500711882 8.106860540646466× 10−7

(30, 1, 4) 1.1435598706817850 1.1435552476315374 4.623050247731797× 10−6

(30, 1, 5) 1.2638291121558574 1.2638112100956973 1.790206016005769× 10−5

(30, 1, 6) 1.3967471801720195 1.3966929080544292 5.427211759023720× 10−5
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Application 3. Consider the nonlinear time-FGBPM given as:

Dα
t ω = D2

xω2 + D2
yω2 + ω(1− rω), α ∈ (0, 1], (32)

This model is a special case of nonlinear time-FGBPM (2), where p = q = 1 and λ = 1.
Thus, using the last discussion in Section 3, the LT of (32) could be written as:

W(x, y, ξ) =
ω0(x,y)

ξ + 1
ξαL

{(
L−1D2

xW(x, y, ξ)
)2
}
+ 1

ξαL
{(
L−1D2

yW(x, y, ξ)
)2
}

+ 1
ξα W(x, y, ξ)− r

ξαL
{(
L−1W(x, y, ξ)

)2
}

.
(33)

Utilizing the Laplace FPSM, the j-th Laplace FE series of (33) is given by:

Wj(x, y, ξ) = ∑j
m=0

ωm(x, y)
ξmα+1 ξ > 0, (34)
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and the j-th truncated L-REF of (34) can be identified as:

L
{

Resj
W(x, y, ξ)

}
=

j
∑

m=1

ωm(x,y)
ξmα+1

− 1
ξαL


(
L−1D2

x

(
j

∑
m=0

ωm(x,y)
ξmα+1

))2
− 1

ξαL


(
L−1D2

y

(
j

∑
m=0

ωm(x,y)
ξmα+1

))2
− 1

ξα

j
∑

m=0

ωm(x,y)
ξmα+1

+ r
ξαL


(
L−1

(
j

∑
m=0

ωm(x,y)
ξmα+1

))2
.

(35)

Then, after some algebraic simplifications, we obtain:

L
{

Resj
W(x, y, ξ)

}
= rξ−α

(
j

∑
m=0

ξ−mα−1Γ(mα + 1)
min(j,m)

∑
i=max(0,m−j)

ωi(x,y)ωn−i(x,y)
Γ(iα+1)Γ((m−i)α+1)

)

−ξ−α

(
j

∑
m=0

ξ−mα−1Γ(mα

+1)
min(j,m)

∑
i=max(0,m−j)

2Dyωi(x,y)Dyωj−i−1(x,y)+D2
yωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

yωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

)

−ξ−α

(
j

∑
m=0

ξ−mα−1Γ(mα

+1)
min(j,m)

∑
i=max(0,m−j)

2Dxωi(x,y)Dxωj−i−1(x,y)+D2
xωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

xωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

)

−ξ−α

(
j

∑
m=0

ξ−mα−1ωm(x, y)

)
+

j
∑

m=1
ξ−mα−1ωm(x, y).

(36)

Thereafter, we multiply both sides of (36) by the factor ξ jα+1, and putting m = j− 1
and m = j with some symbolic simplification, we conclude that:

ξ jα+1L
{

Resj
W(x, y, ξ)

}
= Γ((j− 1)α

+1)

(
r

j−1
∑

i=0

ωi(x,y)ω−i+j−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

−
j−1
∑

i=0

2Dyωi(x,y)Dyωj−i−1(x,y)+D2
yωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

yωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

−
j−1
∑

i=0

2Dxωi(x,y)Dxωj−i−1(x,y)+D2
xωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

xωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

)
−ωj−1(x, y) + ωj(x, y).

(37)

Solving the resulting equation for ωj(x, y) yields the following recurrence relation for
j ≥ 1:

ωj(x, y)
= ωj−1(x, y)

−Γ((j− 1)α + 1)

(
r

j−1
∑

i=0

ωi(x,y)ω−i+j−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

+
j−1
∑

i=0

2Dyωi(x,y)Dyωj−i−1(x,y)+D2
yωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

yωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

+
j−1
∑

i=0

2Dxωi(x,y)Dxωj−i−1(x,y)+D2
xωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

xωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

)
.

(38)
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Following the recurrence relation (38) and using the initial data ω(x, y, 0) =
1
2

√
r
2 (x+y),

we have the unknown functions ωj(x, y) =
1
2

√
r
2 (x+y) for j ≥ 1. Thereby, the first few

terms of the j-th Laplace FE series for the Laplace Equation (33) are given in the following
expansions:

W1(x, y, ξ) =

(
1
2

√
r
2 (x+y) +

1
2

√
r
2 (x+y)

ξα+1

)
,

W1(x, y, ξ) =

(
1
2

√
r
2 (x+y) +

1
2

√
r
2 (x+y)

ξα+1

)
,

W3(x, y, ξ) =

(
1
2

√
r
2 (x+y) +

1
2

√
r
2 (x+y)

ξα+1 +

1
2

√
r
2 (x+y)

ξ2α+1 +

1
2

√
r
2 (x+y)

ξ3α+1

)
,

W4(x, y, ξ) =

(
1
2

√
r
2 (x+y) +

1
2

√
r
2 (x+y)

ξα+1 +

1
2

√
r
2 (x+y)

ξ2α+1 +

1
2

√
r
2 (x+y)

ξ3α+1 +

1
2

√
r
2 (x+y)

ξ4α+1

)
,

W5(x, y, ξ) =

(
1
2

√
r
2 (x+y) +

1
2

√
r
2 (x+y)

ξα+1 +
1
2

√
r
2 (x+y)

ξ2α+1 +
1
2

√
r
2 (x+y)

ξ3α+1 +
1
2

√
r
2 (x+y)

ξ4α+1 +
1
2

√
r
2 (x+y)

ξ5α+1

)
.

In the same manner, the rest of the j-th Laplace FSS for each j ≥ 6 for the LT Equation (33)
can be created. Therefore, the Laplace FE series W(x, y, ξ) could be created in the following
series shape:

W(x, y, ξ) = lim
j→∞

Wj(x, y, ξ) =
1
2

√
r
2 (x+y)

∞

∑
m=0

1
ξmα+1 ξ > 0. (39)

Consequently, the analytical approximate FSS of the nonlinear time-FGBPM (32) could
be achieved via running the inverse LT on (39) as:

ω(x, y, t) =
1
2

√
r
2 (x+y)

∞

∑
m=0

tαm

Γ(mα + 1)
=

1
2

√
r
2 (x+y)Eα(tα). (40)

Correspondingly, the analytical approximate FSS (40) for integer order α = 1 reduces
to the exact solution:

ω(x, y, t) =
1
2

√
r
2 (x+y)

∞

∑
m=0

tm

Γ(m + 1)
=

1
2

√
r
2 (x+y)+t, (41)

which is the same result as the standard problem given in the literature [19].
Table 5 exhibits comparisons of

∣∣ω−ωj
∣∣ of the gained FSS at standard order α. It

is evident from the tabulated comparisons that the FSS quickly converges to the exact
solution when adding extra FSS terms. Figure 4 shows the geometric behavior of the
gained analytical approximate solution at diverse values of parameter α, as well as shows
the profile solutions of the analytical approximate solution against the exact solution in
standard order. Moreover, the profile of the obtained jth-FSS against the exact solution has
been plotted in two dimensions, as in Figure 5. From solution graphics, it is clear that the
harmony between the α-th curves analytical approximate solution (40) and the consistency
between the exact and the obtained results confirms the accuracy and efficiency of Laplace
FPSM. The higher accuracy can be achieved by adding FSS terms.
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Table 5. Comparison of absolute errors of the nonlinear time-FGBPM (32).

ti |ω − ω5| |ω − ω10| |ω − ω15|
0.32 1.154399098801662× 10−5 6.82121026329696× 10−13 3.552713678800501× 10−15

0.64 7.752680289705438× 10−4 1.44248701872129× 10−9 1.776356839400250× 10−15

0.96 9.282582583590937× 10−3 1.28346115957356× 10−7 1.918465386552270× 10−13

1.28 5.492411206336811× 10−2 3.12802043822557× 10−6 1.982414232770679× 10−11

1.6 2.210639902097142× 10−1 3.75098779556993× 10−5 7.187210826486990× 10−10

1.92 6.978720380377368× 10−1 2.87291486316121× 10−4 1.3566136658482720× 10−8
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Figure 5. The behavior of exact versus j-th analytical approximate solutions for all t ∈ [0, 3], (a) For
j = 5; (b) For j = 10.

Application 4. Consider the non-linear time-FGBPM given as:

Dα
t ω = D2

xω2 + D2
yω2 + λω−1(1− rω), α ∈ (0, 1], (42)

In this application, we consider p = −1, and q = 1. Before start applying the Laplace
FPSM, assume that f (ω) = 1

ω(x,y,t) − r. So, the non-linear time-FGBPM (42) could be
reformulated as:

Dα
t ω = D2

xω2 + D2
xω2 + λ f = 0. (43)
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Now, we take the LT into (43) such that:

W(x, y, ξ) =
ω0(x,y)

ξ + 1
ξαL

{(
L−1D2

xW(x, y, ξ)
)2
}

+ 1
ξαL

{(
L−1D2

yW(x, y, ξ)
)2
}
+ λ

ξαL{ f (ω(x, y, t))}.
(44)

where

W(x, y, ξ) =
∞

∑
m=0

ωm(x, y)
ξmα+1 ξ > 0.

Following the same fashion as in the last discussion of Application 3, the j-th unknown
functions ωj(x, y) are given the following recurrence formula:

ωj(x, y)
= λ f j−1(x, y)

−Γ((j− 1)α + 1)

(
r

j−1
∑

i=0

ωi(x,y)ω−i+j−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

+
j−1
∑

i=0

2Dyωi(x,y)Dyωj−i−1(x,y)+D2
yωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

yωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

+
j−1
∑

i=0

2Dxωi(x,y)Dxωj−i−1(x,y)+D2
xωi(x,y)ω−i+j−1(x,y)+ωi(x,y)D2

xωj−i−1(x,y)
Γ(iα+1)Γ((−i+j−1)α+1)

)
,

(45)

where
ω0(x, y) =

√
5 + 1

4 λrx2 + y + 1
4 λry2,

f j(x, y) = − 1
ω0(x,y)

(
j−1
∑

i=0

fi(x,y)ωj−i(x,y)
Γ((−i+j−1)α+1) +

rωj(x,y)
Γ(jα+1)

)
.

(46)

Depending on (45) and (46), one can find out the Laplace FE series of (44) as:

W(x, y, ξ) =

(√
5 + 1

4 λrx2 + y + 1
4 λry2 +

(
λ√

5+ 1
4 λrx2+y+ 1

4 λry2

)
1

ξ2α+1

−
(

λ2

(5+ 1
4 λrx2+y+ 1

4 λry2)
3/2

Γ(α+1)

)
1

ξ2α+1 +
ω3(x,y)
ξ3α+1

+ω4(x,y)
ξ4α+1 + · · ·

)
,

(47)

Hence, the analytical approximate FSS of the nonlinear time-FGBPM (42) could be
achieved via running the inverse LT on (47) as:

ω(x, y, t) =
√

5 + 1
4 λrx2 + y + 1

4 λry2 + λtα√
5+ 1

4 λrx2+y+ 1
4 λry2Γ(α+1)

− λ2t2α

(5+ 1
4 λrx2+y+ 1

4 λry2)
3/2

Γ(α+1)Γ(2α+1)

+ ω3(x,y)
Γ(3α+1) t3α + ω4(x,y)

Γ(4α+1) t4α + · · · .

(48)

To highlight comparisons concerning the analytical approximate FSS obtained via our
method and test their accuracy, the residual errors are computed for the third truncated FSS
for some different values of α, where the residual error of the third analytical approximate
FSS of nonlinear time-FGBPM (42) is defined as:

Res.Er.(x, y, t) =
∣∣∣Dα

t ω3(x, y, t)− D2
xω2

3(x, y, t)− D2
yω2

3(x, y, t)− λω−1
3 (x, y, t) + λr

∣∣∣. (49)

Table 6 illustrates the numerical comparisons of the residual errors of the third analytical
approximate FSS of nonlinear time-FGBPM (42) at various values of fractional order α and
some selected points t with fixed values of (x, y). The summarized data provided in this
table emphasize the performance of our method and the precision of the obtained third
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analytical approximate FSS. Geometrically, the behavior of the third analytical approximate
FSS at diverse values of fractional parameter α against the exact solution has been illustrated
in the two-dimensional graph, as in Figure 6. This figure presents the impact of α on the
solution curves, which shows a good agreement between the exact solutions and the
obtained results.

Table 6. Comparison of residual errors of the third analytical approximate FSS of nonlinear time-
FGBPM (42) at various values of fractional order α .

ti
x = y = 2

α = 1 α = 0.75 α = 0.5

0.2 5.283510764314547× 10−10 2.637395913216919× 10−7 6.492114991403855× 10−7

0.4 2.080334098562841× 10−9 4.648777811163893× 10−7 1.016953392316000× 10−6

0.6 4.606681074798002× 10−9 6.6704860020219× 10−7 1.366676980466517× 10−6

0.8 8.058574000810449× 10−9 8.816743810253007× 10−7 1.718134829568028× 10−6

1 1.23876446227536× 10−8 1.114486273705306× 10−6 2.077608461280126× 10−6

ti
x = y = 10

α = 1 α = 0.75 α = 0.5

0.2 3.043010288195091× 10−12 1.173598279669008× 10−8 2.623857382755279× 10−8

0.4 1.171023000789972× 10−11 1.963562601403623× 10−8 3.659683277257297× 10−8

0.6 2.531018450380173× 10−11 2.643230756493864× 10−8 4.419687404944028× 10−8

0.8 4.315116319819623× 10−11 3.252796791641810× 10−8 5.031243172082256× 10−8

1 6.454230205843459× 10−11 3.809079993088993× 10−8 5.544396378120986× 10−8

Fractal Fract. 2023, 7, x FOR PEER REVIEW 16 of 18 
 

 

 

  
(a) (b) 

Figure 6. Profile exact and 3rd FSS solutions for nonlinear time-FGBPM (42) at various values of ߙ 
for all ݐ ∈ [0, 6]. (a) For ݔ = ݕ = 10, (b) For ݔ = ݕ = 2. 

5. Conclusions 
This work adopted the Laplace FPSM for generating the analytic exact and approxi-

mate solutions of nonlinear time-FGBPMs in terms of the time-Caputo fractional deriva-
tive. Based on an LT operator and simulation of FPSM, the analytical approximation was 
constructed for the posed models without imposing any physical restrictive and with few 
sizes of computational algebraic iterations. The merit of the recommended scheme is to 
increase the accuracy of FPSM by blending the LT operator in its principal methodology 
in the construction of the multivariate FSS as a quickly convergent series with the help of 
the limit concept and ignoring the fractional differentiation. The applicability of our rec-
ommended scheme was shown via performing four applications of FGBPM, and the ac-
curacy was checked using numerical error analyses. The profile representations of multi-
variate FSS and exact solutions were plotted via 2D and 3D surfaces. From numerical and 
graphical simulations, it was found that FSS behavior is compatible at various fractional 
derivative values and consistent with the ordinary order. This behavior confirms the ef-
fectiveness and accuracy of the presented scheme. Hence, the Laplace FPSM is a speedy, 
straightforward, and powerful tool that can be modified for novel solutions when ap-
proaching biological and dynamical fractional models. 

Author Contributions: Conceptualization, M.A. and A.-K.A.; methodology, M.A. and N.T.; soft-
ware, A.-K.A. and M.A.; validation, A.I. and N.T.; writing—original draft preparation, M.A.; writ-
ing—review and editing, A.I., N.T. and A.-K.A.; funding acquisition, A.I. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This work was supported by the Universiti Kebangsaan Malaysia (DIP-2020-001). 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E. Fractional calculus and continuous-time finance II: The waiting-time distribu-

tion. Phys. A Stat. Mech. Its Appl. 2000, 287, 468–481. 
2. Oldham, KB.; Spanier, J. The Fractional Calculus. Integrations and Differentiations of Arbitrary Order; Academic Press: Cambridge, 

MA, USA, 1974. 
3. Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. 
4. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-sin- gular kernel: Theory and application to heat 

transfer model. Therm. Sci. 2016, 20, 763–769. 
5. Doungmo Goufo, E.F.; Kumar, S.; Mugisha, S.B. Similarities in a fifth-order evolution equation with and with no singular kernel. 

ChaosSolitons Fractals 2020, 130, 109467. 

Figure 6. Profile exact and 3rd FSS solutions for nonlinear time-FGBPM (42) at various values of α for
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5. Conclusions

This work adopted the Laplace FPSM for generating the analytic exact and approxi-
mate solutions of nonlinear time-FGBPMs in terms of the time-Caputo fractional derivative.
Based on an LT operator and simulation of FPSM, the analytical approximation was con-
structed for the posed models without imposing any physical restrictive and with few sizes
of computational algebraic iterations. The merit of the recommended scheme is to increase
the accuracy of FPSM by blending the LT operator in its principal methodology in the
construction of the multivariate FSS as a quickly convergent series with the help of the limit
concept and ignoring the fractional differentiation. The applicability of our recommended
scheme was shown via performing four applications of FGBPM, and the accuracy was
checked using numerical error analyses. The profile representations of multivariate FSS
and exact solutions were plotted via 2D and 3D surfaces. From numerical and graphical
simulations, it was found that FSS behavior is compatible at various fractional derivative
values and consistent with the ordinary order. This behavior confirms the effectiveness and



Fractal Fract. 2023, 7, 176 16 of 17

accuracy of the presented scheme. Hence, the Laplace FPSM is a speedy, straightforward,
and powerful tool that can be modified for novel solutions when approaching biological
and dynamical fractional models.
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