Robust Localization for Near- and Far-Field Signals with an Unknown Number of Sources
Abstract
:1. Introduction
2. Related Work
2.1. Signal Model
2.2. Noise Model
3. Proposed Method
3.1. DOA Estimation
3.2. Range Estimation
3.3. Separation of Near and Far-Field Sources
3.4. Crucial Parameter Setting
3.4.1. Regularization Coefficient
3.4.2. Evaluation Standard
4. Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Q.; Dong, L. Acoustic emission source location and experimental verification for two-dimensional irregular complex structure. IEEE Sensors J. 2019, 20, 2679–2691. [Google Scholar] [CrossRef]
- Diaz-Guerra, D.; Beltran, J.R. Source cancellation in cross-correlation functions for broadband multisource DOA estimation. Signal Process. 2020, 170, 107442. [Google Scholar] [CrossRef]
- Wang, H.; Han, G.; Zhang, Y.; Xie, L. A Push-based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks. IEEE Internet Things J. 2021, 9, 770–782. [Google Scholar] [CrossRef]
- Shang, X.; Wang, Y.; Miao, R. Acoustic emission source location from P-wave arrival time corrected data and virtual field optimization method. Mech. Syst. Signal Process. 2022, 163, 108129. [Google Scholar] [CrossRef]
- Shu, T.; He, J. Passive direction finding with a pair of acoustic vector sensors using fourth-order cumulants. Signal Process. 2022, 201, 108706. [Google Scholar] [CrossRef]
- Weiss, A.; Arikan, T.; Vishnu, H.; Deane, G.B.; Singer, A.C.; Wornell, G.W. A semi-blind method for localization of underwater acoustic sources. IEEE Trans. Signal Process. 2022, 70, 3090–3106. [Google Scholar] [CrossRef]
- Jinachandran, S.; Ning, Y.; Wu, B.; Li, H.; Xi, J.; Prusty, B.G.; Rajan, G. Cold crack monitoring and localization in welding using fiber Bragg grating sensors. IEEE Trans. Instrum. Meas. 2020, 69, 9228–9236. [Google Scholar] [CrossRef]
- Feng, Q.; Han, L.; Pan, B.; Zhao, B. Microseismic Source Location Using Deep Reinforcement Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, A.; Lau, V. Joint channel and location estimation of massive MIMO system with phase noise. IEEE Trans. Signal Process. 2020, 68, 2598–2612. [Google Scholar] [CrossRef]
- Yang, G.; Yan, Y.; Wang, H.; Shen, X. Improved robust TOA-based source localization with individual constraint of sensor location uncertainty. Signal Process. 2022, 196, 108504. [Google Scholar] [CrossRef]
- Rahman, M.T.; Valaee, S. Location Estimates From Channel State Information via Binary Programming. IEEE Trans. Signal Process. 2022, 70, 5265–5278. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, X.; Liu, C.; Peng, M.; Zhong, C. Location Sensing and Beamforming Design for IRS-Enabled Multi-User ISAC Systems. IEEE Trans. Signal Process. 2022, 70, 5178–5193. [Google Scholar] [CrossRef]
- Napolitano, A. An Interference-Tolerant Algorithm for Wide-Band Moving Source Passive Localization. IEEE Trans. Signal Process. 2020, 68, 3471–3485. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Huang, Y.D.; Barkat, M. Near-field multiple source localization by passive sensor array. IEEE Trans. Antennas Propag. 1991, 39, 968–975. [Google Scholar] [CrossRef]
- Zuo, W.; Xin, J.; Zheng, N.; Ohmori, H.; Sano, A. Subspace-based near-field source localization in unknown spatially nonuniform noise environment. IEEE Trans. Signal Process. 2020, 68, 4713–4726. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Chen, F.; Wei, Y.; Ji, F.; Yu, H. Localization of incoherently distributed near-field sources: A low-rank matrix recovery approach. Signal Process. 2021, 189, 108273. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, S.; Wu, H.; Zhang, Y. An Efficient Maximum-Likelihood-Like Algorithm for Near-Field Coherent Source Localization. IEEE Trans. Antennas Propag. 2022, 70, 6111–6116. [Google Scholar] [CrossRef]
- Molaei, A.M.; Zakeri, B.; Andargoli, S.M.H. Components separation algorithm for localization and classification of mixed near-field and far-field sources in multipath propagation. IEEE Trans. Signal Process. 2019, 68, 404–419. [Google Scholar] [CrossRef]
- Molaei, A.M.; Zakeri, B.; Andargoli, S.M.H. Passive localization and classification of mixed near-field and far-field sources based on high-order differencing algorithm. Signal Process. 2019, 157, 119–130. [Google Scholar] [CrossRef]
- Zheng, Z.; Fu, M.; Wang, W.Q.; Zhang, S.; Liao, Y. Localization of mixed near-field and far-field sources using symmetric double-nested arrays. IEEE Trans. Antennas Propag. 2019, 67, 7059–7070. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, W.; Wang, L.; Liu, Y. Group sparsity based localization for far-field and near-field sources based on distributed sensor array networks. IEEE Trans. Signal Process. 2020, 68, 6493–6508. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G.; Ho, K. Semidefinite relaxation method for unified near-field and far-field localization by AOA. Signal Process. 2021, 181, 107916. [Google Scholar] [CrossRef]
- He, J.; Shu, T.; Li, L.; Truong, T.K. Mixed Near-Field and Far-Field Localization and Array Calibration With Partly Calibrated Arrays. IEEE Trans. Signal Process. 2022, 70, 2105–2118. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm. IEEE Trans. Signal Process. 2009, 58, 108–120. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Sun, X. Mixed sources localization based on sparse signal reconstruction. IEEE Signal Process. Lett. 2012, 19, 487–490. [Google Scholar] [CrossRef]
- Zheng, Z.; Fu, M.; Wang, W.Q.; So, H.C. Mixed far-field and near-field source localization based on subarray cross-cumulant. Signal Process. 2018, 150, 51–56. [Google Scholar] [CrossRef]
- Wu, X. Localization of far-field and near-field signals with mixed sparse approach: A generalized symmetric arrays perspective. Signal Process. 2020, 175, 107665. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, T.; Zhang, J.; Luan, S. Hyperbolic tangent cyclic correlation and its application to the joint estimation of time delay and doppler shift. Signal Process. 2021, 180, 107863. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Luan, S.; Qiu, T. Robust time delay estimation with unknown cyclic frequency in co-channel interference and impulsive noise. Digit. Signal Process. 2021, 117, 103166. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, T.; Luan, S. Cyclic frequency estimation by compressed cyclic correntropy spectrum in impulsive noise. IEEE Signal Process. Lett. 2019, 26, 888–892. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, T.; Jin, F.; Wilcox, S.; Luan, S. Phased fractional lower-order cyclic moment processed in compressive signal processing. IEEE Access 2019, 7, 98811–98819. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, Y.; Sun, C.; Blumenstein, M. A robust matching pursuit algorithm using information theoretic learning. Pattern Recognit. 2020, 107, 107415. [Google Scholar] [CrossRef]
- Shao, M.; Nikias, C.L. Signal processing with fractional lower order moments: Stable processes and their applications. Proc. IEEE 1993, 81, 986–1010. [Google Scholar] [CrossRef]
- Nolan, J. Stable Distributions: Models for Heavy-Tailed Data; Birkhauser: New York, NY, USA, 2003. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, T.; Luan, S. Effective method for mixed-field localization in the presence of impulsive noise. IEEE Commun. Lett. 2019, 23, 1977–1980. [Google Scholar] [CrossRef]
- Fischer, H. A History of the Central Limit Theorem: From Classical to Modern Probability Theory; Springer Science & Business Media: London, UK, 2010. [Google Scholar]
- Bryc, W. The Normal Distribution: Characterizations with Applications; Springer Science & Business Media: London, UK, 2012; Volume 100. [Google Scholar]
- Feller, W. Law of large numbers for identically distributed variables. Introd. Probab. Theory Its Appl. 1971, 2, 231–234. [Google Scholar]
- Zolotarev, V.M. One-Dimensional Stable Distributions; American Mathematical Society: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Liu, T.; Qiu, T.; Luan, S. Hyperbolic-tangent-function-based cyclic correlation: Definition and theory. Signal Process. 2019, 164, 206–216. [Google Scholar] [CrossRef]
- Samoradnitsky, G. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance; Routledge: London, UK, 2017. [Google Scholar]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Dai, W.; Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 2009, 55, 2230–2249. [Google Scholar] [CrossRef]
- Blumensath, T.; Davies, M.E. Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 2009, 27, 265–274. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted ℓ1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Kwon, S.; Wang, J.; Shim, B. Multipath matching pursuit. IEEE Trans. Inf. Theory 2014, 60, 2986–3001. [Google Scholar] [CrossRef]
- Karahanoglu, N.B.; Erdogan, H. Improving A* OMP: Theoretical and empirical analyses with a novel dynamic cost model. Signal Process. 2016, 118, 62–74. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, T.; Dai, R.; Li, J.; Chang, L.; Li, R. Nonlinear regression A* OMP for compressive sensing signal reconstruction. Digit. Signal Process. 2017, 69, 11–21. [Google Scholar] [CrossRef]
- Belkacemi, H.; Marcos, S. Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter. Signal Process. 2007, 87, 1547–1558. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, T.; Luan, S. Cyclic correntropy: Foundations and theories. IEEE Access 2018, 6, 34659–34669. [Google Scholar] [CrossRef]
- Zheng, Z.; Sun, J.; Wang, W.Q.; Yang, H. Classification and localization of mixed near-field and far-field sources using mixed-order statistics. Signal Process. 2018, 143, 134–139. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
DOAs of near- and far-field sources | , |
Ranges of near-field sources | , |
Baud rates of near- and far-field sources | Baud, Baud |
Carrier frequency and sampling frequency | 20 Mhz, 100 Mhz |
Snapshots | 5000 |
GSNR | dB |
Characteristic exponent, | |
Scale parameter, | calculated by GSNR and |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Feng, H.; Qiu, T.; Luan, S.; Zhang, J. Robust Localization for Near- and Far-Field Signals with an Unknown Number of Sources. Fractal Fract. 2023, 7, 184. https://doi.org/10.3390/fractalfract7020184
Liu T, Feng H, Qiu T, Luan S, Zhang J. Robust Localization for Near- and Far-Field Signals with an Unknown Number of Sources. Fractal and Fractional. 2023; 7(2):184. https://doi.org/10.3390/fractalfract7020184
Chicago/Turabian StyleLiu, Tao, Hao Feng, Tianshuang Qiu, Shengyang Luan, and Jiacheng Zhang. 2023. "Robust Localization for Near- and Far-Field Signals with an Unknown Number of Sources" Fractal and Fractional 7, no. 2: 184. https://doi.org/10.3390/fractalfract7020184
APA StyleLiu, T., Feng, H., Qiu, T., Luan, S., & Zhang, J. (2023). Robust Localization for Near- and Far-Field Signals with an Unknown Number of Sources. Fractal and Fractional, 7(2), 184. https://doi.org/10.3390/fractalfract7020184