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Abstract: Integro-differential operators with non-singular kernels have been much discussed among
fractional calculus researchers. We present a mathematical study to clearly establish the rigorous
foundations of this topic. By considering function spaces and mapping results, we show that operators
with non-singular kernels can be defined on larger function spaces than operators with singular
kernels, as differentiability conditions can be removed. We also discover an analogue of the Sonine
invertibility condition, giving two-sided inversion relations between operators with non-singular
kernels that are not possible for operators with singular kernels.
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1. Introduction

The essential idea of fractional calculus is to consider functional operators that can be
seen as extensions to non-integer orders of the basic repeated differentiation and integration
operators [1]. The first question arising from this idea is: how can such extensions be
defined? Interestingly, this question has no unique answer, as there is a rich tapestry of
different operators which can be called ”fractional derivatives” or “fractional integrals”
from one viewpoint or another.

Among these operators, many are expressed as convolutions with some particular
kernel function that determines the nature of the operator. The classical choice of kernel
function is a fractional power, giving rise to the original Riemann–Liouville fractional
calculus as well as other related definitions such as Caputo and Hilfer [2,3]. Other popular
choices of kernel function have included Mittag-Leffler functions, products of power and
exponential functions, hypergeometric functions, and many others [4,5].

In response to the flood of new definitions using assorted kernel functions, mathemati-
cians have realised that many of these are not so different from each other, and that it makes
more sense to study general convolution operators in order to discover mathematical prop-
erties [5]. The general operators thus proposed have included convolutions with analytic
kernels [6,7], Sonine kernels [8–10], and other types of general kernels [11–13]. Among
the studies so far, a particularly interesting direction has been the study of Sonine kernels:
these are rigorously posed with suitable function spaces clearly defined, but they do not
depend on any explicit real or complex number playing the role of a “fractional order”,
instead having two kernel functions which satisfy a sort of inversion-type relation making
them suitable for defining fractional integral and derivative operators with fundamental
theorem of calculus type relations.

A point of debate within the fractional calculus community has concerned the opera-
tors with non-singular kernel functions: that is, functions that do not have a singularity
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(blowup) at the endpoint of the integral. For example, the function (t− τ)−α has a singular-
ity at τ = t for positive values of the parameter α, but the function eα(t−τ) is non-singular.
Some scientists have claimed that operators with non-singular kernels are not suitable to
be called “fractional” [14,15], while others have claimed that this approach is faulty [16].
We prefer to sidestep this terminology debate, pointing out instead that the operators
with non-singular kernels have found real-world applications [17,18] and are therefore
also worth studying from the mathematical point of view [19], regardless of whether we
call them “fractional” or not. Many studies of integral equations, not necessarily in a
fractional setting, have not put any particular emphasis on whether a kernel is singular or
non-singular [20,21].

So far, most publications related to such operators with non-singular kernels have
been written by engineers and applied scientists who are concerned mainly with their ap-
plications. We, as mathematicians, have noticed some interesting mathematical properties
of these operators, such as their function spaces and inversion properties, which we believe
deserve to be highlighted and discussed. As a detailed mathematical investigation of these
operators is currently missing in the literature, we are taking the opportunity to conduct
one and present our findings to be used by mathematicians and scientists alike.

Our work is arranged as follows. Section 2 serves to correct a (minor but important)
misconception regarding function spaces appearing in the previous literature; Section 3
focuses on how derivative-type operators with non-singular kernels can be rewritten so
as not to need differentiability; Section 4 uses an abstract algebra viewpoint to discover a
quasi-inverse relation which can serve as an alternative to the Sonine relation; and finally,
Section 5 provides a summary and concluding remarks. We note once again that we do
not intend to enter the debate on whether or not it is appropriate to include operators
with non-singular kernels as “fractional derivatives”. This is not our business here: we are
simply presenting some objective mathematical facts concerning certain operators and the
associated function spaces, and we will allow the results to speak for themselves.

2. A Misconception on Function Spaces

The classical Cα space of Dimovski [22,23] is defined as follows:

Cα =
{

f : (0, ∞)→ C : f (t) = tp f1(t), p > α, f1 ∈ C[0, ∞)
}

,

where α ∈ R is arbitrary.
In his construction of the fractional calculus with Sonine kernels [9] and its generalisa-

tion [10], Luchko made use of a function space C−1,0 inspired by this Cα. The general space
Cα,β was defined in ([10] Equation (23)), as a natural generalisation of the space C−1,0 first
defined in ([9] Equation (33)), as follows:

Cα,β =
{

f : (0, ∞)→ C : f (t) = tp f1(t), α < p < β, f1 ∈ C[0, ∞)
}

,

where α < β in R. The purpose of using C−1,0 for the fractional operators with Sonine
kernels, instead of simply C−1 as was done for the classical fractional operators [24], was in
order to obtain “an integrable singularity at the point zero” [9]: Reference [10] explicitly
states that functions in C−1,0 “possess the integrable singularities of the power function
type at the origin”. We show here that this is not necessarily the case, and that a different
function space must be used if it is desired to exclude non-singular functions in C[0, ∞)
from the space of kernels.

Theorem 1. For any α < β in R, the space Cα,β is exactly the space Cα.
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Proof. It is clear that Cα,β ⊂ Cα. For the converse, let f ∈ Cα be arbitrary, say f (t) = tp f1(t)

with p > α and f1 ∈ C[0, ∞). If p < β, then we are done. Otherwise, let q = p− β+ β−α
2 > 0

and p′ = p− q = α+β
2 , so that α < p′ < β and

f (t) = tp f1(t) = tp′ tq f1(t) = tp′g1(t),

where g1(t) = tq f1(t) so that f1 ∈ C[0, ∞)⇒ g1 ∈ C[0, ∞). Therefore, the function f is in
the space Cα,β, which completes the proof.

Example 1. The non-singular functions f (t) = et and g(t) = Eα(tα) are in the space C−1,0
because they can be expressed as f (t) = t−1/2 f1(t) and g(t) = t−1/2g1(t) with f1, g1 ∈ C[0, ∞)
defined by

f1(t) = t1/2et, g1(t) = t1/2Eα(tα).

As a result, we see that the function space used by Luchko [9,10] for the operators
with Sonine kernels does not explicitly exclude non-singular kernels as it was intended to.
However, the Sonine condition itself excludes them because if k and κ are both in C[0, ∞),
then κ ∗ k ∈ C[0, ∞) with (κ ∗ k)(0) = 0, so κ ∗ k cannot be either {1} or {1}n (n ∈ N) for
the Sonine [9] or generalised Sonine [10] kernels. So, if κ and k are a pair of Sonine kernels
in the space S−1 defined in ([9] Definition 2) or the space Ln defined in ([10] Definition 2),
then at least one of κ and k must have a singularity at zero. For this reason, it seems that
the results of Luchko [9,10] on Sonine kernels are not seriously affected by the realisation
of our Theorem 1 above.

Is there any way to replace Luchko’s definition of the Cα,β space with another space
that successfully excludes all non-singular functions? An obvious choice would be the
following set:

Cα\Cβ =
{

f : (0, ∞)→ C : f (t) = tp f1(t), p > α, f1 ∈ C[0, ∞),

and f cannot be written as f (t) = tq f2(t), q > β, f2 ∈ C[0, ∞)
}

,

but this set is not a vector space because we can always add two functions in Cα\Cβ to
obtain a function in Cβ. It is also not closed under convolution (rng multiplication), and
indeed we can state a stronger result, as in the following theorem.

Theorem 2. Let α ≥ −1, and let A be a subset of Cα that is non-trivial (i.e., contains at least one
non-zero function). If A contains only singular functions (in other words, if A ∩ C[0, ∞) = ∅), or
more generally if A ∩ Cβ = ∅ for any fixed β > α, then A cannot be closed under convolution, and
A cannot be an ideal or subrng of Cα.

Proof. It is well known [25,26] that the convolution of a function in Cα and a function
in Cλ is always a function in Cα+λ+1 ⊂ Cα ∩ Cλ when α, λ ≥ −1. Therefore, repeatedly
taking the convolution of any function in Cα with itself will eventually yield a function
in Cβ for arbitrarily large β ∈ R. Therefore, any subrng or ideal, or any set closed under
multiplication in Cα, must contain elements of Cβ for arbitrarily large values of β. Since the
Cβ spaces are nested, with Cβ ⊂ Cγ if β ≥ γ, this completes the proof.
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3. Equivalent Formulations of Differential Operators with Non-Singular Kernels

Let us consider a non-singular kernel k ∈ C[0, ∞) and define corresponding derivative-
type operators as follows:(

RD(k) f
)
(t) =

d
dt

(∫ t

0
k(t− τ) f (τ)dτ

)
, (1)(

CD(k) f
)
(t) =

∫ t

0
k(t− τ) f ′(τ)dτ, (2)

in both cases for suitable functions f . (We will discuss suitable function spaces for these
operators shortly.)

One of the distinguishing features of non-singular kernels, as discussed in ([27] Section 4.1)
is the fact that operators such as (1) and (2) with non-singular kernels can be rewritten
without any explicit differentiation and without needing any differentiability assumptions
on the function f . This is done using, respectively, the fundamental theorem of calculus
and the method of integration by parts:(

RD(k) f
)
(t) =

d
dt

(∫ t

0
k(t− τ) f (τ)dτ

)
=
[
k(t− τ) f (τ)

]
τ=t

+
∫ t

0

d
dt

k(t− τ) f (τ)dτ

= k(0) f (t) +
∫ t

0
k′(t− τ) f (τ)dτ; (3)(

CD(k) f
)
(t) =

∫ t

0
k(t− τ) f ′(τ)dτ

=
[
k(t− τ) f (τ)

]τ=t

τ=0
−
∫ t

0

d
dτ

[k(t− τ)] f (τ)dτ

= k(0) f (t)− k(t) f (0) +
∫ t

0
k′(t− τ) f (τ)dτ. (4)

This manipulation works whenever k and f are both in the space

C1
−1 =

{
f : (0, ∞)→ C : f differentiable, f ′ ∈ C−1

}
,

but the final expressions (3) and (4) are valid for any f ∈ C−1 or any f ∈ C[0, ∞), respec-
tively, as long as the fixed kernel function k is in a suitable space such as C1

−1. We state this
result formally as follows.

Theorem 3. If the kernel function k is in the space C−1, then the formulae on the right-hand sides
of Equations (1) and (2) give well-defined mappings RD(k) and CD(k) from C1

−1 into C−1.
If the kernel function k is in the space C1

−1, then the formulae on the right-hand sides of
Equations (3) and (4) give well-defined mappings

RD(k) : C−1 −→ C−1

and
CD(k) : C[0, ∞) ⊂ C−1 −→ C−1,

and these operators are identical to those defined by (1) and (2) when f is in the subspace C1
−1 such

that all are defined.
Therefore, assuming that k ∈ C1

−1, the suitable (largest) function spaces on which to define
the operators RD(k) and CD(k) are the spaces C−1 and C[0, ∞), respectively. In particular, no
differentiability conditions are required on f in order to define RD(k) f and CD(k) f as functions
in C−1.
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Proof. Firstly, when k ∈ C−1 and f ∈ C1
−1, Formula (2) defines a function in C−1 since k

and f ′ are in the space C−1 (which is closed under convolution), and Formula (1) defines a
function in C−1 by ([25] Theorem 2.5).

Now let us fix k ∈ C1
−1 and consider expressions (3) and (4). Since k′ ∈ C−1, the

integral in (3) defines a function in C−1 for any f ∈ C−1, while k(0) exists by ([25] Fact (3)),
so we are done for (3). The difference between (3) and (4) is only in the term k(t) f (0), so
the latter defines a function in C−1 whenever f ∈ C−1 and f (0) exists, which is the same as
requiring f ∈ C[0, ∞) ⊂ C−1.

Finally, the equivalence of (1) and (2) with (3) and (4) is clear from the above arguments,
using the fundamental theorem of calculus and integration by parts, which are valid when
k and f are both differentiable on (0, ∞) with k(0), f (0) existing and k′, f ′ ∈ C−1.

Remark 1. Note that the rewriting of Equations (1) and (2) to Equations (3) and (4) is only
possible when the kernel k is non-singular, otherwise the k(0) terms in (3) and (4) cannot be
meaningful. Thus, our reformulation of Riemann–Liouville and Caputo derivative-type operators, to
a form that does not require differentiability conditions, is only possible for operators defined using
non-singular kernels.

Example 2. Taking the kernel function k to be a power function with exponent greater than one, in
the form

k(t) =
tα

Γ(α + 1)
, α > 1,

we find that k ∈ C1
−1 since

k′(t) =
tα−1

Γ(α)
⇒ k′ ∈ C[0, ∞).

In this case, the operators RD(k) and CD(k), although denoted as derivatives, are actually the
Riemann–Liouville fractional integrals of order α− 1 > 0. This reminds us that the Riemann–
Liouville fractional integrals of order greater than one are operators with non-singular kernels.

Example 3. Taking the kernel function k to be a constant times a Mittag-Leffler function, in
the form

k(t) =
B(α)
1− α

Eα

(
−α

1− α
tα

)
,

with 0 < α < 1 and B being a suitable function satisfying B(0) = B(1) = 1, we certainly have
k ∈ C1

−1 since

k′(t) =
B(α)
1− α

∞

∑
n=1

(
−α

1− α

)n tnα−1

Γ(nα)
,

which is tα−1 times a continuous function in C[0, ∞). In this case, the operators RD(k) and
CD(k) are precisely the Atangana–Baleanu derivatives, respectively of Riemann–Liouville type and
Caputo type.

Here, Theorem 3 tells us, as already known [28], that these Atangana–Baleanu derivatives
can be defined on larger function spaces than most fractional derivatives, without requiring any
differentiability assumptions. The reformulation (4) of the Caputo-type operator gives, in this case,
precisely the formula that is called the “modified ABC derivative” in [29].

Example 4. More generally, taking the kernel function k to be a three-parameter Mittag-Leffler
function [30] with the second parameter equal to one, in the form

k(t) = Eγ
α,1(δtα),
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with α, γ, δ ∈ C constant and Re α > 0, we again have k ∈ C1
−1 since

k′(t) =
∞

∑
n=1

(γ)nδn

n!
· tnα−1

Γ(nα)
,

which is tα−1 times a continuous function in C[0, ∞) as in the previous example. In this case, the
operators RD(k) and CD(k) are precisely the Prabhakar fractional derivatives with second parameter
equal to one, respectively of Riemann–Liouville type and Caputo type. These particular types
of Prabhakar operators were already discussed in ([27] Section 4.1) as the non-singular case of
Prabhakar fractional calculus, and the only case where Prabhakar derivatives can be defined on large
enough function spaces to not need any differentiability assumptions.

The above results can be extended to operators defined using multiple (repeated)
derivatives together with convolution integrals. Let us consider the following operators,
for n ∈ N and for suitable functions k and f :(

R
nD(k) f

)
(t) =

dn

dtn

(∫ t

0
k(t− τ) f (τ)dτ

)
, (5)(

C
nD(k) f

)
(t) =

∫ t

0
k(t− τ) f (n)(τ)dτ, (6)

and try to rewrite Formulas (5) and (6) using the fundamental theorem of calculus and
integration by parts as before.

Repeatedly differentiating the integral in (5) and using the fundamental theorem of
calculus, we find:

d
dt

(∫ t

0
k(t− τ) f (τ)dτ

)
= k(0) f (t) +

∫ t

0
k′(t− τ) f (τ)dτ,

d2

dt2

(∫ t

0
k(t− τ) f (τ)dτ

)
= k(0) f ′(t) + k′(0) f (t) +

∫ t

0
k′′(t− τ) f (τ)dτ,

d3

dt3

(∫ t

0
k(t− τ) f (τ)dτ

)
= k(0) f ′′(t) + k′(0) f ′(t) + k′′(0) f (t) +

∫ t

0
k′′′(t− τ) f (τ)dτ,

and finally

dn

dtn

(∫ t

0
k(t− τ) f (τ)dτ

)
=

n−1

∑
i=0

k(i)(0) f (n−1−i)(t) +
∫ t

0
k(n)(t− τ) f (τ)dτ, (7)

where we note that if k(0) = k′(0) = · · · = k(n−2)(0) = 0, then no differentiation of f needs
to take place in the terms outside the integral.

Repeatedly using integration by parts in (6), we find:

∫ t

0
k(t− τ) f (n)(τ)dτ =

[
n−1

∑
i=0

k(i)(t− τ) f (n−1−i)(τ)

]τ=t

τ=0

+
∫ t

0
k(n)(t− τ) f (τ)dτ

=
n−1

∑
i=0

[
k(i)(0) f (n−1−i)(t)− k(i)(t) f (n−1−i)(0)

]
+
∫ t

0
k(n)(t− τ) f (τ)dτ, (8)

where in this case some derivatives of f are involved in the boundary terms regardless of
the nature of k.

Theorem 4. If the kernel function k is in the space C−1, then the formulae on the right-hand sides
of Equations (5) and (6) are well-defined functions in C−1 provided that f is such that k ∗ f ∈ Cn

−1
(for R

nD(k)) or f ∈ Cn
−1 (for C

nD(k)), respectively.
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If the kernel function k is in the space Cn
−1 and k(0) = k′(0) = · · · = k(n−2)(0) = 0, then

the formulae on the right-hand sides of Equations (7) and (8) give well-defined mappings

RD(k) : C−1 −→ C−1

and
CD(k) :

{
f ∈ C[0, ∞) : f (n−1)(0) exists

}
⊂ C−1 −→ C−1,

and these operators are identical to those defined by (5) and (6) when f is such that all are defined.
Therefore, assuming that k ∈ Cn

−1 and k(0) = k′(0) = · · · = k(n−2)(0) = 0, the suitable
(largest) function spaces on which to define the operators R

nD(k) and C
nD(k) are respectively the space

C−1 and the subspace of C[0, ∞) consisting of functions n− 1 times differentiable at 0. In particular,
no differentiability conditions are required on f in order to define R

nD(k) f as a function in C−1.

Proof. Firstly, it is clear that (5) defines a function in C−1 when k ∗ f ∈ Cn
−1, and that (6)

defines a function in C−1 when k ∈ C−1 and f ∈ Cn
−1.

If k ∈ Cn
−1 and k(0) = k′(0) = · · · = k(n−2)(0) = 0, then k(n) ∈ C−1 and the finite sum

in (7) reduces to a single term k(n−1)(0) f (0), so (7) defines a function in C−1 for all f ∈ C−1.
The difference between (7) and (8) is only in the terms k(t) f (n−1)(0), · · · , k(n−1)(t) f (0), so
the latter defines a function in C−1 whenever f ∈ C−1 and f (0), · · · , f (n−1)(0) exist.

Finally, the equivalence of (5) and (6) with (7) and (8) is clear from the above arguments,
using the fundamental theorem of calculus and integration by parts, which are valid when
k and f are both Cn on (0, ∞) with derivatives up to (n− 1)th order existing at 0.

Example 5. Taking the kernel function k to be a power function with exponent greater than n, in
the form

k(t) =
tα

Γ(α + 1)
, α > n,

we find that k ∈ Cn
−1 with k(0) = k′(0) = · · · = k(n−2)(0) = 0, since

k(r)(t) =
tα−r

Γ(α− r + 1)
, r = 1, 2, · · · , n.

In this case, the operators RD(k) and CD(k), although notated as derivatives, are actually the
Riemann–Liouville fractional integrals of order α − n > 0. Once again, as in Example 2, this
reminds us that the Riemann–Liouville fractional integrals of order greater than one are operators
with non-singular kernels.

Remark 2. Note that the rewriting of Equations (5) and (6) to Equations (7) and (8) is only possible
when the kernel k is non-singular, otherwise the k(0) terms in (7) and (8) cannot be meaningful.
It is known [25] that the space Cn

−1 is contained in C[0, ∞). Thus, once again, our reformulation
of Riemann–Liouville and Caputo derivative-type operators, to a form that requires less strong
differentiability conditions, is only possible for operators defined using non-singular kernels.

4. Mikusiński’s Operational Calculus for Non-Singular Kernels

In the above, we have considered what happens when an operator of fractional
derivative type (a combination of a derivative or repeated derivative operator with a
convolution integral operator) is permitted to have a non-singular kernel. A rigorous
examination of the required assumptions and function spaces for such operators revealed
exactly which differentiability assumptions could be relaxed. However, so far we have
not considered any sort of inversion relation, as is commonly seen between derivatives
and integrals.
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In Luchko’s work on Sonine kernels [9,10], he imposed Sonine-type conditions in
order to ensure inversion relations between his operators. If two kernels κ and k satisfy

κ ∗ k = {1} ∈ C−1,

then the integral operator I(κ) defined by I(κ) f = κ ∗ f obeys a fundamental theorem of
calculus together with the differential operators RD(k) and CD(k) defined by (1) and (2).
Similarly, if κ and k instead satisfy

κ ∗ k = {1}n ∈ C−1,

then the integral operator I(κ) defined by I(κ) f = κ ∗ f obeys a fundamental theorem of
calculus together with the differential operators R

nD(k) and C
nD(k) defined by (5) and (6).

But some types of operators with non-singular kernels have meaningful inversion
relations between integrals and derivatives even without satisfying a Sonine condition.
How can we extend the invertibility condition beyond the Sonine one in order to capture
these different behaviours?

To answer this, we need some concepts and results from abstract algebra.

Proposition 1 ([31]). The space C[0, ∞) under the operations of addition and convolution forms a
commutative rng (ring without identity) as well as a vector space over C. Its field of fractionsM is
both a field and a vector space over C.

Proof. This is a well-known result in the theory of Mikusiński’s operational calculus.

Theorem 5. The algebra A generated by C[0, ∞) and the identity element fromM, i.e., the set of
elements λI + f with λ ∈ C and f ∈ C[0, ∞) (where I is the multiplicative identity fromM) is a
commutative ring with identity as well as a vector space over C.

Proof. This is a standard variant of the well-known Dorroh extension [32] that allows every
rng to be extended to a ring. Under the operations(

λI + f
)
+
(
µI + g

)
= (λ + µ)I + ( f + g)

of addition and
µ
(
λI + f

)
= (λµ)I + (µ f )

of scalar multiplication and(
λI + f

)
∗
(
µI + g

)
= (λµ)I + (λg + µ f + f ∗ g)

of multiplication, it is immediate that the new space satisfies all the axioms to be both a
vector space and a commutative ring with identity.

Theorem 6. All elements of A\C[0, ∞) have multiplicative inverse elements in A\C[0, ∞).

Proof. One of the main results of Heatherly and Huffmann ([33] Theorem 2.1) was that ev-
ery element f ∈ C[0, ∞) (considered as a commutative rng under addition and convolution)
has a quasi-inverse f̃ ∈ C[0, ∞), i.e., such that

f + f̃ + f ∗ f̃ = 0 ∈ C[0, ∞).

Adding I ∈ A to both sides of this equation gives

(I + f ) ∗ (I + f̃ ) = I ∈ A.



Fractal Fract. 2023, 7, 213 9 of 12

Therefore, for any λ ∈ C\{0} and any f ∈ C[0, ∞), the element λI + f ∈ A\C[0, ∞)
satisfies (

λI + f
)
∗
(

λ−1 I + λ−1 g̃
)
= (I + g) ∗ (I + g̃) = I,

where g̃ ∈ C[0, ∞) is the quasi-inverse of g := λ−1 f ∈ C[0, ∞).

Let us now discuss why the above results are important.
In Mikusiński’s operational calculus, a function space is interpreted as an rng, in

which functions can be added, subtracted, and multiplied, but not divided, and there
is a zero (additive identity) but not a one (multiplicative identity). The construction of
the Mikusiński field (the field of fractions of this rng, using a theorem of Titchmarsh to
determine that there are no zero divisors) enables division of functions, but at the expense
of moving into a more abstract space: dividing two functions does not necessarily yield
another function, but an abstract field element, called an “operator” by Mikusiński [31]. In
this field, there is a multiplicative identity element, whose convolution with any function
yields the same function back again; as a generalised function concept, this identity element
is analogous to the Dirac delta from distribution theory.

The full structure of the Mikusiński field is necessary in order to allow inverses of all
elements of the starting rng, but it is not necessary if all we need is a multiplicative identity
element. Theorem 5 shows that adjoining just one element (and generating a new vector
space) is enough to get a commutative ring with a multiplicative identity, and Theorem 6
shows that almost all elements of this ring have inverses: it is not a field, but it is almost as
good as being a field.

Furthermore, elements of the ring A can be understood as operators without need-
ing to resort to abstract “generalised functions”. Any element a = λI + f ∈ A can be
interpreted as an operator from C[0, ∞) to C[0, ∞) in a very natural way: mapping any
g ∈ C[0, ∞) to a ∗ g = λg + f ∗ g ∈ C[0, ∞). This means that A is a very natural setting
for defining operators if we do not strictly require that everything must have a multiplica-
tive inverse.

Theorem 7 (Quasi-inverse functions give inverse functional operators). For any non-singular
kernel k ∈ C[0, ∞) ⊂ C−1 and any nonzero constant λ ∈ C, the operator A : C−1 → C−1
defined by (

A f
)
(t) = λ f (t) +

∫ t

0
k(t− τ) f (τ)dτ, f ∈ C−1,

has an inverse operator A−1 defined by another function κ ∈ C[0, ∞) ⊂ C−1, namely(
A−1 f

)
(t) = λ−1 f (t) +

∫ t

0
κ(t− τ) f (τ)dτ, f ∈ C−1,

where AA−1 f = A−1 A f = f for all f ∈ C−1 and the relation between the kernel functions can be
expressed as

λ−1k + λκ + k ∗ κ = 0. (9)

Proof. This is essentially a restatement of Theorem 6. The operator A is precisely multipli-
cation by the element λI + k ∈ A\C[0, ∞), which has an inverse λ−1 I + λ−1k̃ ∈ A\C[0, ∞)

by Theorem 6. Defining κ = λ−1k̃ ∈ C[0, ∞), we have the operator A−1 as stated being
multiplication by (λI + k)−1 ∈ A\C[0, ∞).

Since C[0, ∞) embeds as a subalgebra in C−1, their fields of fractions similarly embed,
and so A embeds as a subalgebra of the corresponding algebra generated by I and C−1.
Therefore, if the product of λI + k and λ−1 I + κ is the identity in A, then it is also the
identity in the field of fractions of C−1. So, the product of these two elements with any
f ∈ C−1 is again f , since multiplication in C−1 is commutative and associative.

The inversion relation
(
λI + k

)(
λ−1 I + κ

)
= I in A reduces to λ−1k + λκ + k ∗ κ = 0

in C[0, ∞) after subtracting I from both sides.
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Definition 1. We can say two pairs (λ, k) and (µ, κ), each consisting of a constant in C and a
function in C[0, ∞), are quasi-inverse to each other if µ = λ−1 and Equation (9) is satisfied, i.e.,
if λµ = 1 and µk + λκ + k ∗ κ = 0. This is a sufficient condition to get well-defined integral
operators C−1 → C−1 that are inverse to each other as in Theorem 7.

This is essentially an analogue, for non-singular kernels, of the Sonine relation. We have a direct
relation between functions κ and k, which can be formulated in terms of their convolutions in a suit-
able function space, which gives rise to an inversion relation between
corresponding operators.

Remark 3. Note that the inversion relation given by Theorem 7 is symmetric: the operators A and
A−1 are two-sided inverses of each other. This is unlike the usual derivative and integral operators
(either classical, or fractional with singular kernels), which have asymmetric inversion relations
given by the fundamental theorem of calculus. Thus, we observe an interestingly different structure
for operators with non-singular kernels, as previously noted in some other works [27,28,34].

Example 6. Taking k to be a constant function in Theorem 7, we find the operator A to be a
linear combination of a function with its integral, the same formulation used for the Caputo–
Fabrizio integral: (

A f
)
(t) = λ f (t) + k

∫ t

0
f (τ)dτ, f ∈ C−1. (10)

How do we find a suitable function κ satisfying the identity (9) when k is a constant function? The
answer can be easily found using Mikusiński’s methodology in the field of fractionsM:

λ−1 I + κ =
(
λI + k

)−1
=

λ−1 I
I + λ−1k{1}

= λ−1
∞

∑
n=0

(
− λ−1k{1}

)n

= λ−1 I + λ−1
∞

∑
n=1

(−1)nλ−nkn ·
{

tn−1

(n− 1)!

}
= λ−1 I − λ−2k

{
exp

(
− λ−1kt

)}
,

so the kernel function κ ∈ C[0, ∞) is given by

κ(t) = − k
λ2 e−kt/λ.

Thus, we have proved that the quasi-inverse in C[0, ∞) of a constant function is a constant times an
exponential function, and the inverse of the operator (10) is given by:(

A−1 f
)
(t) =

1
λ

f (t) +
k

λ2

∫ t

0
ek(t−τ)/λ f (τ)dτ, f ∈ C−1.

In the usual Caputo–Fabrizio notation [34,35], we would write λ = 1−α
M(α)

and k = α
M(α)

, where
α ∈ (0, 1) and M(α) is a function satisfying M(0) = M(1) = 1, to find:

(
A f
)
(t) =

1− α

M(α)
f (t) +

α

M(α)

∫ t

0
f (τ)dτ, f ∈ C−1;(

A−1 f
)
(t) =

M(α)

1− α
f (t)− αM(α)

(1− α)2

∫ t

0
e−α(t−τ)/(1−α) f (τ)dτ, f ∈ C−1.
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The operator A is the Caputo–Fabrizio integral, while the operator A−1 is the corresponding
derivative of Riemann–Liouville type [36], as we can see from a quick computation:(

A−1 f
)
(t) =

M(α)

1− α
· d

dt

∫ t

0
e−α(t−τ)/(1−α) f (τ)dτ.

Note that this operator is a two-sided inverse to the Caputo–Fabrizio integral A, on the space C−1
and therefore on any subspace such as C[0, ∞). The corresponding Caputo-type derivative is not an
exact algebraic inverse; instead, it has a Newton–Leibniz type formula together with the integral
operator, as discussed in detail in [34].

Remark 4. The Atangana–Baleanu integral is a linear combination of a function with its Riemann–
Liouville fractional integral. As the Riemann–Liouville integral is singular, this is not interpretable
as an operator in our algebra A generated from the rng of continuous functions C[0, ∞), and so the
Atangana–Baleanu operators are not covered by our Theorem 7. Further work will be necessary to
ascertain whether operators like those of Atangana–Baleanu can be covered by an extension of the
result of Theorem 7.

5. Conclusions

In this paper, we have formed a rigorous mathematical study of what happens when
fractional integral and derivative operators defined by convolutions (such as the Sonine-
type operators) are permitted to have non-singular kernels. After correcting one mis-
apprehension regarding the suitable function spaces for Sonine kernels (which does not
significantly affect the work in the literature on the operators with Sonine kernels), we were
able to achieve the following results.

• Integro-differential operators analogous to the Riemann–Liouville and Caputo deriva-
tives with orders between 0 and 1, defined by a combination of a convolution integral
and a first-order derivative either inside or outside the integral, can be equivalently
defined without any differentiability conditions, provided the kernel function k is in
the space C1

−1.
• If the first-order derivative is replaced by an nth-order derivative, then the Riemann–

Liouville-type operator can be equivalently defined without any differentiability
conditions, and the Caputo-type operator with differentiability conditions only at zero,
provided the kernel function k is in the space Cn

−1 with k(r)(0) = 0 for 0 ≤ r ≤ n− 2.
• If an operator can be expressed as a linear combination of the identity operator and a

convolution with a non-singular kernel, then it is invertible, with a two-sided inverse
operator expressible in the same form. The non-singular kernels κ, k ∈ C[0, ∞) must
satisfy a relation of the form λ−1k + λκ + k ∗ κ = 0 with λ ∈ C\{0}, this being the
equivalent of the Sonine condition giving an inversion relation between operators.

These rigorous results provide some solid mathematical foundations for the theory of
operators with non-singular kernels, which have been much discussed within the fractional
calculus community. It is hoped that having the mathematical facts clearly stated and
proved will help to resolve some of the scientific discussions and disputes on the subject of
such operators. For a proper understanding of their nature and where they are likely to be
applicable, it is always useful to have the mathematical fundamentals clearly laid out.
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