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1. Introduction

Fractional calculus is a well-established subject with applications in many fields, such
as electro-chemistry, economics, electromagnetics, physical sciences, and medicine. The
idea of fractional calculus is to replace the natural numbers in the derivative order with ra-
tional ones. In domains such as visco-elasticity, statistical physics, optics, signal processing,
control, defense, electrical circuits, and astronomy;, fractional differential equations have
become extremely prevalent.

When studying any kind of differential equation, researchers are interested in the
existence and unity of solutions and their qualitative properties; these properties include
the stability of solutions. Stability was, and still is, the most important question in the
theory of dynamic systems, as the study of stability was first conducted in mechanics due
to the urgent need to study the balance of a system, and questions of stability increased
the motivation to introduce new mathematical concepts to engineering, especially control
engineering. The fixed-point theorem is not a single theorem, but belongs to a large family
of fixed-point theorems that relate to different mathematical fields. The researchers’ efforts
focused on several theorems from this family to study the stability criteria for functional
differential equations, including Banach’s fixed point theorem, Schauder’s fixed point
theorem, and Krasnoselskii’s fixed point theorem. We recommend monographs [1-5]
and the recently mentioned papers [6-16]. The majority of research on FDEs is based
on fractional derivatives of the R-L and Caputo types; see [9,17]. Several studies have
been conducted to investigate how stability concepts such as the Mittag—Leffler function,
exponential, and Lyapunov stability apply to various types of dynamic systems. Ulam and
Hyers, on the other hand, identified a previously unknown type of stability, known as Ulam-
stability [18]. Hyer’s type of stability study significantly contributes to our understanding of
chemical processes and fluid movement, as well as semiconductors, population dynamics,
heat conduction, and elasticity. While others have reported results using other types of
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stability, Ulam’s group designed and implemented a type of stability for ordinary, fractional
differential, and difference equations; see [19]. Differential equations are found to be of
great utility in systems and stochastic processes. They can be applied in sweeping processes,
granular systems, nonlinear dynamics of wheeled vehicles, control problems, etc. The
details of pressing issues in the stochastic process, control, differential games, optimization,
and their applications can be found in [20], in which the authors studied the existence and
uniqueness of the following subject to the following boundary conditions:

CHyP u(g) B )
P (51())) =y (&u(g),0(g)), ¢elle,Pe(L2],

& u(0), o
CHQ v(¢) _ u
D ) = maleu(@ @), Celld Qe
u() _
<3l<¢,u<é>,n<a:>>)g_l -
CH u(g) _\CH u(g)
D(él(‘f/u(ﬁ)/f’(‘f))>ge =M D<al<¢,u<c>,u<¢>>)g,ﬁ
(20 )
32(5u(@),0(8) Jemy

CH 0(g) _1CH (%)
D(Zsz(g/u(g)/‘ﬂ(@)>g_e =2 D<az<f;,u<a>,o<¢>>)¢_,7;

where CHD7, v = {P, Q} is the Caputo—Hadamard fractional derivative of order 1 < y < 2,
A, Ay €10,1), and 171,172 € (1, e).

In [21], the authors studied the existence and uniqueness of the following system of
mixed hybrid fractional differential equations

(CD1RDY,) (sriy ) = mi@u(@),0(@), E€01)1<q<20<r <1,
(“D-RD3, ) (srzaieorey) = @1 (Eu(@),0(@), 0<r <1,

u(e) =w'() =0, u(1) =ou((), € &, L € (0,1),

0(§) = v() =0, v(1) = ev(), e €€, T (0,1).

In [22] 2022, the authors investigated the existence of the solution for the following hybrid
fractional differential equations

Hppv¥ [ Y@ ] _ .
D [ 2O] = gl w@), acte 7]

(@(8) = (0)" “y(@)lim0 =10 € £,

where 0 < u < 1,0<v <1, =pu+v(l- y),HDgi"T(-) is the ®-Hilfer fractional
derivative of order y and type v, f € C(J x £,E\{0}) is bounded, J = [0,7] and
geEC(T xE,E) = {h| themap w — h(T,w) is continuous for each T and the map 7 —
h(t,w) is measurable for each w}.

In [23], the authors studied the existence of solutions for a class of boundary value
problems for nonlinear fractional hybrid differential equations involving a generalized
Hilfer fractional derivative

ay0,r ]/(C) —
Dl (et yieyy) = 0@ X T € (ot

(T (28 ) et e (M (2 ) ) 6 = o
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where "‘Dg’f and “J;Ig, respectively, denote the generalized Hilfer derivative operator of
order ¢ € (0,1) and type r € [0,1], and generalized fractional integral of order 1 — , ({ =
O+r—0r),c,c0,c3€E, c1+c2 #0,f €C([a,b] xE,E)\{0}) and ¥ € C([a,b] x E,E).

In the present work, we use Darbo’s fixed point theorem and Hausdorff’s measure of
noncompactness method to investigate the existence results for the following FDE

cPp (eP@ & _ _

p ((g +/\) (Kl(gr(gll)(g))> f(lglel(g)) a.e. (: cJ [0,1]
€1 &1 _

(0,e1(0)  Me(Le(D) Ql/O ol e1(n))dn,

epe (€10 oo 8l N _ (1)
D <K1(0£10))> +¢1°D (1(1(181(1))) —QZ/O (11, €1(01))dn,

(
ol €1(0) 2o €l N _ !
2 (tam) o P (o)~ f et

where 0 < @ < 1,1 < B < 2,A,¢1,0i,€ E fori =1,2,3, with ¢1 = —1. D@ <DP are
the Caputo’s fractional derivatives, and x7 : [0,1] x &€ — £{0},w € C([0,1] x &,&) and
g,h,t:[0,1] x £ — & are a given continuous functions.

By a solution of the problem (1), we mean a function ¢; € C(7,£), such that

(i) The function ¢ — (m) is continuous for each ¢ € £, and

(if) e satisfies the equations in (1).

The originality of this study lies in the use of Darbo’s fixed point theory, which is an
important but rarely used theory in the literature. In addition, it verifies the existence of
the solution to a nonlinear sequential fractional differential equation of the hybrid type and
hybrid boundary conditions. Moreover, the stability of the solutions to this equation was
verified using the Ulam-Hyres technique, establishing the relevence of this work.

The rest of the article is as follows: Section 2 presents the basic definitions, lemmas,
and theorems that underpin our main conclusions. In Section 3, we provide solutions to
the given fractional differential Equation (1) using Darbo’s fixed point theorem. Section 4
looks at the Ulam—Hyers stability of the provided fractional differential Equation (1). In
Section 5, an example is provided to further clarify the study’s finding. In Section 6, the
conclusion and future works are introduced.

2. Preliminaries

In this section, we state the most important definitions, lemmas, and theorems that
are necessary to obtain our main results. In addition, we introduce some useful notations
that make our result less complicated. We finish this section with an auxiliary lemma that
provides a solution to our proposed fractional differential equation.

Denote the Banach space of all continuous function by: C([0, 7], £) with the norm

€10 = sup || T (§)]-
ced

Let £1(]0, T]) represent the space of Bochner integrable functions ¢ : [0, 7] — &, with the
norm

T
letll = [ llea @) lde.

Definition 1 ([24]). Let £ be a Banach space and V; a bounded subsets of €. Then, the Hausdorff
measurable of non-compactness of V, is defined by

Xx(Va) = inf{¢ > 0 : V;, has a finite cover by balls of radius G}.

To discuss the problem in this paper, we need the following lemmas.

Lemma 1 ([24]). Let V1, Vs C &€ be bounded. Then, HMNC has the following properties:



Fractal Fract. 2023, 7, 229

40f16

(1) V1 CTVe=x(V1) < x(OV2);

2)  x(Vy) =0« V; isa relatively compact;

) x(WV1UVy) =max{x(V1), x(V2)};

4 x(V1) = x(V1) = x(conv(Vy)), where V1 and Vy represent the closure and the convex hull
of V1, respectively;

5) x(A+B) < x(OWV1)+x(Va), where V1) + Vo) ={u+v:ueV,vel};

6) x(@») <|ojx(V1)Vw eR,

Lemma 2 ([24]). If F C C([0,T], ) is bounded and equi-continuous, then x(F (&)) is continu-
ous on [0, 7] and

X(F) = sup x(F()) 2)
gelo,T]

The set V, C L([0, T, ) is (uniformly) bounded if 3 o € L1([0, T],R"), such that

lu()l <o(u), Ve €l )

Lemma 3 ([25]). If {e1,}pq C LY([0, T, &) is integrable (uniformly), then x({e1,}orq) is

measurable, and
X({/Otﬁln(ll)dll}:o_l) < /OtX({Sln(ll)}ZO:Od‘l- (4)

Lemma 4 ([26]). Ifa set F is bounded, then ¥/ 6, 3 {e1,,};,_4 C F, such that
XF < 2x({en(n)}o) +0. ()

Definition 2 ([27]). A function ¢ : [c,d] x & — & satisfies the carathéodory conditions, if the
following can be satisfied

e _7(& 1) is continuous w.rt. { forey € EV E € [c,d].
*»  _7(C, 1) is measurable w.r.t. { foreq € &;

Definition 3 ([28]). The function ¢ : Q) C & — & is a x-contraction, if Ik, 0 < k < 1 such that

x( (V1)) < kW, (6)

for all bounded V1 C Q).

Next, we state the most important theory on which the results of this work are based.
This is called the fixed point theory of “Darbo and Sadovskii” [24,29].

Theorem 1. Let Q) be a nonempty, bounded, closed and convex subset of a Banach space £, and let
F Q) — Qybea continuous operator. If ¢ is a x-contraction, then # has at least one fixed point.

Definition 4 ([1]). The RL fractional integral of order o > 0 for a function J : [0, +00) — R is
defined as

L
I'(e)

Definition 5 ([1]). The Caputo derivative of order ¢ > 0 for a function Jp : [0, +00) — R is
written as

¢
I§,310) = oy ) €= Fil)dn

1

D&Jl(@) = m

g n
/0 (g—ll)nfgfljf )(ll)dll,
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where n = [o] + 1, [o] is an integral part of o.
Lemma 5. Let ¢ > 0. Then, the differential equation Dg +J1(8) = 0 has the solution
J1(@) =co+erd+ad®+ - +ead
and
I3, DS T (&) = (@) +co+ e+l + -+ eyl
wherec; € Randi=1,2--- ,n = [o] + 1.

Lemma 6. Assume that hypothesis (Ho) holds. Then, for any vy € LY(J;E). The function
€1 € C(J; €) is a solution to the problem

“DP(D® 4+ )\ (81@> = ae.eJ =101
((0) ) Kl(g’g(lf)‘:)) n(é‘z ¢ [0,1]
&1 €1
- 4 d 7
0] Piam) o e )
epo( a0 __ + ¢1°D% _al® ) _ /Ilh(t e1(n))di
)T st am) Z g e
c2@ e1(0 c2@ e(1 _
P (tam) o P (atamy) ~ e f et
if, and only if, &1 and satisfies the hybrid equation:
— 1 ¢ @+p—1 !
e1(&) =& e1(E) | 1oy i €~ )™ )+ A1(©) [ o ea(n))
1 -1
+A2(@) [ g, er())din + As(€) [ e(un ()
Ag@) e e As(@) 1. s
Vg o 6P o)+ R e ) ()
1A L g1
T o) Jo ) Mol
91 ! _ \o+p-1 _ A ¢ _yo-1
Tt ) € | s [ ) e, ®
where
A, = Eol-Ae-—e) el (2-q)
! T (@+1)(1+¢1) T2+@)¢
+ (e — e )T @~ @M — e
A, = £%01 _ + 91701
F(@+1)(I+¢1)  THer * (1+¢1)2T(@+1)’
A3 = — {r(2—m)gs oI (2—m)o3 ¢l (2-@)os T (2-®@)es
[(@+1)(1+¢1) [(@+2)¢1 (+¢1)’T(@+1)  (I+91)l(@+2)”
A = LTe@e  @Hre o)
I'(@+1)(1+¢1) I'(@0+2)
(P2
H2-a) ((1+rp1)¢fl’(w+2) a (1+<p1>2}(w+1)>’
As = () 97

T T T(@+)(A+g1) (49 T(o+1)"

Proof. Using Lemma , we obtain

cH@ Sl(é) _7B a a
(D0 () IO eoto
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cy@ ( ) _7B _ 51(6)
( )<Kl<f: 1@ >>) =TP(E) a0+ A(m@ a(@)))'
( ) _T0+p ) () ) 1(6)
N EAE)] =T Py(&) + IT%a9 + I &~ T A(Kl(é,sl(é))) + ap,

where a1, ap, ap € R.
According to the condition:

D (0) (D> e1(l) = ' I L 11 we fin at:
P (K](O,Sl(o))>+q)1p <K1(1,£1(1>)>—Q3/O?(1,€1(1))d1 find that:

=r@2- ‘D)<§)3 /0 (11, e1(11))dn + /thlz/Ol b(11,€1(1))dn

1

1 1 .
_W/O (1—1)P U(ll)dll>-

. CAND 1) B /1
Using the fact that “D < ) <K1 e (1) =/ h(11,€1(11))d1y, and
£1(0) e1(1) /1
+ = I1,€ di
x1(0,£1(0)) q"1;<1(1,sl(1)) o1 | 8l e1(n))dn
-I'2—-—w 1 1-AT2-w 1
do _M/O E(11181(11))dll+< 1£qu1 ))QZ/O h(11,€1(1))dnn
/\Ql 1
+ 1+<P1/0 g(u1,e1(11))dn
1-— d
(1+§01)F(,5—(D) ( ll) U(ll) 11
—_ L /1 1 _ ‘571 d
A
a2 = 1+(p1 fO w 81([1)dll + (1+‘P1 - I’(rD+(P1] §]+(p1 )fO 11,81 ll dll
Wfo 1_‘l)w+’3 Yy(11)dny
9
+ e Jo (1= 0)F To(n)dn
r— 2 1 o
+Fgﬁfg; ((1+¢1;PF1(LD+2) - (1+¢1)(§}(w+1)> Jo (1 =0)F~27 1y (11)dny

+ i _ 91 r2-o)ro
te)T(@+1) (eI (@+2) o
— i e o] Jo bl ())dn.
Substituting the value of ag, a1, az, by, b, and by we obtain

1

1(©) =w1(&21(0) | oy (€~ P o)+ A1(@) [ (e o))

+A2(¢) /01 o(1,€1(n))di + Az(8) /01 (1, €1(1))dn

+F{;{gc)v) /01(1 — )Py (n)dy

As@) 1 or
+1*5(5) /0(1—11)5 1‘)(11)51!14—%/0 (1—1)° ey (1n)dn

A

B [, @ m P | -

g o
7% 0 (@) /0 (¢—n) 181([1)d11.
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3. Existence Results via DFPT
To set our main results, we introduce the following assumptions

(A1) The function [J; : [0, 7] x & — & satisfies carthéodory conditions.
(Az) There exists a function ¥ € £*([0, 7], Ry ), which shows that

[[71(6,e1(9)|] < ¥(E)(1+]lea]]),Ver € C([0,T],E)
(A3) Assume W C & is any bounded set V ¢ € [0, 7 ; then,

x((EW)) <H(Ox(W).

For easy computation, we let

._ Ji Ayl 7|
R'Kl{l“(erfH—l) (B—@+1)
((T+e1)(@+p+1)  ([1+@1)I(@0+1) I'f(@+1)]

As| |7l
r'(p+1)

+Aullb][ + Azl + As[lel] + & + +

[leal],

Theorem 2. Assume that the assumptions (A1)—(.A3z) hold true, and let Ry = ||¥||R. If
4Ry <1, ©)
then the BVP (1) has at least one solution, defined on [0,T ].

Proof. Consider the operator # : C([0,7],€) — C([0,T],€)

(He)(©) =1 (&) | 7oy 1 €= )7 ot

@ + B)
1
+AL(2) /0 b1y, e1(1))dty

FA(0) [ ooy €1())i

+A@) [ er(ean + 1O [ - )P (i)

(B—@) Jo
AS(&) 1 _ Q A 1 -
F(‘B) /0 (g_ll)ﬁ 1U(ll)dll+m/o (g_[l)ﬁ lU(Ll)dll

1+ §01)(PI_1'(CD +B) /ol(g - ll)wﬁln(n)dll}

¢
- F(/\a))/o (&—0)° ter(nn)dn,

+

The operator H is well-defined as a result of .A; and Aj;. Therefore, (1) is equivalent to the
following operator equation.

&1 = 7‘[81. (10)

Subsequently, showing the existence of fixed point for (10) is equivalent to the existence of
a solution for (8).
Let

Be = {e1 € C([0, T],€) : |le1]loo < €}
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be a closed convex set with € > 0, such that

The applicability of the DFPT will be shown in four steps
Step 1. We show that HB HB. C B,; using (Ay), we have

o o € T ) flea () i
FAE) [ ) ler (o))
FAE) [ E @)+ s (o))

1
FA3(2) [ ¥ @) flea(w) e

Her(8)] <k ¥ () (1 + e1<u>||>[

. m /Ol(g — )P (1) (14 [[er (1) |])din
+¢5(%¢)) /Ol(g — )P () (1 + |leg (11)]])dig
s € P Y )l
1+ <p1)¢Fl(w +B) /01 (G )t flea )l

_ F(A(D) /og(g =) () (1 + (e ()|,

A A
< I+ e ] +A1||h||+Az||g||+A3\\E||+f;”gﬂ‘l)+ i+
[ l[[A] [p1A]
e * T | ol + ey lel

[[Hea|| <[[¥][(1+ [[ea] )R
S(l +€)Rl{f
<e.

Thus, ||He1|| < e. Thatis HBe C Be.

Step 2: The operator H is continuous. Let {€1,, } be a sequence in Be, such that €1, — €3
asn — oo. Then, J1(11,€1,,(11)) = J1(11,€1(11)) as n — 0, as a sequel of the Carathéodory
continuity of J;. (Ay) implies

Hera(8) — Her (O] <xal| i o e14(00)) — Ti v 1)
<o € =P A 1) = Falnea )
HIA@I [ 173, e14(0)) = Fi o e2()]
HIA@I [ 150, e1,(0)) = Tiar e1(a))lldn
HIASOI [ 13 01e1(0)) ~ Falo,ea(a))l

T "f}f( ()DH) [ @) - Gl ea )l
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A5 (&)
r(g)

*m?frw /01@ — )P Y| ean(0)) = Fa(e1(n) [l

“Trere P /01(5 — )PP F (1 e10(n)) — T (1, 81(1)) 1

~ s [ €= P T e1a(00) - i),

<RI[F(C e1a(-) = Tl e ()]l

+

/o1 (& — )P YA (1, e10(11)) — T, e1(n))]|dia

Using the Lebesgue dominated convergence theorem, it is obvious that ||H71,(¢) —
He1(E)|| — 0asn — o0,V & € [0, T|; consequently, we have

||He1, — Herl| = 0as n — oo.

Step 3. The operator H is equicontinuous. For any 0 < {1 < ¢, < 7 and &1 € B¢, we

can obtain
#e1) ) - e @0l <[ gy [~ 0)° P Mol
1
_F(col—k/%)/o (& —u)® Pty (n)dn

+1(@) — A ()] [ Do ea())d
(@) ~ Ao [ ol ea(a)n
HAs(62) — As(@)] [ ¥, ()
+|«44 é‘z I/ oy (11)diy

+|A5<§2;( AS 61 |/ AB 11)([1)1111] ’

(e @) - Heen @0l <[ gy o
HAE) ~ @] [ b))
+[A2(82) — A2(G1)] /01 g(1,e1(n))dy

1
+Aa(E2) = Aa(@0)] [ e(on,e1())dn

+|A4(5288 s |/ (1= 1)f2 1y (iy)dny
|A5(82) — As(81)] _
+ (B /0 (1—1n)P U(l1)dl1] ,

as {1 — ¢o is the RHS of the above approaches to zero and is free of ¢ € B.. Hence,
operator H is bounded and equicontinuous.
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Step.4. We show that # is a y-contraction on B,. For all bounded subsets W C B, and
0 > 0. With the aid of Lemma 4 and the properties of x, 3 {e1;};>; C W such that

xw@) < [ 5ot € - e A o))
FAQ) [ il Al )
+A42(¢) /01 Ti(n, {er(n) ey )dn

1
FA3(@) [ e, Leai()}i)dn

e N TR CHE LS

T 7@ [ €= i o))

S - /01 (& — 1)1, {51;{(11)},‘?’_1)1111]

F(/\a)) /Oé(ﬁ — 1) (1, {eak () oy du, } + 0.

The properties of x, (A3z), and Lemma 3 can be used to obtain

x@) <a{ [ 7t 1@ i )}
+A1(8) /01X(jl(‘ll{Slk(ll)}liozl))dll
FAE) [ XA ferp)} )i

+A3(¢) /01X(j1(l1,{Slk(ll)}iozﬁ)dll

+ral34£€20) /01 (€ =) (i, {ear(n) }i2e))dn
600) 1 e i

+(1+(£l1)AF(w) /01('5 —0)P x(Fi(n fene(u) 1) du

AT i@ ./01(5 B CHCY {“k(”)}’?—l))d‘l]

_1”(/\@) /06(5 —u)* X (A (n, {811{(!1)}130—1)):111,} nys

§4{ [F(CO{F,B) /05(6 =) P () x (T (0, {en (1) }20))dn
FAE) [ X fern) )

A0) [ X o) 1)
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1
FA5(8) [ EEDX( (o, Lere (1) 20)
+T(fl§4£€()0) /01(5 —0)Pm O (1) x (T (0, {enk (1) 12
+¢5((ﬁ€)) /01(5 — )P ()X (Ji (1 {ere(n) }ig) )
+(1+Zi;\f(@) /01(5 = )P () (Ja (1, {ear(n) }ig) )
e ) € P Y R e )}
ey [ €= A e, } 6
<4Ryx(Re)+ 6, V6> 0. (11)

Then

X(HOW)) = sup x(HW(Z)) < 4Rwx(Re)
¢elo7]

Using Theorem 2, we conclude the existence of a fixed point for the operator equation given
by (10). This completes the proof. [J

4. Stability Results

Letd > 0and © : [0, 7] — [0, c0] be a continuous function. We consider the following
inequalities:

e (cP@ ( ) _
*DF (*D +/\)(K1(€ sl(g))> Ji(8,e1(8)) <8, £€[0,T], (12)
cPp (eP@ ( ) _
|“DF (“D® + A) (K1(C 51(‘3))) J1(8,e1(8))| <90(¢), £€10,7T], (13)

Definition 6 ([30]). Problem (1) is U-H stable if 3 M > 0, such that V¢ > 0,V &1 € C of the
inequality (12), 3 solution e1* € C of problem (1) with

le1(5) — e ()| < M9, T€[0,T]. (14)

Definition 7 ([30]). Problem (1) is generalized U-H stableif 30 7, € C(RT,R™) and © 7, (0) = 0,
such that, ¥ €1 € C of the inequality (13), 3 a solution e1* € C of problem (1) with

e1(5) —e"(§)| <©4(9), ¢€[0,T] (15)

Remark 1 ([30]). A function &1 € C is a solution of the equality (14) <= 3 a function Z € C,
such that
1) [2@) =9 ¢el0T],

(2) DF(D+ ) (508 ) = A& er(@) + 2(2), &€ o, T].

Lemma 7. Let 1 < ¢ < 2. Ifa function €1 € C is a solution to the inequality, then e, is a solution
of the following integral inequality:

le1() — &, | < RY, (16)
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where

& =1(6510) | gy [ €~ ™ o

@+ B)
1
+AL(E) /O b1y, e1(11))din

F(0) [ ol 1))

T O D e (L

+J;l‘5(§f)) /ol(ér —1)P My ()i + M?&@) /01(‘3 — )Py (u)dn

¢ ! o+p-
_(1+§01)1—1'((D+,3)/() (g_ll) P 1‘)([1)‘1[1]
A

) /Oé(g — 1) ey (1n)dny,

Proof. Using Remark 1,

1(€) = riary € =P oG

1
+A1(E) [ B, e1(0)dn
F2(0) [ oo 1))
FA5() /01?(11,81(11))d11+ Ay(¢) /Ol(g_ll)ﬁfwfln(u)du

r-a)
AP e P Mo+ B [ )
o [ € ) @)
- iy [ €= e,
+ g [ €= i
FA41(0) [ Z ()i
+(0) [ Z()in
4@ [ 2+ 5 [N etz
AP [Ptz + 2 [ n)f 2y
Tt b § 0" 2

s | (- n)P 2 (0)dn,

implies
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1(0) ~ €l = | gy [ €~ 0 ol
+A©) [ 20
1
+A42() | Z ()i
A [ 2+ 7 L e =)otz
As(¢) - P12 ! _
AP etz + 2 [ w2y

4 ! 4B
“Trar@ g h € 1Z<ll>du]

o [ e 200,

Ji Agl| A As|| |
<o oy + Aol elall + Aullell + 7 U s +
+ |(P1|||AH |(Pl/\| ||U||} | | || l||
(el (@+p+D " (T+eDl@+D) "' " Flio+1)]
< RY. (18)

O

We now state the main theorem as follows:

Theorem 3. Assume that (Ay) and (Ap) are satisfied with R < 1. Then, problem (1) is U-H
and is generalized as U-H stable.

Proof. Suppose that 1 € C is a solution of inequality (14) and £;* € C is a unique solution
of problem (1). Then, it follows from Lemma 7 that

1@~ e @1 =| [ gy [ €~ ol

+]A1(8)] /0117(11181(11))1111

1
A0 [ a1 ()

() / Ve, + O ey ppotya

rg—w).o
1
|A5%C) (1 dll—l—(l“’&;\l'—'(w)/o (& — 1)PTn()dny

qul 1 OB
_(1+¢1)F1(w+ﬁ)/o (§—u)*P 10(11)%]

_F|(Aa|3) /Og((f — 1) ey (1n)dny

F(lerﬁ) /06(5 — )P T (1n,e1(1)) — Ti (1,17 (1))din

+[A1(¢)] /(;1 Ji(n,e1(n)) — Ji(n, 61" (n))dn

<lea(@) ~ € + ||
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+[A2(8)| /01 Ji(u,e1(n)) — T, e (1))dn

HA@ [ Filon,e1(0)) — Frone1” ()

% / = )P T (e (1)) — (e (1)

As(
N s I/ P T (1, e0(n) — Fi (1% (1))dig

|§01)\\
M)

o [P ) — e ()|

+

/ol (- )P J(n,e1(n) — Filu, e (n))dn

(eI

_IJ()\@) /oé(‘f — 1) i, e1(n)) — Ti(in, 60" (1))dn

<RE+YR|e1(E) —er™(8)],

which implies
|le1(§) —e1™|| < M8,

where

R

M=1T"wxr

> 0.

Hence, we conclude that problem (1) is U-H stable. In addition, by denoting © 7, (¢) = M,
such that © 7, (0) = 0, problem (1) is generalized U-H stable. []

5. Example

Example 1. Denote the Banach space of real sequences by Cy = {e1 = (e11,€12,- -+ ) : €1, —
0(n — co)}, with the norm

|le1]leo = sup [e1,]
n>1

Consider the following BVP

DB (¢p@ _al@) ) _ € a.e =
DH D ) iy ) = G ©) nete T = 0]

€1(0) e(l) _ !
K1(0181(0)) ¢ K1(1T€1(1)) = o /0( 9(n,1(n))dn,
€1 1

cTY®@ €1

) @ ) _ 1
1(1(0,{-310))) ter'D <K1(1r51<(11)))> = QZ/O ?(‘1,81(11))1111,
1(1(0,8(0))) + (PchZO(M) = 93/0 3(11,81(11))1111,

where Here @ =1/3,8 =4/3,A =1/300,¢91 = 1,01 = 02 = 03 = 1/200 and

(19)

R < 1.354.

Here J; : [0,1] x Cy — Cy given by

Ji1(G,e1) = { \/{3214r749<§sir9151 +e§cos§>} ,forg e [0,1], &1 = {e1,}uz1 € Co.

n>1
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It is clear that condition (Ay) holds, and as

[|T1(E,e1)|| =

VE2+49\ 49

1
= V€2 +49
=¥+ [feal])-

s (et

(1 +leal)

Therefore, (Ay) satisfied, with
Y =—-¢¢€10,1].

And the bounded set J; C Cy, we have

1

V2449

So, (As3) holds true. Indeed, ARy = 0.76593 and (1 + €)Ry = €. Thus,

x((E 7)) < x(7), VEelo1].

o> Ry 015471  0.19148

= = ~ 0.236827784.
“1-Ry 1-0.19148 0.80852

Then € can be chosen as € = 0.2 > 0.183. Consequently, all conditions of Theorem 2 hold true. This
yields the existence of a solution e1 € C([0,1],Co) for the problem (1).

6. Conclusions

We discussed the existence results for a mixed hybrid fractional differential equation
of sequential type with nonlocal integral hybrid boundary conditions. The main results
are established with the aid of Darbo’s fixed point theorem and Hausdorff’s measure of
noncompactness method. Using standard functional analysis, we showed Ulam-Hyers
stability. Our results in this configuration are novel, and add to the body of knowledge
on the theory of fractional differential equations. For future work, we suggest using other
types of fractional derivative operator, such as the generalized Hilfer fractional derivative.
Anyone interested in the subject can also investigate the existence and uniqueness of
solutions to the coupled or tripled systems using several fixed points theorems, such as
Banach contraction, mapping principle, Leray-Schuader’s alternative, and Monch’s fixed
point theorem.

Author Contributions: Methodology, M.A. (Muath Awadalla); Writing—original draft, M.A. (Muath
Awadalla) and M.M.; Writing—review & editing, M.A. (Meraa Arab), K.A.,, NIM. and TN.G;
Supervision, M.A. (Muath Awadalla); Project administration, M.A. (Muath Awadalla). All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for
Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. 2785].

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: The authors declare no conflict of interest.

1. Kilbas, A.A,; Srivastava, HM.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The
Netherlands, 2006; Volume 204.

2. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of
Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.

3.  Samko, S.G; Kilbas, A.A.; Marichev, O.1. Fractional Integrals and Derivatives; Gordon and 166 Breach Science Publishers: Yverdon-
les-Bains, Switzerland, 1993; Volume 1.



Fractal Fract. 2023, 7, 229 16 of 16

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.
27.

28.

29.

30.

Burton, T.A. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85-88. [CrossRef]

Covitz, H.; Nadler, S.B. Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 1970, 8, 5-11. [CrossRef]
Zhang, Y. Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance.
J. Inequal. Appl. 2018, 2018, 198. [CrossRef] [PubMed]

Cui, M,; Zhu, Y.; Pang, H. Existence and uniqueness results for a coupled fractional order systems with the multi-strip and 179
multi-point mixed boundary conditions. Adv. Differ. Equ. 2017, 2017, 224. [CrossRef]

Ahmad, B.; Nieto, ].J. Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl.
2012, 64, 3046-3052. [CrossRef]

Su, X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22, 64—69.
[CrossRef]

Awadalla, M.; Manigandan, M. Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with
New Kind of Boundary Conditions. Math. Probl. Eng. 2022, 2022, 3999829. [CrossRef]

Hamoud, A.A. Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations. Adv.
Theory Nonlinear Anal. Its Appl. 2020, 4, 321-331. [CrossRef]

Jung, C.Y,; Farid, G.; Yasmeen, H.; Lv, Y.P; Pelari¢, J. Refinements of some fractional integral inequalities for refined (@, hm)-
convex function. Adv. Differ. Equ. 2021, 2021, 391. [CrossRef]

Liu, Y. A new method for converting boundary value problems for impulsive fractional differential equations to integral
Equations (203) and its applications. Adv. Nonlinear Anal. 2019, 8, 386—454. [CrossRef]

Luca, R. On a system of Riemann-Liouville fractional differential equations with coupled nonlocal boundary conditions. Adv.
Differ. Equ. 2021, 2021, 134. [CrossRef]

Elaiw, A.A.; Awadalla, M.M.; Manigandan, M.; Abuasbeh, K. A novel implementation of Monch'’s fixed point theorem to a system
of nonlinear Hadamard fractional differential equations. Fractal Fract. 2022, 6, 586. [CrossRef]

Subramanian, M.; Manigandan, M.; Gopal, T.N. Fractional differential equations involving Hadamard fractional derivatives with
nonlocal multi-point boundary conditions. Interdiscip. J. Discontinuity Nonlinearity Complex. 2020, 9, 421-431. [CrossRef]
Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville
fractional derivatives. Rheol. Acta 2006, 45, 765-771. [CrossRef]

Al Elaiw, A.; Manigandan, M.; Awadalla, M.; Abuasbeh, K. Existence results by Monch’s fixed point theorem for a tripled system
of sequential fractional differential equations. AIMS Math. 2023, 8, 3969-3996. [CrossRef]

Etemad, S.; Tellab, B.; Alzabut, J.; Rezapour, S.; Abbas, M.I. Approximate solutions and Hyers-Ulam stability for a system of the
coupled fractional thermostat control model via the generalized differential transform. Adv. Differ. Equ. 2021, 2021, 428. [CrossRef]
Arab, M.; Awadalla, M. A Coupled System of Caputo-Hadamard Fractional Hybrid Differential Equations with Three-Point
Boundary Conditions. Math. Probl. Eng. 2022, 2022, 1500577. [CrossRef]

Awadalla, M.; Mahmudov, N.I. On System of Mixed Fractional Hybrid Differential Equations. J. Funct. Spaces 2022, 2022, 1258823.
[CrossRef]

Kucche, K.D.; Mali, A.D. On the nonlinear ip-Hilfer hybrid fractional differential equations. Comput. Appl. Math. 2022, 41, 86. [CrossRef]
Salim, A.; Ahmad, B.; Benchohra, M.; Lazreg, ].E. Boundary value problem for hybrid generalized Hilfer fractional differential
equations. Differ. Equ. Appl. 2022, 14, 379-391. [CrossRef]

Banas, J. On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carol. 1980, 21, 131-143.

Heinz, H.P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued
functions. Nonlinear Anal. Theory Methods Appl. 1983, 7, 1351-1371. [CrossRef]

Bothe, D. Multivalued perturbations ofm-accretive differential inclusions. Isr. . Math. 1998, 108, 109-138. [CrossRef]

Zeidler, E. Nonlinear Functional Analysis and Its Applications: 1I/B: Nonlinear Monotone Operators; Springer Science and Business
Media: Berlin/Heidelberg, Germany, 2013.

Toledano, ].M.A.; Benavides, T.D.; Acedo, G.L. Measures of Noncompactness in Metric Fixed Point Theory; Springer Science and
Business Media: Berlin/Heidelberg, Germany, 1997; Volume 99.

Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Polish Academy of Sciences [PAS]; Institute of Mathematics:
Southend-on-Sea, UK, 1979.

Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103-107.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1016/S0893-9659(97)00138-9
http://dx.doi.org/10.1007/BF02771543
http://dx.doi.org/10.1186/s13660-018-1792-x
http://www.ncbi.nlm.nih.gov/pubmed/30839529
http://dx.doi.org/10.1186/s13662-017-1287-y
http://dx.doi.org/10.1016/j.camwa.2012.02.036
http://dx.doi.org/10.1016/j.aml.2008.03.001
http://dx.doi.org/10.1155/2022/3999829
http://dx.doi.org/10.31197/atnaa.799854
http://dx.doi.org/10.1186/s13662-021-03544-0
http://dx.doi.org/10.1515/anona-2016-0064
http://dx.doi.org/10.1186/s13662-021-03303-1
http://dx.doi.org/10.3390/fractalfract6100586
http://dx.doi.org/10.5890/DNC.2020.09.006
http://dx.doi.org/10.1007/s00397-005-0043-5
http://dx.doi.org/10.3934/math.2023199
http://dx.doi.org/10.1186/s13662-021-03563-x
http://dx.doi.org/10.1155/2022/1500577
http://dx.doi.org/10.1155/2022/1258823
http://dx.doi.org/10.1007/s40314-022-01800-x
http://dx.doi.org/10.7153/dea-2022-14-27
http://dx.doi.org/10.1016/0362-546X(83)90006-8
http://dx.doi.org/10.1007/BF02783044

	Introduction
	Preliminaries
	Existence Results via DFPT
	Stability Results
	Example
	Conclusions
	References

