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Abstract: In this paper, we considered a fractional chemotaxis fluid system with matrix-valued sensi-
tivities and attractive–repulsive signals on a two-dimensional periodic torus T2. This model describes
the interaction between a type of cell that proliferates following a logistic law, and the diffusion of
cells is fractional Laplace diffusion. The cells and attractive–repulsive signals are transported by
a viscous incompressible fluid under the influence of a force due to the aggregation of cells. We
proved the existence and uniqueness of the global classical solution on the matrix-valued sensitivities,
and the initial data satisfied the regular conditions. Moreover, by using energy functionals, the
stabilization of global bounded solutions of the system was proven.
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1. Introduction

We investigated a fractional chemotaxis fluid system with matrix-valued sensitivities
and attractive–repulsive signals on a two-dimensional periodic torus T2 = [−π, π]2 in
the present paper. This model describes the interaction between a type of cell that can
proliferate following a logistic law, and the diffusion of cells is fractional Laplace diffusion.
The cells and attractive–repulsive signals are transported by a viscous incompressible fluid
under the influence of a force due to the aggregation of cells, where the attractive signal and
the repulsive signal are produced by the cells themselves and also degrade at a constant
rate. This model is represented by the following system:

ct + u · ∇c = −(−∆)αc−∇ · (cS1(x, c, v)∇v) +∇ · (cS2(x, c, w)∇w)

+µc− νc2, in T2 × (0, ∞),
vt + u · ∇v = ∆v + α1c− β1v, in T2 × (0, ∞),
wt + u · ∇w = ∆w + α2c− β2w, in T2 × (0, ∞),
ut + (u · ∇)u = ∆u−∇P + c∇φ + g, in T2 × (0, ∞),
∇ · u = 0, in T2 × (0, ∞),
c(x, 0) = n0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), u(x, 0) = u0(x), in T2.

(1)

c(x, t) is the cell density; v(x, t), w(x, t), P, and u(x, t) represent the chemical concentrations
of the attractant and repellent, the hydrostatic pressure, and the velocity field of the fluid,
respectively. S1(x, c, v) = (s′ij(x, c, v))i,j∈{1,2} and S2(x, c, w) = (s′′ij(x, n, w))i,j∈{1,2} are
matrix-valued sensitivities functions, and we imposed the conditions:

S1(x, c, v), S2(x, c, w) ∈ C2(T2 × [0, ∞)× [0, ∞);R2×2) (2)

and
|S1(x, c, v)| ≤ CS1 , |S2(x, c, w)| ≤ CS2 (3)
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for some positive constants CSi (i = 1, 2). φ(x) and g(x, t) are the gravitational potential
function and the external force, respectively, which satisfy{

φ ∈W1,∞(T2),
g ∈ C1(T2 × [0, ∞)) ∩ L∞(T2 × (0, ∞)) ∩ L2(T2 × (0, ∞)),

(4)

as well as the initial data:
c0 ∈ L∞(T2), n0 > 0 in T2,
v0 ∈W1,∞(T2), v0 ≥ 0 in T2,
w0 ∈W1,∞(T2), w0 ≥ 0 in T2,
u0 ∈ L∞(T2), ∇ · u0 = 0, in T2.

(5)

Here, we write Λα = (−∆)
α
2 and define

Λ̂αc(ξ) = |ξ|α ĉ(ξ),

where ·̂ represents the usual Fourier transform, and the differential operator Λα has the
following kernel representation:

Λαc(x) = Cα, 2 P.V.
∫
T2

c(x)− c(y)
|x− y|2+α

dy + Cα, 2 ∑
n∈Z2, n 6=0

∫
T2

c(x)− c(y)
|x− y + 2nπ|2+α

dy,

where Cα, 2 =
2αΓ( 2+α

2 )

π
∣∣Γ(− α

2 )
∣∣ > 0 is a normalization constant. The notation P.V. means that the

integral is taken in the Cauchy principle value sense (see, for example, [1]). The positive
constants α1, α2, β1, and β2 denote the production of the chemoattractant and chemorepel-
lent, the chemoattractant’s decay, and the chemorepellent’s decay, respectively. The logistic
source µc − νc2 describes the local dynamics of the mobile species, where µ ≥ 0 is the
intrinsic growth rate of cells and ν > 0 is the intraspecific competition of cells.

Next, we discuss the inspirations and developments of Problem (1) and, finally, list
the main results.

1.1. The Classical Chemotaxis System with Attractive–Repulsive Signals

Chemotaxis refers to the movement of cells towards the concentration gradient of
chemicals in a certain environment. The the movement of cells in the direction of the
increasing concentration of a signal is called chemotactic attraction, whereas chemotactic
repulsion means that cells move along the decreasing concentration of a cue [2–5]. These
results have led some authors to consider the following attraction–repulsion chemotaxis
model with a logistic source:

ct = ∆c−∇ · (cS1(x, c, v)∇v) +∇ · (cS2(x, c, w)∇v) + f (c), in Ω× (0, ∞),
vt = ∆v + α1c− β1v, in Ω× (0, ∞),
wt = ∆w + α2c− β2w, in Ω× (0, ∞),

(6)

under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ RN .
If S1(x, c, v) = const = χ and S2(x, c, w) = const = ξ, Li et al. [6,7] proved the exis-
tence of a unique global classical solution for (6) in bounded domains of RN , N = 1, 2.
If N = 3, f (c) = c − µc1+γ, c ≥ 0, µ > 0, and γ ≥ 1. Li et al. [8] showed that (6)
possesses a unique global bounded classical solution under the conditions β1, β2 ≥ 1

2
and µ ≥ max{( 41

2 χα1 + 9ξα2)
γ, (9χα1 +

41
2 ξα2)

γ}. Moreover, whenever c0 6≡ 0 and for any

γ ∈ N, the solution of the system approaches the steady state
(
( 1

µ )
1
γ , ( 1

µ )
1
γ α1

β1
, ( 1

µ )
1
γ α2

β2

)
in

the norm of L∞(Ω) as t→ ∞. Furthermore, for N ≥ 3, Zheng, Mu, and Hu [9] proved that
the system admits a unique global bounded classical solution provided that f (c) ≤ µc− νc2
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with µ ≥ 0, ν > 0, and β1 = β2 and there exists θ0 > 0 such that χα1+ξα2
ν > θ0. More

recently, the research results of Shi, Liu, and Jin [10] implied that, when repulsion cancels
attraction (i.e., χα1 = ξα2), the logistic source plays an important role in the solution
behavior of (6).

1.2. The Classical Chemotaxis (Navier) Stokes System with Matrix-Valued Sensitivities

More recent observations have shown that chemotactic migration does not necessarily
follow the gradient of the direction of a chemical substance, but may involve rotating flux
components. This requires the sensitivity function Si (i = 1, 2) to be a matrix possibly con-
taining nontrivial off-diagonal entries [11]. Adjusting the classical model accordingly, some
scientists shall subsequently consider the chemotaxis (Navier) Stokes system involving
matrix-valued sensitivities:

ct + u · ∇c = ∆c−∇ · (cS(x, c, v)∇v) + f (c), in Ω× (0, ∞),
vt + u · ∇v = ∆v + c− v, in Ω× (0, ∞),
ut + κ(u · ∇)u = ∆u +∇P + c∇φ, ∇ · u = 0, in Ω× (0, ∞),
∇v · ν = (D(c)∇c− cS(x, c, v)∇v) · ν = 0, u = 0, in ∂Ω× (0, ∞).

(7)

Next, we briefly introduce some previous results for (7) in the literature. For the
case |S(x, c, v)| ≤ CS: if f (c) ≡ 0 and u ≡ 0, Cao [12] asserted that the above problem
possesses a global classical solution, which is bounded and converges to the constant

steady state (
∫

Ω c0
|Ω| ,

∫
Ω c0
|Ω| ), for which ‖c0‖

L
N
2 (Ω)

and ‖v0‖LN(Ω) (N ≥ 2) are sufficiently

small. If +c− v of (7)2 is replaced by −vc and N = 2, 3, Cao and Lankeit [13] showed that
(7) has a global classical solution if the initial data satisfy certain smallness conditions and
give decay properties of these solution. By applying the results of [13], Cao [14] proved
that, under a mild assumption |S(x, c, v)| ≤ S0(v0) with some non-decreasing function
S0 ∈ C2((0, ∞)), the chemotaxis (Navier) Stokes system has a global classical solution under
a smallness assumption on ‖v0‖L∞(Ω), and moreover, they obtained the boundedness
and large time convergence for the solution. For the case |S(x, c, v)| ≤ CS(1 + c)−γ: if
f (c) ≡ 0 and u 6≡ 0, when N = 2 and κ = 0, Wang and Xiang [15] established the
existence of a global bounded classical solution for arbitrarily large initial data. Moreover,
Wang et al. [16] extended the result of [15] to the chemotaxis Navier–Stokes model with
0 < γ < 1

2 . When N = 3, Wang and Xiang [17] developed a method to establish the
existence and boundedness of a global classical solution of (7) under the assumption κ = 0
and γ > 1

2 . Meanwhile, for κ = 1 and γ > 1
3 , Wang [18] defined a weak solution, which

requires the solution to satisfy very mild regularity hypotheses only, and they obtained
that (7) has a global weak solution. Furthermore, if κ 6= 0 and γ ≥ 3

7 , Liu and Wang [19]
proved that (7) admits at least one global weak solution. Recently, Ke and Zheng [20]
improved the above results, and they optimized the parametric conditions that κ ∈ R
and γ > 1

3 . If f (c) = µc− νc2, u ≡ 0, and ∆c are replaced by ∇ · (cm−1∇c), Yi et al. [21]
considered an attraction–repulsion chemotaxis model with matrix-valued sensitivities,
for S1(x, c, v) ≤ CS1(1 + c)−γ1 and S2(x, c, w) ≤ CS2(1 + c)−γ2 , and they proved that,
under the conditions m > 0 and min{m + 2γ1, m + 2γ2} > 2N

N+2 , the corresponding
initial boundary value problem possessed at least one global bounded weak solution.
For more results about matrix-valued sensitivities, interested readers can refer to [22–29]
for more details.

1.3. The Fractional Chemotaxis System

By recent research, we know that, in nature, the behavior of many organisms can no
longer be accurately described by classical chemotactic models. The research results of
Garfinkel et al. [30] showed that mesenchymal cells move due to the attraction of certain
chemicals, which does not fit the classical chemotaxis model. Therefore, Escudero [31]
improved the classical chemotaxis model by replacing the classical Laplace diffusion with
the fractional Laplace diffusion. Since then, scientists began to use fractional operators to
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describe the diffusion of cells. In recent years, fractional chemotaxis models have been
studied extensively by scientists. Among them, it is worth noting that Burczak and Granero-
Belinchón [32–37] conducted a series of studies on the fractional chemotaxis system on the
periodic torus TN = [−π, π]N . The readers can refer to [38–45] and the references therein
for more details.

To the best of our knowledge, there are few studies on fractional chemotaxis Navier–
Stokes models. In 2019, Zhu et al. [46] dealt with a fractional chemotaxis fluid model in
R3. They obtained the existence, uniqueness, and asymptotic stability of a global solution
without a logistic source and with small initial data. Jiang et al. [47] investigated a fractional
double-chemotaxis model under the effect of the Navier–Stokes fluid in RN , N ≥ 3. They
developed a framework for a unified treatment of the existence, uniqueness, and decay
estimates of the global mild solution to this problem under the assumption that the initial
data were small enough. Nie and Zheng [48] obtained the global-in-time existence and
uniqueness of a weak solution to the equations for a class of large initial data of two-
dimensional incompressible chemotaxis Navier–Stokes equations with the lower fractional
diffusion. Recently, Lei et al. [49] investigated the following fractional chemotaxis fluid
system with a logistic source:

ct + u · ∇c = −(−∆)αc− χ∇ · (c∇v) + µc− νc2, in T3 × (0, ∞),
vt + u · ∇v = ∆v− cv, in T3 × (0, ∞),
ut + (u · ∇)u = ∆u−∇P + c∇φ + g, ∇ · u = 0, in T3 × (0, ∞),

(8)

on a three-dimensional periodic torus T3. They investigated the global existence of weak
solutions of (8) in the case of a weaker diffusion, and after some waiting time, the weak
solutions in fact become smooth and converge to the semi-trivial steady state ( µ

ν , 0, 0).
Inspired by [21,49], we investigated a fractional chemotaxis Navier–Stokes system

with matrix-valued sensitivities and attractive–repulsive signals on a two-dimensional
periodic torus T2 in the present paper. Compared with [49], we considered an attraction–
repulsion chemotaxis phenomenon, where the attractive–repulsive signals are produced
by the cells themselves and degrade at a constant rate. Since the periodic torus is a
region without boundary, in comparison with [21,25], we did not need to consider the
nonlinear boundary problem arising from the matrix-valued sensitivities S1(x, c, v) and
S2(x, c, w). In addition, inspired by [49], some estimates of the solution can also be ob-
tained, which plays a crucial role in proving the global existence of the solution by using
the semigroup method. It is worth noting that, in comparison with [21,50], because of
the existence of fractional diffusion term, when proving the boundedness of ‖c‖Lp(T2),
the fractional diffusion term −p

∫
T2 cp−1(−∆)αc cannot directly control the chemotaxis

terms −p
∫
T2 cp−1∇ · (cS1(x, c, v)∇v) and +p

∫
T2 cp−1∇ · (cS2(x, c, w)∇w). Therefore, we

used Lemma 4 for (−∆)αc to handle the fractional diffusion term. Moreover, since S1(x, c, v)
and S2(x, c, w) are matrix-valued sensitivity functions, we needed to deal with the chemo-
taxis terms by Parseval’s identity and Kato–Ponce’s commutator estimates, so that the
chemotaxis terms can be controlled by the fractional diffusion term, thus obtaining the
inequalities (87) and (88). Then, from some estimates in Lemmas 1 and 2, we arrived at
the existence of the global solution of (1). Finally, we supposed that µ = 0, then we have
‖c‖L∞(T2) → 0, ‖v‖L∞(T2) → 0, ‖w‖L∞(T2) → 0 as t→ ∞. Meanwhile, when µ > 0 and ν is
sufficiently large, we have ‖c‖L∞(T2) →

µ
ν , ‖v‖L∞(T2) →

α1
β1

µ
ν , ‖w‖L∞(T2) →

α2
β2

µ
ν as t→ ∞.

Additionally, we found that, if
∫ ∞

0 ‖g‖
2
L2(T2)

dt < ∞, in either case, u satisfies ‖u‖L∞(T2) → 0
as t→ ∞. Here, we list our main conclusions.
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Theorem 1. Assume that 1
2 < α < 1, µ ≥ 0, and ν > 0. Suppose that (2)–(5) hold. Then, System

(1) possesses a global classical solution (c, v, w, u):
c ∈ L∞(T2 × [0, ∞)) ∩ C2α,1(T2 × (0, ∞)),
v ∈ L∞(T2 × [0, ∞)) ∩ C2,1(T2 × (0, ∞)),
w ∈ L∞(T2 × [0, ∞)) ∩ C2,1(T2 × (0, ∞)),
u ∈ L∞(T2 × [0, ∞)) ∩ C2,1(T2 × (0, ∞)),
P ∈ C1,0(T2 × (0, ∞))

in T2 × (0, ∞).

Theorem 2. Assume that 1
2 < α < 1. Suppose that (2)–(5) hold. Then, the solution of

System (1) has

‖c‖L∞(T2) → 0, ‖v‖L∞(T2) → 0, ‖w‖L∞(T2) → 0 as t→ ∞,

for µ = 0 and ν > 0.

Theorem 3. Assume that 1
2 < α < 1. Suppose that (2)–(5) hold. Then, the solution of

System (1) has

‖c‖L∞(T2) →
µ

ν
, ‖v‖L∞(T2) →

α1

β1

µ

ν
, ‖w‖L∞(T2) →

α2

β2

µ

ν
as t→ ∞,

for µ > 0 and ν > B
4 , where B is a constant that is already defined in (99).

Theorem 4. Assume that 1
2 < α < 1. Suppose that (2)–(5) hold. If g fulfills∫ ∞

0
‖g‖2

L2(T2)ds < ∞, (9)

then u satisfies
‖u‖L∞(T2) → 0 as t→ ∞,

for µ ≥ 0 and ν > B
4 , where B is a constant that is already defined in (99).

This paper is organized as follows. Several useful lemmas are introduced in Section 2.
In Section 3, by means of the Banach fixed-point theorem and regularity results, we arrive
at the local existence and uniqueness of the classical solution. In Section 4, we obtain some
estimates of c, v, w, and u. Meanwhile, in Section 5, the existence of a global classical
solution is studied. Finally, in Section 6, we prove the stabilization with some certain
coefficient conditions.

2. Preliminary

In this section, some lemmas that will be crucial in the following proofs are introduced.
First, we show some important inequalities, which were proven in [51].

Lemma 1 ([51]). Suppose that {Tα
t (x)}t≥0 is the analytic semigroup generated by −(−∆)α − I

on Lp(T2). Then, for every p ∈ [1, ∞), q ∈ [p, ∞] and r ∈ [1, ∞], and there exist constants C1
and C2 depending on α, p, and q only, which have the following properties:

‖Tα
t (x)w‖Lq(T2) ≤ C1e−tt−

1
α (

1
p−

1
q )‖w‖Lp(T2) f or all t > 0 (10)

and
‖Tα

t (x)∇ · w‖Lq(T2) ≤ C2e−tt−
1

2α (1+
2
p−

2
q )‖w‖Lp(T2) f or all t > 0. (11)
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Furthermore, we can obtain that

‖Tα
t (x)w‖Lr(T2) ≤ C1e−t‖w‖Lr(T2) f or all t > 0 (12)

and
‖Tα

t (x)∇ · w‖Lr(T2) ≤ C2e−tt−
1

2α ‖w‖Lr(T2) f or all t > 0. (13)

Proof. Since {Tα
t (x)}t≥0 is a semigroup generated by −(−∆)α − I on Lp(T2), we define

Kα
t (x) as the fractional periodic heat kernel and note

Kα
t (x) = ∑

n∈Z2

t−
1
α Kα((x + n)t

1
2α ) and Kα(x) = (2π)−2

∫
T2

eix·ξ e−|ξ|
2α

dξ.

Therefore, we can obtain

Tα
t (x)w = (Kα

t (x) ∗ w)(x) = (2π)−2e−t
∫
T2

Kα
t (x− y)w(y)dy (14)

and

Tα
t (x)∂xi w = (2π)−2e−t

∫
T2

Kα
t (y)∂xi w(x− y)dy

= (2π)−2e−t
∫
T2

∂yi K
α
t (y)w(x− y)dy.

(15)

By the Lp − Lq estimates for the convolution product, we have

‖Tα
t (x)w‖Lq(T2) ≤ e−t‖Kα

t (y)‖Lr(T2)‖w‖Lp(T2) (16)

and
‖Tα

t (x)∂xi w‖Lq(T2) ≤ e−t‖∂yi K
α
t (y)‖Lr(T2)‖w‖Lp(T2), (17)

where 1
q + 1 = 1

r +
1
p . We recall Inequalities (2.3), (2.4), and (2.5) of [51], and we find

‖Kα
t (y)‖Lr(T2) =

( ∫
T2
| ∑

n∈Z2

t−
1
α Kα

(
(y + n)t−

1
2α
)
|rdy

) 1
r

=
( ∫

T2
| ∑

n∈Z2

t−
1
α Kα

(
x + nt−

1
2α
)
|rt

1
α dx

) 1
r

≤ Ct−
1
α (1−

1
r )
( ∫

T2
| ∑

n∈Z2

(1 + |x + nt−
1

2α |)−2−2α|rdx
) 1

r

≤ Ct−
1

2α (1−
1
r )
( ∫

T2
| ∑

n∈Z2

1 + |x + nt−
1

2α |−2−2α|rdx
) 1

r

≤ C1t−
1
α (1−

1
r )

(18)
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and

‖∂yi K
α
t (y)‖Lr(T2) =

( ∫
T2
| ∑

n∈Z2

t−
1
α ∂yi K

α
(
(y + n)t−

1
2α
)
|rdy

) 1
r

=
( ∫

T2
| ∑

n∈Z2

t−
1
α t−

1
2α (∂yi K

α)
(
x + nt−

1
2α
)
|rt

1
α dx

) 1
r

≤ Ct−
1

2α−
1
α (1−

1
r )
( ∫

T2
| ∑

n∈Z2

(1 + |x + nt−
1

2α |)−3|rdx
) 1

r

≤ Ct−
1

2α−
1
α (1−

1
r )
( ∫

T2
| ∑

n∈Z2

1 + |x + nt−
1

2α |−3|rdx
) 1

r

≤ C2t−
1

2α−
1
α (1−

1
r ).

(19)

Substituting the above equations into (16) and (17), we discover (10) and (11).
For special cases, we also have

‖Kα
t (y)‖L1(T2) =

∫
T2
| ∑

n∈Z2

t−
1
α Kα

(
(y + n)t−

1
2α
)
|dy

=
∫
T2
| ∑

n∈Z2

t−
1
α Kα

(
x + nt−

1
2α
)
|t

1
α dx

≤ C
∫
T2 ∑

n∈Z2

(1 + |x + nt−
1

2α |)−2−2αdx

≤ C
∫
T2 ∑

n∈Z2

1 + |x + nt−
1

2α |−2−2αdx

≤ C1

(20)

and

‖∂yi K
α
t (y)‖L1(T2) =

∫
T2
| ∑

n∈Z2

t−
1
α ∂yi K

α
(
(y + n)t−

1
2α
)
|dy

=
∫
T2
| ∑

n∈Z2

t−
1
α t−

1
2α (∂yi K

α)
(
x + nt−

1
2α
)
|t

1
α dx

≤ Ct−
1

2α

∫
T2
| ∑

n∈Z2

(1 + |x + nt−
1

2α |)−3dx

≤ Ct−
1

2α

∫
T2 ∑

n∈Z2

1 + |x + nt−
1

2α |−3dx

≤ C2t−
1

2α .

(21)

Hence, combining these inequalities with (16) and (17) implies (12) and (13).

Lemma 2 ([51]). Suppose that {Tt(x)}t≥0 is the analytic semigroup generated by ∆− I on Lp(T2).
Then, for any p ∈ [1, ∞), q ∈ [p, ∞] and r ∈ [1, ∞], and there exist constants C3 and C4 depending
on α, p, and q only, which have the following properties:

‖Tt(x)w‖Lq(T2) ≤ C3e−tt−(
1
p−

1
q )‖w‖Lp(T2) f or all t > 0 (22)

and
‖Tt(x)∇ · w‖Lq(T2) ≤ C4e−tt−

1
2 (1+

2
p−

2
q )‖w‖Lp(T2) f or all t > 0. (23)

Furthermore, we can obtain that

‖Tt(x)w‖Lr(T2) ≤ C3e−t‖w‖Lr(T2) f or all t > 0 (24)
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and
‖Tt(x)∇ · w‖Lr(T2) ≤ C4e−tt−

1
2 ‖w‖Lr(T2) f or all t > 0. (25)

Proof. We can complete the proof for Lemma 2 by taking α = 1 in the proof of Lemma 1.

Now, we give some lemmas used to prove some estimates in Section 4.

Lemma 3 (Gagliardo–Nirenberg interpolation inequality [52]). Suppose that 1 ≤ p, q, r ≤ ∞
and 0 ≤ k, m ≤ l. θ ∈ [0, 1] and k, m, l satisfy

m
2
− 1

p
= θ(

k
2
− 1

q
) + (1− θ)(

l
2
− 1

r
).

Then, we have that

‖∂mw‖Lp(T2) ≤ C‖∂kw‖θ
Lq(T2)‖∂

lw‖1−θ
Lr(T2)

+ C‖∂kw‖Lq(T2). (26)

Proof. This lemma can be referenced to Remarks 5 and 7 in [52]. To avoid confusion, we
will denote a general positive constant as C in the present paper.

Lemma 4 (A pointwise inequality for (−∆)α [53]). Let 0 ≤ α ≤ 1. Then, we can obtain

ϕ′(g(x))(−∆)αg(x) ≥ (−∆)α(ϕ(g))(x),

where ϕ ∈ C1(R) is a convex function.

Proof. The proof of Lemma 4 can be referenced to [53] (Theorem 2.1).

Lemma 5 (Kato–Ponce’s commutator estimates [54]). Suppose that α > 0 and 1 < p < ∞,
then we have that

‖Λα( f g)‖Lp(T2) ≤ C‖ f ‖Lp1 (T2)‖Λαg‖Lp2 (T2) + C‖Λα f ‖Lp3 (T2)‖g‖Lp4 (T2), (27)

with 1 < p1, p4 ≤ ∞ and 1 < p2, p3 < ∞ such that 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Proof. Kenig, Ponce, and Vega in Lemma 2.10 of [54] proved the above lemma with Λ
being replaced by J = (1 − ∆)

1
2 and the homogeneous Hs,p spaces being replaced by

non-homogeneous ones.

Lemma 6 ([55]). Suppose that y(t) ∈ [0, ∞) is absolutely continuous and there exists a nonnega-
tive function j ∈ L1

loc([0, T)) satisfying

∫ t+s

t
j(τ)dτ ≤ e

for any t ∈ [0, T − s) such that
y′(t) + dy(t) ≤ j(t)

for a.e. t ∈ (0, T). Then,

y(t) ≤ max
{

y(0) + e,
e

ds
+ 2e

}
for all t ∈ (0, T), where we assumed that T > 0, s ∈ (0, T), d > 0, and e > 0.

Proof. The proof of Lemma 6 can be obtained in Lemma 3.4 of [55] with s = 1.

Finally, we introduce fractional Fisher information, which is key to studying the
asymptotic behavior.



Fractal Fract. 2023, 7, 209 9 of 37

Lemma 7 (Fractional Fisher information [40]). Suppose that N ≥ 1, w ≥ 0 is a smooth, given
function and 0 < α < 1 is a fixed constant. Suppose that Γ(z) : R+ → R is an increasing
C1-function such that Γ′(z) ≥ C∗

z ≥ 0, where C∗ is a constant. Then,∫
TN
|Λαw|2dx ≤ C(α, N, Γ)‖w‖L∞(TN)

∫
TN

Γ(w(x))Λ2αw(x)dx. (28)

Proof. We can find the proof of Lemma 7 in Section 4.1 of [40].

3. Local Existence and Uniqueness

Now, the local existence and uniqueness of the classical solution is proven.

Lemma 8. Assume that 1
2 < α < 1, µ ≥ 0, and ν > 0. Suppose that (2)–(5) hold. Then, there

exist a time Tmax ∈ (0, ∞] and a unique classical solution (c, v, w, u) such that
0 < c ∈ L∞(T2 × [0, Tmax)) ∩ C2α,1(T2 × (0, Tmax)),

0 ≤ v ∈ L∞(T2 × [0, Tmax)) ∩ C2,1(T2 × (0, Tmax)),

0 ≤ w ∈ L∞(T2 × [0, Tmax)) ∩ C2,1(T2 × (0, Tmax)),

u ∈ L∞(T2 × [0, Tmax)) ∩ C2,1(T2 × (0, Tmax)),

together with P ∈ C1,0(T2 × [0, Tmax)). In addition, we have Tmax = ∞, or

lim sup
t↗Tmax

(
‖c‖L∞(T2) + ‖v‖W1,∞(T2) + ‖w‖W1,∞(T2) + ‖u‖L∞(T2)

)
= ∞.

Proof. Part 1. Existence of mild solution: First, we prove the existence of the mild solution
of (1) with nonnegative initial data (c0, v0, w0) ∈ L∞(T2) ×W1,∞(T2) ×W1,∞(T2) and
u0 ∈ L∞(T2), then there exists (c(t), v(t), w(t), u(t)) satisfying

c(t) = Tα
t c0 −

∫ t

0
Tα

t−τ∇ · (uc + cS1(x, c, v)∇v− cS2(x, c, w)∇w)dτ

+
∫ t

0
Tα

t−τ

(
(µ + 1)c− νc2)dτ,

v(t) = Ttv0 −
∫ t

0
Tt−τ(u · ∇v)dτ +

∫ t

0
Tt−τ

(
α1c− (β1 − 1)v

)
dτ,

w(t) = Ttw0 −
∫ t

0
Tt−τ(u · ∇w)dτ +

∫ t

0
Tt−τ

(
α2c− (β2 − 1)w

)
dτ,

u(t) = Ttu0 −
∫ t

0
Tt−τP∇ · (u⊗ u)dτ +

∫ t

0
Tt−τP(u)dτ +

∫ t

0
Tt−τP(c∇φ + g)dτ,

where, for every vector a, b ∈ R2, we represent the matrix (aibj)i,j=1,2 by a ⊗ b. Fix
(c0, v0, w0, u0) satisfying (5), and let R > 0, T ∈ (0, 1) ∩ (0, Tmax) and

Y := L∞((0, T); L∞(T2)×W1,∞(T2)×W1,∞(T2)× L∞(T2)),

which is the Banach space. We define the closed set:

X :=
{
(c, v, w, u) ∈ Y | ‖c‖L∞(T2) + ‖v‖W1,∞(T2)

+ ‖w‖W1,∞(T2) + ‖u‖L∞(T2) ≤ R, for a.e. t ∈ (0, T)
}

,
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and a mapping Ψ = (Φ1, Ψ2, Ψ3, Ψ4) on X:

Ψ1(c, v, w, u) = Tα
t c0 −

∫ t

0
Tα

t−τ∇ · (uc + cS1(x, c, v)∇v− cS2(x, c, w)∇w)dτ

+
∫ t

0
Tα

t−τ

(
(µ + 1)c− νc2)dτ,

Ψ2(c, v, w, u) = Ttv0 −
∫ t

0
Tt−τ(u · ∇v)dτ +

∫ t

0
Tt−τ

(
α1c− (β1 − 1)v

)
dτ,

Ψ3(c, v, w, u) = Ttw0 −
∫ t

0
Tt−τ(u · ∇w)dτ +

∫ t

0
Tt−τ

(
α2c− (β2 − 1)w

)
dτ,

Ψ4(c, v, w, u) = Ttu0 −
∫ t

0
Tt−τP∇ · (u⊗ u)dτ +

∫ t

0
Tt−τP(u + c∇φ + g)dτ

for (c, v, w, u) ∈ X and t ∈ (0, T).
Now, we prove Ψ maps X into itself. Employing the spatio-temporal estimates of the

analytic semigroup {Tα
t (x)}t≥0 in Lemma 1 and (3), we obtain that

‖Ψ1(c, v, w, u)‖L∞(T2)

≤‖Tα
t c0‖L∞(T2) +

∫ t

0
‖Tα

t−τ∇ · (uc)‖L∞(T2)dτ +
∫ t

0
‖Tα

t−τ∇ · (cS1(x, c, v)∇v)‖L∞(T2)dτ

+
∫ t

0
‖Tα

t−τ∇ · (cS2(x, c, w)∇w)‖L∞(T2)dτ +
∫ t

0
‖Tα

t−τ

(
(µ + 1)c− νc2)‖L∞(T2)dτ

≤C1e−t‖c0‖L∞(T2) + C2

∫ t

0
e−(t−τ)(t− τ)−

1
2α ‖uc‖L∞(T2)dτ

+ C2

∫ t

0
e−(t−τ)(t− τ)−

1
2α (‖cS1(x, c, v)∇v‖L∞(T2) + ‖cS2(x, c, w)∇w‖L∞(T2))dτ

+ C1

∫ t

0
e−(t−τ)‖(µ + 1)c− νc2‖L∞(T2)dτ

≤C1‖c0‖L∞(T2) + C2

∫ t

0
(t− τ)−

1
2α ‖u‖L∞(T2)‖c‖L∞(T2)

+ C2

∫ t

0
(t− τ)−

1
2α (CS1‖c‖L∞(T2)‖∇v‖L∞(T2) + CS2‖c‖L∞(T2)‖∇w‖L∞(T2))dτ

+ C1

∫ t

0

(
(µ + 1)‖c‖L∞(T2) + ν‖c‖2

L∞(T2)

)
dτ

≤C1‖c0‖L∞(T2) +
2α

2α− 1
C2(1 + CS1 + CS2 )R2T1− 1

2α + C1
(
(µ + 1)R + νR2)T.

(29)

It follows from Lemma 2 that

‖Ψ2(c, v, w, u)‖L∞(T2)

≤‖Ttv0‖L∞(T2) +
∫ t

0
‖Tt−τ(u · ∇v)‖L∞(T2)dτ +

∫ t

0
‖Tt−τ

(
α1c− (β1 − 1)v

)
‖L∞(T2)dτ

≤C3e−t‖v0‖L∞(T2) + C3

∫ t

0
e−(t−τ)‖u‖L∞(T2)‖∇v‖L∞(T2)dτ

+ C3α1

∫ t

0
e−(t−τ)‖c‖L∞(T2)dτ + C3

∫ t

0
e−(t−τ)(β1 + 1)‖v‖L∞(T2)dτ

≤C3‖v0‖Lq(T2) + C3
(

R2 + α1R + (β1 + 1)R
)
T

(30)
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and

‖∇Ψ2(c, v, w, u)‖L∞(T2)

≤‖Tt∇v0‖L∞(T2) +
∫ t

0
‖Tt−τ∇(u · ∇v)‖L∞(T2)dτ +

∫ t

0
‖Tt−τ∇

(
α1c− (β1 − 1)v

)
‖L∞(T2)dτ

≤C4e−t‖∇v0‖L∞(T2) + C4

∫ t

0
e−(t−τ)(t− τ)−

1
2 ‖u‖L∞(T2)‖∇v‖L∞(T2)dτ

+ C4α1

∫ t

0
e−(t−τ)(t− τ)−

1
2 ‖c‖L∞(T2)dτ + C4(β + 1)

∫ t

0
e−(t−τ)(t− τ)−

1
2 ‖v‖L∞(T2)dτ

≤C4‖∇v0‖L∞(T2) + 2C4
(

R2 + α1R + (β1 + 1)R
)
T

1
2 .

(31)

By using the same method for ‖Ψ3(c, v, w, u)‖L∞(T2) and ‖∇Ψ3(c, v, w, u)‖L∞(T2), we de-
duce that

‖Ψ3(c, v, w, u)‖L∞(T2) ≤ C3‖w0‖L∞(T2) + C3
(

R2 + α2R + (β2 + 1)R
)
T (32)

and

‖∇Ψ3(c, v, w, u)‖L∞(T2) ≤ C4‖∇w0‖L∞(T2) + 2C4
(

R2 + α2R + (β2 + 1)R
)
T

1
2 . (33)

Similarly, since the Helmholtz projection P is a bounded linear operator, we can find C(P)
such that

‖Ψ4(c, v, w, u)‖L∞(T2)

≤‖Ttu0‖L∞(T2) +
∫ t

0
‖Tt−τP∇(u⊗ u)‖L∞(T2)dτ +

∫ t

0
‖Tt−τP(u + c∇φ + g)‖L∞(T2)dτ

≤C3e−t‖u0‖L∞(T2) + C4C(P)
∫ t

0
e−(t−τ)(t− τ)−

1
2 ‖u‖2

L∞(T2)dτ

+ C3C(P)
∫ t

0
e−(t−τ)‖u‖L∞(T2)dτ

+ C3C(P)
∫ t

0
e−(t−τ)(‖c‖L∞(T2)‖∇φ‖L∞(T2) + ‖g‖L∞(T2)

)
dτ

≤C3‖u0‖L∞(T2) + 2C4C(P)R2T
1
2 + C3C(P)

(
R + R‖∇φ‖L∞(T2) + ‖g‖L∞(T2)

)
T.

(34)

Combining (29)–(33) with (34), if we choose R > 0 large enough and pick T > 0
sufficiently small, we can obtain that Ψ maps X into itself, where R depends on ‖c0‖L∞(T2),
‖v0‖W1,∞(T2), ‖w0‖W1,∞(T2), and ‖u0‖L∞(T2).

Next, we show that Ψ is a contraction on X. Let us take (c1, v1, w1, u1), (c2, v2, w2, u2) ∈
X and denote

‖c1 − c2‖L∞(T2) + ‖v1 − v2‖W1,∞(T2) + ‖w1 − w2‖W1,∞(T2) + ‖u1 − u2‖L∞(T2)

by ‖(c1, v1, w1, u1), (c2, v2, w2, u2)‖X.
Recalling once again the spatio-temporal estimates of the analytic semigroup {Tα

t (x)}t≥0
in Lemma 1 and arguments involving the Lipschitz continuity of S1 and S2 on [0, R]× [0, R],
for some positive constants C5 and C6, we have that
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‖Ψ1(c1, v1, w1, u1)−Ψ1(c2, v2, w2, u2)‖L∞(T2)

≤
∫ t

0
‖Tα

t−τ∇ ·
(
(u1 − u2)c1 + u2(c1 − c2)

)
‖L∞(T2)dτ

+
∫ t

0
‖Tα

t−τ∇ ·
(
(c1 − c2)S1(x, c1, v1)∇v1 + c2S1(x, c2, v2)∇(v1 − v2)

)
‖L∞(T2)dτ

+
∫ t

0
‖Tα

t−τ∇ ·
(
(c1 − c2)S2(x, c1, w1)∇w1 + c2S2(x, c2, w2)∇(w1 − w2)

)
‖L∞(T2)dτ

+
∫ t

0
‖Tα

t−τ∇ ·
(
c2(S1(x, c1, v1)− S1(x, c2, v2))∇v1

)
‖L∞(T2)dτ

+
∫ t

0
‖Tα

t−τ∇ ·
(
c2(S2(x, c1, w1)− S2(x, c2, w2))∇w1

)
‖L∞(T2)dτ

+
∫ t

0
‖Tα

t−τ

(
(µ + 1)(c1 − c2)− ν(c1 − c2)(c1 + c2)

)
‖L∞(T2)dτ

≤C2

∫ t

0
e−(t−τ)(t− τ)−

1
2α (‖(u1 − u2)c1‖L∞(T2) + ‖u2(c1 − c2)‖L∞(T2))dτ

+ C2CS1

∫ t

0
e−(t−τ)(t− τ)−

1
2α (‖(c1 − c2)∇v1‖L∞(T2) + ‖c2∇(v1 − v2)‖L∞(T2))dτ

+ C2CS2

∫ t

0
e−(t−τ)(t− τ)−

1
2α (‖(c1 − c2)∇w1‖L∞(T2) + ‖c2∇(w1 − w2)‖L∞(T2))dτ

+ C2C5

∫ t

0
e−(t−τ)(t− τ)−

1
2α ‖c2

(
|c1 − c2|+ |v1 − v2|

)
∇v1‖L∞(T2)dτ

+ C2C6

∫ t

0
e−(t−τ)(t− τ)−

1
2α ‖c2

(
|c1 − c2|+ |w1 − w2|

)
∇w1‖L∞(T2)dτ

+ C1

∫ t

0
e−(t−τ)‖(µ + 1)(c1 − c2)− ν(c1 − c2)(c1 + c2)‖L∞(T2)dτ

≤C2R
∫ t

0
(t− τ)−

1
2α

(
‖u1 − u2‖L∞(T2) + ‖c1 − c2‖L∞(T2)

)
dτ

+ C2RCS1

∫ t

0
(t− τ)−

1
2α

(
‖c1 − c2‖L∞(T2) + ‖∇(v1 − v2)‖L∞(T2)

)
dτ

+ C2RCS2

∫ t

0
(t− τ)−

1
2α

(
‖c1 − c2‖L∞(T2) + ‖∇(w1 − w2)‖L∞(T2)

)
dτ

+ C2C5R2
∫ t

0
e−(t−τ)(t− τ)−

1
2α
(
‖c1 − c2‖L∞(T2) + ‖v1 − v2‖L∞(T2)

)
dτ

+ C2C6R2
∫ t

0
e−(t−τ)(t− τ)−

1
2α
(
‖c1 − c2‖L∞(T2) + ‖w1 − w2‖L∞(T2)

)
dτ

+ C1

∫ t

0
e−(t−τ)

(
(µ + 1)‖c1 − c2‖L∞(T2) + 2νR‖c1 − c2‖L∞(T2)

)
dτ

≤
( 2α

2α− 1
C2(1 + CS1 + CS2 + C5R + C6R)RT1− 1

2α + C1(µ + 1 + 2νR)T
)

‖(c1, v1, w1, u1), (c2, v2, w2, u2)‖X.

By Lemma 2, we can obtain that

‖Ψ2(c1, v1, w1, u1)−Ψ2(c2, v2, w2, u2)‖L∞(T2)

≤
∫ t

0
‖Tt−τ

(
(u1 − u2) · ∇v1 + u2 · ∇(v1 − v2) + α1(c1 − c2)− (β1 − 1)(v1 − v2)

)
‖L∞(T2)dτ

≤C3

∫ t

0
e−(t−τ)

(
‖u1 − u2‖L∞(T2)‖∇v1‖L∞(T2) + ‖u2‖L∞(T2)‖∇(v1 − v2)‖L∞(T2)

+ α1‖c1 − c2‖L∞(T2) + (β1 + 1)‖v1 − v2‖L∞(T2)

)
dτ

≤C3(R + α1 + β1 + 1)T‖(c1, v1, w1, u1), (c2, v2, w2, u2)‖X
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and

‖∇(Ψ2(c1, v1, w1, u1)−Ψ2(c2, v2, w2, u2))‖L∞(T2)

≤
∫ t

0
‖Tt−τ∇

(
(u1 − u2) · ∇v1 + u2 · ∇(v1 − v2) + α1(c1 − c2)

− (β1 − 1)(v1 − v2)
)
‖L∞(T2)dτ

≤C4

∫ t

0
e−(t−τ)(t− τ)−

1
2

(
‖u1 − u2‖L∞(T2)‖∇v1‖L∞(T2) + ‖u2‖L∞(T2)‖∇(v1 − v2)‖L∞(T2)

+ α1‖c1 − c2‖L∞(T2) + β1‖v1 − v2‖L∞(T2)

)
dτ

≤2C4(R + α1 + β1 + 1)T
1
2 ‖(c1, v1, w1, u1), (c2, v2, w2, u2)‖X.

Similarly, we have that

‖Ψ3(c1, v1, w1, u1)−Ψ3(c2, v2, w2, u2)‖L∞(T2)

≤C3(R + α2 + β2 + 1)T‖(c1, v1, w1, u1), (c2, v2, w2, u2)‖X

and

‖∇(Ψ3(c1, v1, w1, u1)−Ψ3(c2, v2, w2, u2))‖L∞(T2)

≤2C4(R + α2 + β2 + 1)T
1
2 ‖(c1, v1, w1, u1), (c2, v2, w2, u2)‖X,

as well as

‖Ψ4(c1, v1, w1, u1)−Ψ4(c2, v2, w2, u2)‖L∞(T2)

≤
∫ t

0
‖Tt−τP∇ ·

(
(u1 − u2)⊗ u1 + u2 ⊗ (u1 − u2)

)
‖L∞(T2)dτ

+
∫ t

0
‖Tt−τP

(
(u1 − u2) + (c1 − c2)∇φ

)
‖L∞(T2)dτ

≤C4C(P)
∫ t

0
e−(t−τ)(t− τ)−

1
2

(
‖u1 − u2‖L∞(T2)‖u1‖L∞(T2)

+ ‖u2‖L∞(T2)‖u1 − u2‖L∞(T2)

)
dτ

+ C3C(P)
∫ t

0
e−(t−τ)

(
‖u1 − u2‖L∞(T2) + ‖c1 − c2‖L∞(T2)‖∇φ‖L∞(T2)

)
dτ

≤(2C4RT
1
2 + C3‖∇φ‖L∞(T2)T)C(P)‖(c1, v1, w1, u1), (c2, v2, w2, u2)‖X.

We selected T so small that Ψ is a contraction on X. We can then apply Banach’s fixed-
point theorem to find a unique mild solution (c, v, w, u) ∈ X of the problem (1) existing on
the time interval [0, T].

Part 2. Regularity: In this part, the mild solution (c(t), v(t), w(t), u(t)) of (1) on
[0, Tmax) obtained in Part 1 is a classical solution of (1) proven on [0, Tmax). First, accord-
ing to the Stokes semigroup [56,57] and the standard regularity theory for the parabolic
equation, we know that

v, w, u ∈ C2,1(T2 × (0, T)).

Then, as for the smoothness of c, c is affected by the fractional Laplacian operator, so it
cannot be obtained directly by the standard regularity theory for the parabolic equation.
We note that

ct + (−∆)αc + (u + S1(x, c, v)∇v− S2(x, c, w)∇w)︸ ︷︷ ︸
B(x,t)

·∇ c

= (−∇S1(x, c, v)∇v +∇S2(x, c, w)∇w)c− S1(x, c, v)c∆v + S2(x, c, w)c∆w + µc− νc2︸ ︷︷ ︸
f (x,t)

.
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Recalling (2), the regularity of v, w, and u, and the boundedness of c, we arrive at B(x, t),
f (x, t) ∈ L∞(T2 × [0, T)). Then, we can use Theorem 3.2 of [44] to obtain c(x, t) ∈
Cθ, θ

2α (T2 × [0, T)). Thus, combining this with Theorem 3.3 of [44], we have c ∈ C2α+θ,1+ θ
2α

(T2 × [0, T)). Furthermore, it was proven in [58] that there exists a smooth function P such
that Problem (3) has a classical solution (c, v, w, u, P) in T2 × (0, T).

Part 3. Nonnegative: Now, the classical solution (c, v, w) being nonnegative is proven.
We assumed that (c, v, w) solves System (1) classically in T2 × (0, T). Let

min
x∈T2

c(x, t) = c(x1t , t), min
x∈T2

v(x, t) = v(x2t , t), min
x∈T2

w(x, t) = w(x3t , t).

Using the proof of Theorem 1 of [33] and Theorem 4.1 of [59], evaluating the first equation
of (1) at the minimum point of c, and using the kernel expression for (−∆)α, we deduce that

d
dt

c(x1t , t) ≥− (−∆)αc(x1t , t)− c(x1t , t)S1(x1t , c, v) · ∆v(x1t , t)

+ c(x1t , t)S2(x1t , c, w) · ∆w(x1t , t)

+ (−∇S1(x1t , c, v)∇v(x1t , t) +∇S2(x1t , c, w)∇w(x1t , t))c(x1t , t)

+ µc(x1t , t)− νc2(x1t , t)

≥− c(x1t , t)S1(x1t , c, v) · ∆v(x1t , t) + c(x1t , t)S2(x1t , c, w) · ∆w(x1t , t)

+ (−∇S1(x1t , c, v)∇v(x1t , t) +∇S2(x1t , c, w)∇w(x1t , t))c(x1t , t)

+ µc(x1t , t)− νc2(x1t , t).

By a comparison argument, we have

c(x1t , t) ≥ c0(x)exp
{ ∫ t

0
µ− S1(xτ , c, v) · ∆v(xτ , τ) + S2(xτ , c, w) · ∆w(xτ , τ)− νc(xτ , τ)

−∇S1(xτ , c, v)∇v(xτ , τ) +∇S2(xτ , c, w)∇w(xτ , τ)dτ
}

.

By the positive of c0(x), we can obtain c(x, t) > 0. Moreover, the maximum principle of the
parabolic equation ensures v(x, t) ≥ v(x2t , t) ≥ 0 and w(x, t) ≥ w(x3t , t) ≥ 0.

4. A Priori Estimates

In this section, in order to obtain the uniform boundedness of the Lp-norms of c, we
made a series of a priori estimates for the components of the solution. These a priori
estimates not only help to prove the global existence of the solution, but also play a key
role in the study of asymptotic stability.

First, we show the following basic, but important inequalities.

Lemma 9. There is C such that the solution (c, v, w, u) of System (1) fulfills∫
T2

c ≤ C for all t ∈ (0, Tmax) (35)

and ∫ t+s

t

∫
T2

c2 ≤ C for all t ∈ (0, Tmax − s), (36)

where s := min{1, 1
2 Tmax}.

Proof. Integrating the first equation of System (1) over T2 and employing ∇ · u = 0 and
the Cauchy–Schwarz inequality, we have that

d
dt

∫
T2

c = µ
∫
T2

c− ν
∫
T2

c2 ≤ µ
∫
T2

c− ν

|T2|

( ∫
T2

c
)2

(37)
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for all t ∈ (0, Tmax). By a straightforward ordinary differential equation comparison
argument, we can obtain (35).

Furthermore, integrating (37) in time yields

ν
∫ t+s

t

∫
T2

c2 = µ
∫ t+s

t

∫
T2

c−
∫
T2

c(t + s) +
∫
T2

c(t) ≤ C

for all t ∈ (0, Tmax − s). Then, the proof of Lemma 9 is complete.

With the help of Lemma 9, we can obtain the following boundedness estimates for u.

Lemma 10. There is C such that the solution (c, v, w, u) of System (1) fulfills∫
T2
|u|2 ≤ C for all t ∈ (0, Tmax), (38)

∫ t+s

t

∫
T2
|∇u|2 ≤ C for all t ∈ (0, Tmax − s) (39)

and ∫ t+s

t

∫
T2
|u|4 ≤ C for all t ∈ (0, Tmax − s), (40)

where s := min{1, 1
2 Tmax}.

Proof. We multiply the third equation of System (1) by u, integrate over T2, and integrate
by parts, yielding∫

T2
ut · u−

1
2

∫
T2

u2∇ · u = −
∫
T2
|∇u|2 +

∫
T2

c∇φ · u +
∫
T2

g · u.

Using ∇ · u = 0, we deduce that

1
2

d
dt

∫
T2
|u|2 +

∫
T2
|∇u|2 =

∫
T2

c∇φ · u +
∫
T2

g · u. (41)

Combining Hölder’s inequality with Sobolev’s inequality, we know

‖u‖L2(T2) ≤ C‖u‖L6(T2) ≤ C‖∇u‖
L

3
2 (T2)

≤ C‖∇u‖L2(T2). (42)

Applying the above inequality, Hölder’s inequality, and Young’s inequality to (41), we have

1
2

d
dt

∫
T2
|u|2 +

∫
T2
|∇u|2 ≤ ‖∇φ‖L∞(T2)‖c‖L2(T2)‖u‖L2(T2) + ‖g‖L2(T2)‖u‖L2(T2)

≤ 1
4
‖∇u‖2

L2(T2) + C(‖c‖2
L2(T2) + ‖g‖

2
L2(T2))

(43)

for all t ∈ (0, Tmax), which means

1
2

d
dt

∫
T2
|u|2 + 1

2

∫
T2
|∇u|2 + 1

4C

∫
T2
|u|2 ≤ C(‖c‖2

L2(T2) + ‖g‖
2
L2(T2)). (44)

By dropping 1
2

∫
T2 |∇u|2 in (44), letting y(t) :=

∫
T2 |u|2 and j(t) := C(

∫
T2 |c|2 +

∫
T2 |g|2),

and combining this with Lemma 9 and (4), there is C5 > 0 such that∫ t+s

t
j(τ)dτ ≤ C5 := C(1 + |T2|‖g‖2

L∞(T2×[0,∞))) (45)
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for all t ∈ (0, Tmax − s). Applying Lemma 6, we have∫
T2
|u|2 ≤ max{

∫
T2
|u0|2 + C5,

C5

s
+ 2C5} (46)

for all t ∈ (0, Tmax − s), which means (38).
Integrating (44) in time and employing (4), (35), and (38), we can obtain (39). Fi-

nally, in conjunction with (38) and (39), the Gagliardo–Nirenberg interpolation inequality
shows that∫ t+s

t

∫
T2
|u|4 =

∫ t+s

t
‖u‖4

L4(T2) ≤ C
∫ t+s

t
‖∇u‖2

L2(T2)‖u‖
2
L2(T2) + ‖u‖

4
L2(T2) ≤ C

for all t ∈ (0, Tmax − s). Thus, we are finished proving Lemma 10.

Lemma 11. There is C > 0 such that the solution (c, v, w, u) of System (1) fulfills∫
T2
|∇u|2 ≤ C for all t ∈ (0, Tmax). (47)

Proof. Applying the Helmholtz projector P to the third equation of System (1), we arrive at

ut +Au = −P [(u · ∇)u] + P(c∇φ) + P(g), (48)

where A := −P∆ denotes the realization of the Stokes operator in the solenoidal subspace
L2

σ(T2) of L2(T2). Multiplying (48) by Au and integration by parts and combining the
orthogonal projection property of P [58] (Lemma 2.5.2) with Young’s inequality yield

1
2

d
dt

∫
T2
|A

1
2 u|2 +

∫
T2
|Au|2 = −

∫
T2
P [(u · ∇)u] · Au +

∫
T2
P(c∇φ) · Au +

∫
T2
P(g) · Au

≤ 3
4

∫
T2
|Au|2 +

∫
T2
|(u · ∇)u|2 + ‖∇φ‖2

L∞(T2)

∫
T2

c2 +
∫
T2
|g|2.

(49)

It follows from Hölder’s inequality, the Gagliardo–Nirenberg inequality, Lemma 10, and
Young’s inequality that we arrive at∫

T2
|(u · ∇)u|2 ≤ ‖u‖2

L∞(T2)‖∇u‖2
L2(T2)

≤ C‖Au‖L2(T2)‖u‖L2(T2)‖∇u‖2
L2(T2) + C‖u‖2

L2(T2)‖∇u‖2
L2(T2)

≤ C‖Au‖L2(T2)‖∇u‖2
L2(T2) + C‖∇u‖2

L2(T2)

≤ 1
4

∫
T2
|Au|2 + C

[( ∫
T2
|∇u|2

)2
+
∫
T2
|∇u|2

]
.

(50)

Moreover, combining this with [58] (Lemma 2.2.1),∫
T2
|A

1
2 u|2 =

∫
T2
|∇u|2.

Thus, (49) becomes

d
dt

∫
T2
|∇u|2 ≤ C

[( ∫
T2
|∇u|2

)2
+
∫
T2
|∇u|2 +

∫
T2

c2 +
∫
T2
|g|2

]
. (51)

Let y(t) :=
∫
T2 |∇u|2, j1(t) := C

∫
T2 |∇u|2 and j2(t) := C(

∫
T2 |∇u|2 +

∫
T2 c2 +∫

T2 |g|2), then (51) becomes
y′(t) = j1(t)y(t) + j2(t) (52)
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for all t ∈ (0, Tmax). Lemma 9, Lemma 10, and (4) show that there are C6, C > 0 such that∫ t+s

t
h1(s)ds = C

∫ t+s

t

∫
T2
|∇u|2 ≤ C6 (53)

and ∫ t+s

t
h2(s)ds = C

∫ t+s

t

( ∫
T2
|∇u|2 +

∫
T2

c2 +
∫
T2
|g|2

)
≤ C (54)

for all t ∈ (0, Tmax − s) with s := min{1, 1
2 Tmax}. Furthermore, (53) entails that for given

t ∈ (0, Tmax), there exists t0 = t0(t) ∈ (t− s, t) ∩ [0, ∞) such that∫
T2
|∇u(t0)|2 ≤ max

{ ∫
T2
|∇u0|2,

C6

s

}
. (55)

Thus, integrating (52) over (t0, t) yields

y(t) ≤ y(t0)e
∫ t

t0
j1(τ)dτ

+
∫ t

t0

e
∫ t

τ j1(σ)dσ j2(τ)dτ ≤ C, (56)

which implies (47).

Next, we study some estimates of the higher derivatives of v and w.

Lemma 12. There exists C such that the solution (c, v, w, u) of System (1) fulfills∫
T2

v2 ≤ C for all t ∈ (0, Tmax) (57)

and ∫
T2

w2 ≤ C for all t ∈ (0, Tmax) (58)

as well as ∫ t+τ

t

∫
T2
|∇v|2 ≤ C for all t ∈ (0, Tmax − τ) (59)

and ∫ t+τ

t

∫
T2
|∇w|2 ≤ C for all t ∈ (0, Tmax − τ), (60)

where τ := min{1, 1
2 Tmax}.

Proof. Applying v to the second equation of System (1), integrating over T2 and integration
by parts yield ∫

T2
vvt +

∫
T2

v(u · ∇v) = −
∫
T2
|∇v|2 + α1

∫
T2

cv− β1

∫
T2

v2.

By Young’s inequality, we infer from∫
T2

v(u · ∇v) =
1
2

∫
T2

u · ∇v2 = −1
2

∫
T2

v2∇ · u = 0

to
1
2

d
dt

∫
T2

v2 +
∫
T2
|∇v|2 + β1

∫
T2

v2 = α1

∫
T2

cv ≤
α2

1
2β1

∫
T2

c2 +
β1

2

∫
T2

v2.

Therefore, we have that

d
dt

∫
T2

v2 + 2
∫
T2
|∇v|2 + β1

∫
T2

v2 ≤
α2

1
β1

∫
T2

c2. (61)
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Let y(t) :=
∫
T2 v2 and j(t) = α2

1
β1

∫
T2 c2; by dropping 2

∫
T2 |∇v|2 in (61),

y′(t) + β1y(t) ≤ j(t)

for all t ∈ (0, Tmax). By Lemma 6, moreover, (36) shows that there exists C7 > 0 such that

∫ t+s

t
h(τ) =

α2
1

β1

∫ t+s

t

∫
T2

c2 ≤
α2

1
β1

C7

for all t ∈ (0, Tmax − s). Thus, we have

∫
T2

v2 = y(t) ≤ max
{ ∫

T2
v2

0 +
α2

1
β1

C7,
α2

1
β2

1s
C7 +

2α2
1

β1
C7

}
for all t ∈ (0, Tmax), which, in turn, yields (57). Integrating (61) with respect to time and
making use of (36) and (57), we can immediately arrive at (59).

Similarly, it is easy to obtain

∫
T2

w2 ≤ max
{ ∫

T2
w2

0 +
α2

2
β2

C7,
α2

2
β2

2s
C7 +

2α2
2

β2
C7

}
for all t ∈ (0, Tmax) and (60). The proof of Lemma 12 is complete.

Lemma 13. There exists C such that the solution (c, v, w, u) of System (1) fulfills∫
T2
|∇v|2 ≤ C for all t ∈ (0, Tmax) (62)

and ∫
T2
|∇w|2 ≤ C for all t ∈ (0, Tmax) (63)

as well as ∫ t+τ

t

∫
T2
|∆v|2 ≤ C for all t ∈ (0, Tmax − τ) (64)

and ∫ t+τ

t

∫
T2
|∆w|2 ≤ C for all t ∈ (0, Tmax − τ), (65)

where τ = min{1, 1
2 Tmax}.

Proof. Test the second equation of System (1) by−∆v. Using integration by parts, Hölder’s
inequality, Young’s inequality, and the Gagliardo–Nirenberg inequality, we can obtain

1
2

d
dt

∫
T2
|∇v|2 +

∫
T2
|∆v|2

=− β1

∫
T2
|∇v|2 − α1

∫
T2

c∆v +
∫
T2
(u · ∇v)∆v

≤1
4

∫
T2
|∆v|2 + α2

1

∫
T2

c2 + ‖u‖L4(T2)‖∇v‖L4(T2)‖∆v‖L2(T2)

≤1
4

∫
T2
|∆v|2 + α2

1

∫
T2

c2 + C‖u‖L4(T2)

(
‖∆v‖

1
2
L2(T2)

‖∇v‖
1
2
L2(T2)

+ ‖∇v‖L2(T2)

)
‖∆v‖L2(T2)

≤1
4

∫
T2
|∆v|2 + α2

1

∫
T2

c2 + C‖u‖L4(T2)‖∆v‖
3
2
L2(T2)

‖∇v‖
1
2
L2(T2)

+ C‖u‖L4(T2)‖∇v‖L2(T2)‖∆v‖L2(T2)

≤1
4

∫
T2
|∆v|2 + α2

1

∫
T2

c2 +
1
4
‖∆v‖2

L2(T2) + C‖u‖4
L4(T2)‖∇v‖2

L2(T2) + C‖u‖2
L4(T2)‖∇v‖2

L2(T2)

≤1
2

∫
T2
|∆v|2 + α2

1

∫
T2

c2 +
∫
T2
|∇v|2

[
C
∫
T2
|u|4 + C

( ∫
T2
|u|4

) 1
2
]
.

(66)
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Thus, (66) can be written as

d
dt

∫
T2
|∇v|2 +

∫
T2
|∆v|2 ≤

∫
T2
|∇v|2

[
2C
∫
T2
|u|4 + 2C

( ∫
T2
|u|4

) 1
2
]
+ 2α2

1

∫
T2

c2. (67)

Let y(t) :=
∫
T2 |∇v|2, j3(t) = 2C

∫
T2 |u|4 + 2C(

∫
T2 |u|4)

1
2 and j4(t) := 2α2

1
∫
T2 c2,

then (67) becomes

y′(t) +
∫
T2
|∆v|2 ≤ y(t)j3(t) + j4(t). (68)

We invoke Lemma 9 and Lemma 10 and find C8, C9 > 0 such that∫ t+s

t
j3(s) ≤ C8 and

∫ t+s

t
j4(s) ≤ 2α2

1C9 (69)

for all t ∈ (0, Tmax − s). Meanwhile, Lemma 12 shows that there is C10 > 0 such that∫ t+s

t

∫
T2
|∇v|2 ≤ C10 (70)

for all t ∈ (0, Tmax − s). Thus, for given t ∈ (0, Tmax), we can employ (70) to choose
t0 = t0(t) ∈ (t− s, t) ∩ [0, ∞) satisfying

y(t0) =
∫
T2
|∇v(t0)|2 ≤ C11 := max

{ ∫
T2
|∇v0|2,

C10

s

}
. (71)

Dropping
∫
T2 |∆v|2 of (68) and integrating over (t0, t), we arrive at

y(t) ≤ y(t0)e
∫ t

t0
h3(τ) +

∫ t

t0

e
∫ t

τ j3(σ) j4(τ), (72)

which, in light of (69)–(72), implies that

y(t) :=
∫
T2
|∇v|2 ≤ C11eC8 + C9eC8 ,

which implies (62). Integrating (68) in time and once more using (62), (69), and (70), we
can deduce the inequality (64). Furthermore, by employing the same method for w, we can
obtain the inequalities (63) and (65). The proof of Lemma 13 is complete.

At the end of this section, according to the above results, by an inductive method,
we arrive at the uniform boundedness of ‖c‖Lp(T2). To be precise, we used Lemma 4 for
(−∆)αc to handle −p

∫
T2 cp−1(−∆)αc. When dealing with the chemotaxis terms, due to the

influence of Si (i = 1, 2), we need to use Kato–Ponce’s commutator estimates and Parseval’s
identity to handle ‖Λ1−α(S1(x, c, v)∇v)‖Lp4 (T2) and ‖Λ1−α(S2(x, c, w)∇w)‖Lp4 (T2). Then,
the chemotaxis terms can be controlled by the fractional diffusion term; thus, we can
obtain (89).

Lemma 14. Suppose that p ≥ 2. Then, there are M > 0 and C = C(p, M) > 0 such that the
solution (c, v, w, u) of System (1) fulfills∫ t+τ

t

∫
T2

cp ≤ M for all t ∈ (0, Tmax − τ), (73)

then we have that ∫
T2

cp ≤ C for all t ∈ (0, Tmax) (74)

and ∫ t+τ

t

∫
T2

cp+1 ≤ C for all t ∈ (0, Tmax − τ), (75)
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where τ = min{1, 1
2 Tmax}.

Proof. Multiplying the first equation of System (1) by pcp−1 and integrating over T2,
we have

p
∫
T2

cp−1ct + νp
∫
T2

cp+1 =− p
∫
T2

cp−1(−∆)αc + µp
∫
T2

cp − p
∫
T2

cp−1u · ∇c

−
∫
T2

pcp−1∇ · (cS1(x, c, v)∇v)

+
∫
T2

pcp−1∇ · (cS2(x, c, w)∇w)

=µp
∫
T2

cp + I1 + I2 + I3 + I4,

(76)

where
I1 = −p

∫
T2

cp−1(−∆)αc, I2 = −p
∫
T2

cp−1u · ∇c

and
I3 = −

∫
T2

pcp−1∇ · (cS1(x, c, v)∇v), I4 =
∫
T2

pcp−1∇ · (cS2(x, c, w)∇w).

For the term I1, by Lemma 4, we have that

I1 =− p
∫
T2

cp−1(−∆)αc

=− p
∫
T2

c
p
2 c

p
2−1(−∆)αc

≤− 2
∫
T2

c
p
2 (−∆)αc

p
2

≤− 2
∫
T2
|(−∆)

α
2 c

p
2 |2.

(77)

Since u is solenoidal, for the term I2, we have that

I2 = −p
∫
T2

cp−1u · ∇c = −
∫
T2

u · ∇cp =
∫
T2

cp∇ · u = 0. (78)

To be able to deal with I3 and I4, first, let us introduce the Riesz transform. We define

R̂j f (ξ) = −i
ξ j

|ξ| f̂ (ξ) j = 1, 2

and write
R = (R1,R2).

Recall [37,60]; we arrive at
RΛ = −∇.

If 1 < p < ∞, we know the boundedness of the Riesz transform R : Lp(T2) → Lp(T2).
Combining this with integration by parts and Hölder’s inequality, we can obtain that
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I3 = −
∫
T2

pcp−1∇ · (cS1(x, c, v)∇v)

=
∫
T2

p(p− 1)cp−1∇cS1(x, c, v)∇v

=
∫
T2

p(p− 1)c
p
2 c

p
2−1∇cS1(x, c, v)∇v

= 2
∫
T2
(p− 1)c

p
2∇c

p
2 · S1(x, c, v)∇v

= −2
∫
T2
(p− 1)c

p
2 (RΛ1−αΛαc

p
2 ) · S1(x, c, v)∇v

= −2
∫
T2
(p− 1)RΛαc

p
2 Λ1−α(c

p
2 S1(x, c, v)∇v)

≤ 2(p− 1)‖Λαc
p
2 ‖L2(T2)‖Λ1−α(c

p
2 S1(x, c, v)∇v)‖L2(T2).

(79)

Using Kato–Ponce’s commutator estimates (27) to deal with ‖Λ1−α(c
p
2 S1(x, c, v)∇v)‖L2(T2),

we can find 1
2 = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
such that

‖Λ1−α(c
p
2 S1(x, c, v)∇v)‖L2(T2)

≤C(‖Λ1−αc
p
2 ‖Lp1 (T2)‖S1(x, c, v)∇v‖Lp2 (T2) + ‖c

p
2 ‖Lp3 (T2)‖Λ1−α(S1(x, c, v)∇v)‖Lp4 (T2))

=C(II1II2 + II3II4),

(80)

where
II1 = ‖Λ1−αc

p
2 ‖Lp1 (T2), II2 = ‖S1(x, c, v)∇v‖Lp2 (T2)

and
II3 = ‖c

p
2 ‖Lp3 (T2), II4 = ‖Λ1−α(S1(x, c, v)∇v)‖Lp4 (T2).

For the terms II1 and II3, by the Gagliardo–Nirenberg interpolation inequality (26),
we discover

II1 = ‖Λ1−αc
p
2 ‖Lp1 (T2) ≤ C‖Λαc

p
2 ‖a1

L2(T2)
‖c

p
2 ‖1−a1

L2(T2)
+ C‖c

p
2 ‖L2(T2), (81)

where a1 ∈ (0, 1), 1− α
2 −

1
p1

= α
2 a1 and

II3 = ‖c
p
2 ‖Lp3 (T2) ≤ C‖Λαc

p
2 ‖a3

L2(T3)
‖c

p
2 ‖1−a3

L2(T2)
+ C‖c

p
2 ‖L2(T2), (82)

where a3 ∈ (0, α) and 1
2 −

1
p3

= α
2 a3. For the term II2, using the Gagliardo–Nirenberg

inequality twice, (26), (62), and (3), we have that

II2 = ‖S1(x, c, v)∇v‖Lp2 (T2)

≤ CS1‖∇v‖Lp2 (T2)

≤ CS1 C‖∇v‖a2
L2(T2)

‖Λ2−a1 v‖1−a2
L2(T2)

+ CS1 C‖∇v‖L2(T2)

≤ CS1 C‖∇v‖a2
L2(T2)

(
C‖∇v‖a1

L2(T2)
‖∆v‖1−a1

L2(T2)
+ C‖∇v‖L2(T2)

)1−a2 + CS1 C‖∇v‖L2(T2)

≤ CS1 (C‖∆v‖(1−a1)(1−a2)
L2(T2)

+ C),

(83)

where a2 ∈ (0, 1), 1
2 −

1
p2

= (1−a1)(1−a2)
2 . For the term II4, using again Kato–Ponce’s

commutator estimates (27) and (3), we can find 1
p4

= 1
p′4

+ 1
p′′4

such that
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II4 = ‖Λ1−α(S1(x, c, v)∇v)‖Lp4 (T2)

≤ C(CS1‖Λ
1−α∇v‖Lp4 (T2) + ‖∇v‖

Lp′4 (T2)
‖Λ1−αS1(x, c, v)‖

Lp′′4 (T2)
)

≤ C(CS1‖Λ
1−α∇v‖Lp4 (T2) + ‖∇v‖

Lp′4 (T2)
‖Λ1−αS1(x, c, v)‖

Lp′′4 (T2)
)

= C(CS1III1 + III2III3).

(84)

For the term III1,

III1 = ‖Λ1−α∇v‖Lp4 (T2)

≤ C‖∇v‖a4
L2(T2)

‖Λ2−a3 v‖1−a4
L2(T2)

+ C‖∇v‖L2(T2)

≤ C‖∇v‖a4
L2(T2)

(
C‖∇v‖a3

L2(T2)
‖∆v‖1−a3

L2(T2)
+ C‖∇v‖L2(T2)

)1−a4 + C‖∇v‖L2(T2)

≤ C‖∆v‖(1−a3)(1−a4)
L2(T2)

+ C,

(85)

where a4 ∈ (0, 1), 1− α
2 −

1
p4

= (1−a3)(1−a4)
2 . For the term III2, employ the Gagliardo–

Nirenberg inequality (26) and Young’s inequality:

III2 = ‖∇v‖
Lp′4 (T2)

≤ C‖∇v‖a5
L2(T2)

‖∆v‖1−a5
L2(T2)

+ ‖∇v‖L2(T2)

≤ C‖∆v‖1−a5
L2(T2)

+ C

(86)

where a5 = 2
p′4

. For the term III3, by the Gagliardo–Nirenberg inequality (26) and Parseval’s

identity, then there exist C, a6 ∈ (0, 1), and ρ ∈ (0, 3α− 1) such that 1
2 −

α
2 −

1
p′′4

= a6
ρ−α

2 and

III3 =
∥∥∥Λ1−αS1(x, c, v)

∥∥∥
Lp′′4 (T2)

≤C
∥∥∥Λ1−α+ρS1(x, c, v)

∥∥∥a6

L2(T2)

∥∥∥S1(x, c, v)
∥∥∥1−a6

L∞(T2)
+ C

∥∥∥S1(x, c, v)
∥∥∥

L∞(T2)

=C(2π)
a6
2

∥∥∥|ξ|1−α+ρ 1
(2π)2

∫
T2

S1(y, c, v)e−iξ·ydy
∥∥∥a6

L2(T2)
C1−a6

S1
+ CS1 C

≤CS1 C‖|ξ|1−α+ρ‖a6
L2(T2)

+ CS1 C

≤CS1 C.

Combining this with (84), (85), and (86), we can find C such that

II4 = CS1(C‖∆v‖(1−a3)(1−a4)
L2(T2)

+ C‖∆v‖(1−a5)
L2(T2)

+ C).

Inserting (81)–(84) into (80) and employing Young’s inequality, (79) becomes
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I3 =−
∫
T2

pcp−1∇ · (nS1(x, c, v)∇v)

≤2CS1 (p− 1)C
(
‖Λαc

p
2 ‖1+a1

L2(T2)
‖c

p
2 ‖1−a1

L2(T2)
‖∆v‖(1−a1)(1−a2)

L2(T2)
+ ‖Λαc

p
2 ‖1+a1

L2(T2)
‖c

p
2 ‖1−a1

L2(T2)

+ ‖Λαc
p
2 ‖L2(T2)‖c

p
2 ‖L2(T2)‖∆v‖(1−a1)(1−a2)

L2(T2)
+ ‖Λαc

p
2 ‖L2(T2)‖c

p
2 ‖L2(T2)

+ ‖Λαc
p
2 ‖1+a3

L2(T2)
‖c

p
2 ‖1−a3

L2(T2)
‖∆v‖(1−a3)(1−a4)

L2(T2)
+ ‖Λαc

p
2 ‖1+a3

L2(T2)
‖c

p
2 ‖1−a3

L2(T2)

+ ‖Λαc
p
2 ‖L2(T2)‖c

p
2 ‖L2(T2)‖∆v‖(1−a3)(1−a4)

L2(T2)
+ ‖Λαc

p
2 ‖L2(T2)‖c

p
2 ‖L2(T2)

+ ‖Λαc
p
2 ‖1+a3

L2(T2)
‖c

p
2 ‖1−a3

L2(T2)
‖∆v‖(1−a5)

L2(T2)
+ ‖Λαc

p
2 ‖L2(T2)‖c

p
2 ‖L2(T2)‖∆v‖(1−a5)

L2(T2)

)
≤‖Λαc

p
2 ‖2

L2(T2) + C
(
‖c

p
2 ‖2

L2(T2) + ‖c
p
2 ‖2

L2(T2)‖∆v‖2(1−a2)
L2(T2)

+ ‖c
p
2 ‖2

L2(T2)‖∆v‖2(1−a1)(1−a2)
L2(T2)

+ ‖c
p
2 ‖2

L2(T2)‖∆v‖2(1−a4)
L2(T2)

+ ‖c
p
2 ‖2

L2(T2)‖∆v‖2(1−a3)(1−a4)
L2(T2)

+ ‖c
p
2 ‖2

L2(T2)‖∆v‖2(1−a5)
L2(T2)

)
.

Let θ := max{2(1− a2), 2(1− a4), 2(1− a5)} ∈ (0, 2); we have that

I3 = −
∫
T2

pcp−1∇ · (cS1(x, c, v)∇v)

≤ ‖Λαc
p
2 ‖2

L2(T2) + C
(
‖c

p
2 ‖2

L2(T2) + ‖c
p
2 ‖2

L2(T2)‖∆v‖θ
L2(T2)

)
.

(87)

By using the same method for I4, we can deduce that

I4 =
∫
T2

pcp−1∇ · (cS2(x, c, w)∇w)

≤ ‖Λαc
p
2 ‖2

L2(T2) + C
(
‖c

p
2 ‖2

L2(T2) + ‖c
p
2 ‖2

L2(T2)‖∆w‖θ
L2(T2)

)
.

(88)

Combining (77), (78), and (87) with (88) and (76) turns into

d
dt

∫
T2

cp + νp
∫
T2

cp+1 ≤ C
(
‖c

p
2 ‖2

L2(T2) + ‖c
p
2 ‖2

L2(T2)(‖∆v‖θ
L2(T2) + ‖∆w‖θ

L2(T2))
)
. (89)

By (73), we have that, for given t ∈ (0, Tmax), we can pick t1 = t1(t) ∈ (t− s, t)∩ [0, ∞), then∫
T2

cp(t1) ≤ max
{ ∫

T2
cp

0 ,
M
s

}
.

Thus, dropping νp
∫
T2 cp+1 of (89) and integrating over (t1, t) yield

∫
T2

cp ≤
∫
T2

cp(t1)e
∫ t

t1
C(1+‖∆v‖θ

L2(T2)
+‖∆w‖θ

L2(T2)
) ≤ C,

which implies (74). Furthermore, integrating (89) in time and employing (74), we can obtain
(75). The proof of Lemma 14 is complete.

Lemma 15. For any p ≥ 1, we can find C = C(p) > 0 such that∫
T2

cp ≤ C for all t ∈ (0, Tmax).

Proof. This result was obtained from Lemma 14 and Lemma 9.

5. Global Existence

Through Lemma 8, the local existence and uniqueness of the classical solution of
Problem (1) is obtained on the interval [0, Tmax). Combining this with a priori estimates in
Section 3, we prove the global existence of the classical solution (Theorem 1).
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Proof of Theorem 1. First, we claim that, if Tmax is finite, then

lim sup
t↗Tmax

(
‖c‖L∞(T2) + ‖v‖W1,∞(T2) + ‖w‖W1,∞(T2) + ‖u‖L∞(T2)

)
≤ C. (90)

To check this, we used a priori estimates in the previous lemmas and the estimates in
Lemmas 1 and 2; recalling the Gagliardo–Nirenberg inequality, we have that, for 2 ≤ r ≤ ∞,

‖u‖Lr(R2) ≤ C‖u‖
2
r
L2(R2)

‖∇u‖1− 2
r

L2(R2)
≤ C.

Let p > 2; we can obtain that

‖u‖L∞(T2)

≤‖Ttu0‖L∞(T2) +
∫ t

0
‖Tt−τP∇ · (u⊗ u)‖L∞(T2)dτ +

∫ t

0
‖Tt−τP(u + c∇φ + g)‖L∞(T2)dτ

≤C3e−t‖u0‖L∞(T2) + C4C(P)
∫ t

0
e−(t−τ)(t− τ)−

5
6 ‖u‖2

L6(T2)dτ

+ C3C(P)
∫ t

0
e−(t−τ)(t− τ)−

1
2 (‖u‖L2(T2) + ‖∇φ‖L∞(T2)‖c‖L2(T2) + ‖g‖L∞(T2))dτ

≤C3‖u0‖L∞(T2) + 6C4C(P)CT
1
6

max‖u‖
2
3
L2(T2)

‖∇u‖
4
3
L2(T2)

+ C3C(P)T
1
2

max(‖u‖L2(T2) + ‖∇φ‖L∞(T2)‖c‖L2(T2) + ‖g‖L∞(T2))

≤C

and

‖v‖L∞(T2)

≤‖Ttv0‖L∞(T2) +
∫ t

0
‖Tt−τu · ∇v‖L∞(T2)dτ + α1

∫ t

0
‖Tt−τc‖L∞(T2)

+ (β1 + 1)
∫ t

0
‖Tt−τv‖L∞(T2)dτ

≤C3e−t‖v0‖L∞(T2) + C4

∫ t

0
e−(t−τ)(t− τ)−

1
2 ‖u‖L∞(T2)‖∇v‖L2(T2)dτ

+ C3α1

∫ t

0
e−(t−τ)(t− τ)

− 1
p ‖c‖Lp(T2) + C3(β1 + 1)

∫ t

0
e−(t−τ)(t− τ)−

1
2 ‖v‖L2(T2)dτ

≤C3‖v0‖L∞(T2) + 2C4T
1
2

max‖u‖L∞(T2)‖v‖L2(T2) + C3
p

p− 1
T

1− 1
p

max α1‖c‖Lp(T2)

+ 2T
1
2

maxC3(β1 + 1)‖v‖L2(T2)

≤C.

Next, we fix q > 2 and, moreover, q1, q2 ∈ (q, ∞) satisfying 1
q = 1

q1
+ 1

q2
. Let θ = 1− 2

q2
;

we thereby obtain
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‖∇v‖L∞(T2)

≤‖Tt∇v0‖L∞(T2) +
∫ t

0
‖Tt−τ∇(u · ∇v)‖L∞(T2) + α1‖Tt−τ∇c‖L∞(T2)

+ (β1 + 1)‖Tt−τ∇v‖L∞(T2)dτ

≤C3e−t‖∇v0‖L∞(T2) + C4

∫ t

0
e−(t−τ)(t− τ)

− 1
2−

1
q ‖u‖Lq1 (T2)‖∇v‖Lq2 (T2)dτ

+ C4α1

∫ t

0
e−(t−τ)(t− τ)

− 1
2−

1
p ‖c‖Lp(T2)dτ + C4(β1 + 1)

∫ t

0
e−(t−τ)(t− τ)−

1
2 ‖v‖L∞(T2)dτ

≤C3‖∇v0‖L∞(T2) +
2p

p− 2
C4T

1
2−

1
p

max ‖c‖Lp(T2) + 2C4(β1 + 1)T
1
2

max‖v‖L∞(T2)

+ C4C
∫ t

0
e−(t−τ)(t− τ)

− 1
2−

1
q ‖u‖Lq1 (T2)(‖∇v‖θ

L∞(T2)‖v‖
1−θ
L∞(T2)

+ ‖v‖L∞(T2))dτ.

(91)

Let T ∈ (0, Tmax) and M′ := supt∈(0,T) ‖∇v‖L∞(T2). We see from (91) that

M′ ≤ C + CM′θ ,

with some C > 0. Since θ < 1, by Young’s inequality, we have

‖∇v‖L∞(T2) ≤ C

Similarly, by using the same method for w, we can obtain that

‖w‖L∞(T2) ≤ C and ‖∇w‖L∞(T2) ≤ C.

Finally, combining the above three inequalities with Lemma 1, we have that

‖c‖L∞(T2)

≤‖Tα
t c0‖L∞(T2) +

∫ t

0
‖Tα

t−τ∇ · (uc + cS1(x, c, v)∇v− cS2(x, c, w)∇w)‖L∞(T2)dτ

+
∫ t

0
‖Tα

t−τ

(
(µ + 1)c− νc2)‖L∞(T2)dτ

≤C1e−t‖c0‖L∞(T2) + C1

∫ t

0
e−(t−τ)(t− τ)

− 1
αp
(
(µ + 1)‖c‖Lp(T2) + ν‖c2‖Lp(T2)

)
dτ

+ C2

∫ t

0
e−(t−τ)(t− τ)

− 1
2α (1+

2
p )‖uc + cS1(x, c, v)∇v− cS2(x, c, w)∇w‖Lp(T2)dτ

≤C1‖c0‖L∞(T2) +
2αp

2αp− p− 2
C2T

1− p+2
2αp

max
(
‖u‖L∞(T2)‖c‖Lp(T2) + CS1‖c‖Lp(T2)‖∇v‖L∞(T2)

+ CS2‖c‖Lp(T2)‖∇w‖L∞(T2)

)
+

αp
αp− 1

C1T
1− 1

αp
max

(
(µ + 1)‖c‖Lp(T2) + ν‖c‖2

L2p(T2)

)
≤C.

This proves (90). Combining this claim with Lemma 8, we can obtain Tmax = ∞. The proof
of Theorem 1 is complete.

6. Stabilization

In this section, the asymptotic behavior of the global bounded classical solution
of (1) is studied. In the case µ = 0, we discovered that the solutions c, v, and w con-
verge to a zero equilibrium, which was shown in [49]. In the case µ > 0, if ν is large
enough, the solutions c, v, and w converge to a non-zero equilibrium. The key idea
of our method is to employ the Lyapunov functional, the form of which was inspired
by [61]. Specifically, we dealt with the fractional diffusion term

∫
T2 c∗

(−∆)αc
c by Lemma 7

(fractional Fisher information) and uses the Riesz transform to handle the chemotaxis
terms

∫
T2 c∗

∇·(cS1(x,c,v)∇v)
c and

∫
T2 c∗

∇·(cS2(x,c,w)∇w)
c ; we can obtain Inequalities (104), (105),
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and (106). Moreover, because of the influence of Si (i = 1, 2), we needed to employ Kato–
Ponce’s commutator estimates and Parseval’s identity to handle ‖Λ1−α S1(x,c,v)∇v

c ‖L2(T2) and

‖Λ1−α S2(x,c,w)∇w
c ‖L2(T2). Thus, we can obtain (111) and (112). Finally, when

∫ ∞
0 ‖g‖

2
L2(T2)

dτ

< ∞, then we arrive at ‖u‖L∞(T2) → 0 as t→ ∞ in either case.

6.1. Stability of c, v, and w in the Case µ = 0

In this subsection, the asymptotic stability of the solution to System (1) is studied in
the case µ = 0.

Lemma 16. Suppose that µ = 0 in System (1). Then, there is C > 0 such that the solution
(c, v, w, u) of System (1) fulfills∫

T2
c(x, t) ≤ C

t + 1
for all t > 0, (92)

∫
T2

v(x, t) ≤ C
t + 1

for all t > 0, (93)

∫
T2

w(x, t) ≤ C
t + 1

for all t > 0 (94)

and ∫ ∞

0

∫
T2

c(x, t)2 ≤ C. (95)

Proof. From (37) in the proof process of Lemma 9, we obtain that

d
dt

∫
T2

c = −ν
∫
T2

c2 (96)

for all t > 0. Accordingly, the Cauchy–Schwarz inequality ensures that

d
dt

∫
T2

c = −ν
∫
T2

c2 ≤ − ν

|T2|

( ∫
T2

c
)2

for all t > 0. Thus, we have that∫
T2

c ≤
∫
T2 c0

1 + νt
|T2|
∫
T2 c0

≤ C12

t + 1
(97)

for all t > 0, where C12 := max{
∫
T2 c0, |T

2|
ν }, whereupon a time integration in (96)

yields (95).
Suppose that y(t) :=

∫
T2 v(x, t) for t > 0. We integrate the second equation of

System (1) over T2 and use (97) to estimate

y′(t) = −β1y(t) + α1

∫
T2

c(x, t)

≤ −β1y(t) +
α1C12

t + 1

for all t > 0. Let C13 := max{ 2
∫
T2 v0
α1

, 4C12
2β1−1} and z(t) := α1C13

t+2 for all t > 0. Then, we have

that z(0) = α1C13
2 ≥

∫
T2 v0 = y(0). Moreover,
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z′(t) + β1z(t)− α1C12

t + 1
= − α1C13

(t + 2)2 +
α1β1C13

t + 2
− α1C12

t + 1

=
α1C13

t + 2

(
β1 −

1
t + 2

− C12

C13

t + 2
t + 1

)
≥ α1C13

t + 2

(
β1 −

1
2
− 2C12

C13

)
≥ 0

for all t > 0. We once more use the comparison principle to see that z(t) ≥ y(t) for all t > 0,
which means (93). The inequality (94) can be derived similarly.

Proof of Theorem 2. Now, we prove the theorem by contradiction. Let ‖c‖L∞(T2) → 0 as
t→ ∞ fail. Then, there exist ε0 > 0 and tj → ∞, for all j ≥ N, such that

‖c(tj)‖L∞(T2) ≥ ε0.

Recall Theorem 1; we have that ‖c‖L∞(T2) ≤ C, so we can choose a function c∞ ∈ L∞(T2)

and a subsequence {tjk}k∈N of {tj}j∈N such that

‖c(tjk )‖L∞(T2) → c∞ as tjk → ∞.

From (92), we have
‖c‖L1(T2) → 0 as t→ ∞.

Thus, c∞ = 0 and ‖c(tjk )‖L∞(T2) → 0 as tjk → ∞, which contradicts the former assumption.
Therefore, the theorem is valid. Similarly, for the asymptotic stability of v and w, we have
that

‖v‖L∞(T2) → 0 and ‖w‖L∞(T2) → 0 as t→ ∞.

6.2. Stability of c, v, and w in the Case µ > 0

Lemma 17. Suppose that µ > 0 and ν > B
4 , B is a constant that is already defined in (99),

and (c, v, w, u) is a global bounded classical solution of System (1) with the initial condition
fulfilling (5). Then, there exist B1, B2 > 0, and C0 > 0 such that the function Ec∗ ,B1,B2 defined by

Ec∗ ,B1,B2(t) :=
∫
T2

(
c− c∗ − c∗ ln

c
c∗

)
+

B1

2

∫
T2

(
v− α1

β1
c∗
)2

+
B1

2

∫
T2

(
w− α2

β2
c∗
)2

+
B2

2

∫
T2
|∇v|2 + B2

2

∫
T2
|∇w|2

for all t > 0, satisfies

d
dt

Ec∗ ,B1,B2(t) + C0

{ ∫
T2
|Λαc|2 +

∫
T2
|∇v|2 +

∫
T2
|∇w|2 +

∫
T2
|∆v|2 +

∫
T2
|∆w|2

+
∫
T2

(
c− c∗

)2
+
∫
T2

(
v− α1

β1
c∗
)2

+
∫
T2

(
w− α2

β2
c∗
)2}
≤ 0

(98)

for all t > 0, with c∗ =
µ
ν .

Proof. According to ν > B
4 , where

B :=
c2
∗(C2

S1
+ C2

S2
) + B2

2(α
2
1 + α2

2)ε

2c∗
C∗C(α, Γ)‖c‖L∞(T2) (99)
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which enables us to fix some B1, B2 > 0 that simultaneously fulfill

4ν > B1 > B, min{B1, B2} > B, (100)

and take η > 0 such that

ν > B1

( α2
1

4(β1 − η)
+

α2
2

4(β2 − η)

)
>

B1

4
, (101)

where C∗ and ε are some positive constants to be determined later. With this value of B1
and B2 fixed henceforth, we denote

A1(t) :=
∫
T2

(
c− c∗ − c∗ ln

c
c∗

)
, A2(t) :=

B1

2

∫
T2

(
v− α1

β1
c∗
)2

and

A3(t) :=
B1

2

∫
T2

(
w− α2

β2
c∗
)2

, A4(t) :=
B2

2

∫
T2
|∇v|2, A5(t) :=

B2

2

∫
T2
|∇w|2

for all t > 0, and we write

Ec∗ ,B1,B2(t) := A1(t) + A2(t) + A3(t) + A4(t) + A5(t)

for all t > 0. Taking the derivative of Ec∗ ,B1,B2(t) in time, using integration by parts,
∇ · u = 0, and Young’s inequality, we discover

d
dt

A1(t) =
∫
T2

(
ct −

c∗
c

ct

)
=
∫
T2

µc− νc2 + c∗
(−∆)αc

c
+ c∗
∇ · (cS1(x, c, v)∇v)

c
− c∗
∇ · (cS2(x, c, w)∇w)

c

− c∗(µ− νc) + c∗
u · ∇c

c

=
∫
T2
−ν(c− c∗)2 + c∗

(−∆)αc
c

+ c∗
∇ · (cS1(x, c, v)∇v)

c

− c∗
∇ · (cS2(x, c, w)∇w)

c

and

d
dt

A2(t) =
∫
T2

B1

(
v− α1

β1
c∗
)

vt

=
∫
T2

B1

(
v− α1

β1
c∗
)(

∆v + α1c− β1v− u · ∇v
)

=
∫
T2

α1B1

(
c− c∗

)(
v− α1

β1
c∗
)
− β1B1

(
v− α1

β1
c∗
)2
− B1|∇v|2

as well as

d
dt

A4(t) =
∫
T2

B2∇v · ∇vt

=
∫
T2

B2∇v · ∇
(

∆v + α1c− β1v− u · ∇v
)

=
∫
T2
−B2|∆v|2 + B2α1∇v · ∇c− B2β1|∇v|2 + B2u · ∇( |∇v|2

2
).
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for all t > 0. Similarly,

d
dt

A3(t) =
∫
T2

α2B1

(
c− c∗

)(
v− α2

β2
c∗
)
− β2B1

(
w− α2

β2
c∗
)2
− B1|∇w|2

and

d
dt

A5(t) =
∫
T2
−B2|∆w|2 + B2α2∇w · ∇c− B2β2|∇w|2 + B2u · ∇( |∇w|2

2
)

for all t > 0. Therefore, we arrive at

d
dt

Ec∗ ,B1,B2(t) =
∫
T2
−ν(c− c∗)2 + c∗

(−∆)αc
c

+ c∗
∇ · (cS1(x, c, v)∇v)

c

− c∗
∇ · (cS2(x, c, w)∇w)

c

+
∫
T2

α1B1

(
c− c∗

)(
v− α1

β1
c∗
)
− β1B1

(
v− α1

β1
c∗
)2
− B1|∇v|2

+
∫
T2

α2B1

(
c− c∗

)(
w− α2

β2
c∗
)
− β2B1

(
w− α2

β2
c∗
)2
− B1|∇w|2

+
∫
T2
−B2|∆v|2 + B2α1∇v · ∇c− B2β1|∇v|2 + B2u · ∇( |∇v|2

2
)

+
∫
T2
−B2|∆w|2 + B2α2∇w · ∇c− B2β2|∇w|2 + B2u · ∇( |∇w|2

2
)

≤
∫
T2
−XAXT + c∗

(−∆)αc
c

+ c∗
∇ · (cS1(x, c, v)∇v)

c

− c∗
∇ · (cS2(x, c, w)∇w)

c
+
∫
T2
−B1|∇v|2 − B1|∇w|2

− B2|∆v|2 − B2|∆w|2 + B2α1∇v · ∇c + B2α2∇w · ∇c

(102)

for all t > 0, where X is vector functions defined as

X := (c− c∗, v− α1

β1
c∗, w− α2

β2
c∗)

and the constant matrix A is given by

A :=

∣∣∣∣∣∣∣
ν − α1B1

2 − α2B1
2

− α1B1
2 β1B1 0

− α2B1
2 0 β2B1

∣∣∣∣∣∣∣.
Now, the important thing is to prove that A is positive definite. If we prove that, then we
can obtain

XAXT ≥ ε|X|2

for some ε > 0 and all x ∈ T2, t > 0. Thus, focusing attention on the desired definiteness
properties, we first calculate the three principal minors of A to obtain that

M1 :=
∣∣ν∣∣ > 0, M2 :=

∣∣∣∣∣ ν − α1B1
2

− α1B1
2 β1B1

∣∣∣∣∣ = β1B1
(
ν− B1

α2
1

4β1

)
> 0

and

M3 :=

∣∣∣∣∣∣∣
ν − α1B1

2 − α2B1
2

− α1B1
2 β1B1 0

− α2B1
2 0 β2B1

∣∣∣∣∣∣∣ = B2
1 β1β2

[
ν− B1(

α2
1

4β1
+

α2
2

4β2
)
]
> 0,
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because (101). Sylvester’s criterion guarantees that, indeed, A is positive definite. Therefore,
we can obtain

d
dt

Ec∗ ,B1,B2(t) ≤
∫
T2
−ε|X|2 + c∗

(−∆)αc
c

+ c∗
∇ · (cS1(x, c, v)∇v)

c

− c∗
∇ · (cS2(x, c, w)∇w)

c
+
∫
T2
−B1|∇v|2 − B1|∇w|2

− B2|∆v|2 − B2|∆w|2 + B2α1∇v · ∇c + B2α2∇w · ∇c

for all t > 0. We recall the weak maximum principle of the parabolic equation, which
implies

min
x∈T2,t>0

c(x, t) ≥ min
x∈T2

c(x, 0) > 0. (103)

Then, in order to obtain (98), we have to estimate∫
T2

c∗
(−∆)αc

c
,
∫
T2

c∗
∇ · (cS1(x, c, v)∇v)

c
, −

∫
T2

c∗
∇ · (cS2(x, c, w)∇w)

c

and ∫
T2

B2α1∇v · ∇c,
∫
T2

B2α2∇w · ∇c.

For the term
∫
T2 c∗

(−∆)αc
c , using Lemma 7 with Γ(c) = − 1

c , we have that

∫
T2

c∗
(−∆)αc

c
= −

∫
T2

c∗Λ2αc(−1
c
) ≤ − c∗

C(a, Γ)‖c‖L∞(T2)

∫
T2
|Λαc|2. (104)

For the term
∫
T2 c∗

∇·(cS1(x,c,v)∇v)
c , by the boundedness of the Riesz transform R :

Lp(T2) → Lp(T2) for 1 < p < ∞, integration by parts, Hölder’s inequality, and (3), we
can discover∫

T2
c∗
∇ · (cS1(x, c, v)∇v)

c
= c∗

∫
T2

∇c · S1(x, c, v)∇v
c

= −c∗
∫
T2

RΛ1−αΛαc · S1(x, c, v)∇v
c

= −c∗
∫
T2
RΛαcΛ1−α(

S1(x, c, v)∇v
c

)

≤ c∗‖Λαc‖L2(T2)

∥∥∥Λ1−α S1(x, c, v)∇v
c

∥∥∥
L2(T2)

.

(105)

Using Lemma 5, we see∥∥∥Λ1−α(
S1(x, c, v)∇v

c
)
∥∥∥

L2(T2)
≤CCS1‖Λ

1−α∇v‖L2(T2)

∥∥∥1
c

∥∥∥
L∞(T2)

+ C‖∇v‖Lq1 (T2)

∥∥∥Λ1−α(
S1(x, c, v)

c
)
∥∥∥

Lq2 (T2)

(106)

with 1
2 = 1

q1
+ 1

q2
. We invoke the Gagliardo–Nirenberg inequality (26) to deal with the term

‖Λ1−α∇v‖L2(T2), then

‖Λ1−α∇v‖L2(T2) ≤ C‖∇v‖α
L2(T2)‖∆v‖1−α

L2(T2)
+ C‖∇v‖L2(T2). (107)

For the term ‖ 1
c ‖L∞(T2), recalling (103), we know that

1
c
≤ 1

minx∈T2,t>0 c(x, t)
≤ 1

minx∈T2 c(x, 0)
.
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Thus, ∥∥∥1
c

∥∥∥
L∞(T2)

≤ C. (108)

By the Gagliardo–Nirenberg inequality (26), to handle the term ‖∇v‖Lq1 (T2), we arrive at

‖∇v‖Lq1 (T2) ≤ C‖∇v‖
2

q1
L2(T2)

‖∆v‖
1− 2

q1
L2(T2)

+ C‖∇v‖L2(T2). (109)

For the term ‖Λ1−α S1(x,c,v)
c ‖Lq2 (T2), by the Gagliardo–Nirenberg inequality (26) and

Parseval’s identity, then there exist a2 ∈ (0, 1) and β0 ∈ (0, 3α− 1) such that 1
2 −

α
2 −

1
q2

=

a2
β0−α

2 and∥∥∥Λ1−α(
S1(x, c, v)

c
)
∥∥∥

Lq2 (T2)

≤C1−a2
S1

C
∥∥∥Λ1−α+β0(

S1(x, c, v)
c

)
∥∥∥a2

L2(T2)

∥∥∥1
c

∥∥∥1−a2

L∞(T2)
+ CS1 C

∥∥∥1
c

∥∥∥
L∞(T2)

=C1−a2
S1

C(2π)
a2
2

∥∥∥|ξ|1−α+β0
1

(2π)2

∫
T2
(

S1(y, c, v)
c(y, t)

)e−iξ·ydy
∥∥∥a2

L2(T2)

∥∥∥1
c

∥∥∥1−a2

L∞(T2)

+ CS1 C
∥∥∥1

c

∥∥∥
L∞(T2)

≤CS1 C‖|ξ|1−α+β0‖a2
L2(T2)

∥∥∥1
c

∥∥∥
L∞(T2)

+ CCS1

∥∥∥1
c

∥∥∥
L∞(T2)

≤CS1 C.

(110)

Combining (107)–(110) with (106), using Young’s inequality, and choosing C14 > 0,(105)
turns into∫

T2
c∗
∇ · (cS1(x, c, v)∇v)

c
≤CS1 c∗C14‖Λαc‖L2(T2) ×

(
‖∇v‖α

L2(T2)‖∆v‖1−α
L2(T2)

+ 2‖∇v‖L2(T2) + ‖∇v‖
2

q1
L2(T2)

‖∆v‖
1− 2

q1
L2(T2)

)
≤ c∗

8C(α, Γ)‖c‖L∞(T2)
‖Λαc‖2

L2(T2) +
c∗C2

S1
C2

14C(α, Γ)‖c‖L∞(T2)

2

×
(
‖∇v‖α

L2(T2)‖∆v‖1−α
L2(T2)

+ 2‖∇v‖L2(T2)

+ ‖∇v‖
2

q1
L2(T2)

‖∆v‖
1− 2

q1
L2(T2)

)2
.

Due to Young’s inequality, we can conclude the existence of C15 > 0 such that∫
T2

c∗
∇ · (cS1(x, c, v)∇v)

c
≤ c∗

8C(α, Γ)‖c‖L∞(T2)
‖Λαc‖2

L2(T2) (111)

+
c∗C15C2

S1
C2

14C(α, Γ)‖c‖L∞(T2)

2

(
‖∇v‖2

L2(T2) + ‖∆v‖2
L2(T2)

)
Similarly, it is possible to find C16 > 0 and C17 > 0 such that∫

T2
−c∗
∇ · (cS2(x, c, w)∇v)

c
≤ c∗

8C(α, Γ)‖c‖L∞(T2)
‖Λαc‖2

L2(T2)

+
c∗C17C2

S2
C2

16C(α, Γ)‖c‖L∞(T2)

2

×
(
‖∇w‖2

L2(T2) + ‖∆w‖2
L2(T2)

)
.

(112)
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By using the same method for the term
∫
T2 B2α1∇v · ∇c, Young’s inequality provides

C18 > 0 and 1 > ε > 0 such that∫
T2

B2α1∇v · ∇c =B2α1

∫
T2
RΛ1−αΛαc · ∇v

=B2α1

∫
T2
RΛαcΛ1−α∇v

≤B2α1‖Λαc‖L2(T2)‖Λ1−α∇v‖L2(T2)

≤B2α1C‖Λαc‖L2(T2)(‖∇v‖α
L2(T2)‖∆v‖1−α

L2(T2)
+ ‖∇v‖L2(T2))

≤ c∗
8C(α, Γ)‖c‖L∞(T2)

‖Λαc‖2
L2(T2) +

C18B2
2α2

1C(α, Γ)‖c‖L∞(T2)

2c∗

×
(
‖∇v‖2

L2(T2) + ε‖∆v‖2
L2(T2)

)

(113)

Similarly, we can find C19 > 0 and 1 > ε > 0 such that

∫
T2

B2α2∇v · ∇w ≤ c∗
8C(α, Γ)‖c‖L∞(T2)

‖Λαc‖2
L2(T2) +

C19B2
2α2

2C(α, Γ)‖c‖L∞(T2)

2c∗

×
(
‖∇w‖2

L2(T2) + ε‖∆w‖2
L2(T2)

) (114)

Inserting (104) and (111)–(114) into (102), we can find that

C∗ := max{C2
14, C15, C2

16, C17, C18, C19} > 0

yields

d
dt

Ec∗ ,B1,B2(t) ≤
∫
T2
−ε|X|2 − c∗

2C(α, Γ)‖c‖L∞(T2)
‖Λαc‖2

L2(T2)

−
(

B1 −
c2
∗C2

S1
+ B2

2α2
1

2c∗
C∗C(α, Γ)‖c‖L∞(T2)

)
‖∇v‖2

L2(T2)

−
(

B2 −
c2
∗C2

S1
+ B2

2α2
1ε

2c∗
C∗C(α, Γ)‖c‖L∞(T2)

)
‖∆v‖2

L2(T2)

−
(

B1 −
c2
∗C2

S2
+ B2

2α2
2

2c∗
C∗C(α, Γ)‖c‖L∞(T2)

)
‖∇w‖2

L2(T2)

−
(

B2 −
c2
∗C2

S2
+ B2

2α2
2ε

2c∗
C∗C(α, Γ)‖c‖L∞(T2)

)
‖∆w‖2

L2(T2),

where ε guarantees that B2 exists. Therefore, since (100), we can find C0 > 0 such that

d
dt

Ec∗ ,B1,B2(t) + C0

{ ∫
T2
|Λαc|2 +

∫
T2
|∇v|2 +

∫
T2
|∇w|2 +

∫
T2
|∆v|2 +

∫
T2
|∆w|2

+
∫
T2

(
c− c∗

)2
+
∫
T2

(
v− α1

β1
c∗
)2

+
∫
T2

(
w− α2

β2
c∗
)2}
≤ 0

for all t > 0.

Lemma 18. Suppose that µ > 0 and ν > B
4 , B is a constant that is already defined in (99),

and (c, v, w, u) is a global bounded classical solution of System (1) with the initial condition
satisfying (5). Then, there is a constant C > 0 such that∫ ∞

0

∫
T2

(
c− c∗

)2
+
∫ ∞

0

∫
T2

(
v− α1

β1
c∗
)2

+
∫ ∞

0

∫
T2

(
w− α2

β2
c∗
)2
≤ C. (115)
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Proof. It is well known that A1(s) := s− c∗ − c∗ ln s
c∗ is convex and A1(s) ≥ A1(c∗) = 0

for all s > 0. Thus, we have Ec∗ ,B1,B2(c, v, w) ≥ Ec∗ ,B1,B2(c∗,
α1
β1

c∗, α2
β2

c∗) = 0. Integrating (98)
in time and recalling (64) and (65) and the nonnegativity of Ec∗ ,B1,B2(t), we can immediately
obtain (115).

Proof of Theorem 3. We define

F∗(t) :=
∫
T2

(
c− c∗

)2
+
∫
T2

(
v− α1

β1
c∗
)2

+
∫
T2

(
w− α2

β2
c∗
)2}

.

From Lemma 18, we know

d
dt

Ec∗ ,B1,B2(t) ≤ −C0F∗(t).

The nonnegativity of Ec∗ ,B1,B2(t) shows that

∫ ∞

1
F∗(t)dt ≤

Ec∗ ,B1,B2(t)(1)
C0

< ∞.

According to F∗(t) being uniformly continuous for t ∈ (1, ∞) (Theorem 1), we obtain
F∗(t) → 0 as t → ∞. Combining this with the Gagliardo–Nirenberg inequality yields
Theorem 3.

6.3. Stability of u

In the last subsection, combining the convergence of c, v, and w with (9) with the
external force g, we can obtain the convergence of u.

Lemma 19. Let 1
2 < α < 1 and µ ≥ 0. Suppose that (2)– (5) hold. If ν satisfies ν > B

4 , B is a
constant that is already defined in (99), and g satisfies (9). Then, we arrive at

‖u‖L2(T2) → 0 as t→ ∞.

Proof. Going back to (41), then

1
2

d
dt

∫
T2
|u|2 ≤

∫
T2
(c− µ+

ν
)∇φ · u + ‖u‖L2(T2)‖g‖L2(T2)

≤ ‖c− µ+

ν
‖L2(T2)‖∇φ‖L∞(T2)‖u‖L2(T2) + ‖u‖L2(T2)‖g‖L2(T2),

(116)

for t > 0. Multiplying (116) by et, integrating over (t0, t), and employing Hölder’s inequal-
ity, we discover

et
∫
T2
|u(x, t)|2dx− et0

∫
T2
|u(x, t0)|2dx

≤
∫ t

t0

es‖c− µ+

ν
‖L2(T2)‖∇φ‖L∞(T2)‖u‖L2(T2) +

∫ t

t0

es‖u‖L2(T2)‖g‖L2(T2).
(117)

Further, (117) implies∫
T2
|u(x, t)|2dx ≤ e−(t−t0)

∫
T2
|u(x, t0)|2dx +

∫ t

t0

e−(t−τ)h(τ)dτ, (118)

where

h(τ) = sup
τ∈(t0,t)

(
‖c− µ+

ν
‖L2(T2)‖∇φ‖L∞(T2)‖u‖L2(T2) + ‖u‖L2(T2)‖g‖L2(T2)

)
.
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By Lemma 16 and Lemma 18, we know that∫ t+1

t

∥∥∥c(x, τ)− µ+

ν

∥∥∥2

L2(T2)
dτ → 0 as t→ ∞.

Combining this with (9), for all t > t0 and any δ > 0, we deduce that

∫ t+1

t
h(τ)dτ ≤ δ

2
(1− e

− 1
C2

P ).

Thus, Lemma 3.4 of [61] shows that

∫ t

t0

e−(t−τ)h(τ)dτ ≤ δ(1− e
− 1

C2
P )

2(1− e
− 1

C2
P )

=
δ

2
. (119)

Furthermore, it follows from (38) that we can find t1 > t0 large enough, such that

(sup
t>0
‖u‖L2(T2))

2e−(t−t0) ≤ δ

2

for all t > t1, and thus,

e−(t−t0)
∫
T2
|u(x, t0)|2dx ≤ δ

2
. (120)

Inserting (119) and (120) into (118), for all t > t1, we can obtain that∫
T2
|u(x, t)|2dx ≤ δ.

Proof of Theorem 4. Suppose that ‖u(t)‖L∞(T2) 9 0 as t → ∞. Then, there exist ε0 > 0
and tj → ∞ such that

u‖(tj)‖L∞(T2) ≥ ε0

for all j ≥ N. Recall Theorem 1; we know ‖u‖L∞(T2) ≤ C, so we can choose a function
u∞ ∈ L∞(T2) and a subsequence {tjk}k∈N of {tj}j∈N such that

‖u(tjk )‖L∞(T2) → u∞ as tjk → ∞.

From (19), we know that

‖u(t)‖L2(T2) → 0 as t→ ∞.

Thus,u∞ = 0 and ‖u(tjk )‖L∞(T2) → 0 as tjk → ∞, which contradicts the former supposition.
Thus, we can obtain

‖u(t)‖L∞(T2) → 0 as t→ ∞.

7. Conclusions

We considered the global boundedness and large time behavior of a fractional chemo-
taxis Navier–Stokes system with matrix-valued sensitivities and attractive–repulsive signals
on a two-dimensional periodic torus T2. When the cell density may proliferate following a
logistic law and the diffusion of cells is fractional Laplace diffusion, the attractive–repulsive
signals are produced by the cells themselves and degrade at a constant rate, and the cells
and chemical substances are transported by an incompressible viscous fluid under the
influence of a force due to the aggregation of cells. Our results showed that the global
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bounded solution of the system converges to the constant steady state. In addition, we are
inspiring further researchers working in the fractional chemotaxis system and drawing the
attention of the interested readers towards recent articles (see [47,49,51,62]). In conclusion,
we suggest the recently published article by Lei et al. [62], who pointed out the fact that,
from the results for the global existence of classical solutions to a coupled chemotaxis
Navier–Stokes system with a logistic source and a fractional diffusion, the classical solu-
tions in fact converge to the constant steady state. In addition, we trust that this paper will
stimulate a number of researchers to extend this idea for some chemotaxis Navier–Stokes
system with matrix-valued sensitivities and fractional diffusion without a logistic source.
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