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Abstract: The role of fractional calculus in circuit systems has received increased attention in recent
years. In order to evaluate the effectiveness of time-domain calculation methods in the analysis
of fractional-order piecewise smooth circuit systems, an experimental prototype is developed, and
the effects of three typical calculation methods in different test scenarios are compared and studied
in this paper. It is proved that Oustaloup’s rational approximation method usually overestimates
the peak-to-peak current and brings in the pulse–voltage phenomenon in piecewise smooth test
scenarios, while the results of the two iterative recurrence-form numerical methods are in good
agreement with the experimental results. The study results are dedicated to provide a reference for
efficiently deploying calculation methods in fractional-order piecewise smooth circuit systems. Some
quantitative analysis results are concluded in this paper.
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1. Introduction

In recent decades, the concepts of fractional calculus and the related techniques have
been gaining momentum in circuit system fields [1–3]. It has been confirmed that explor-
ing the potential fractional-order characteristics of electronic components is helpful for both
the condition monitoring of components and the reliability design of circuit systems [4–8].
An increasing body of evidence suggests that the fractional-order characteristic is widely
distributed in electronic components [9–11], such as ultracapacitors (UCs), lithium batteries,
and non-solid electrolytic capacitors. Moreover, introducing fractional-order elements (or
constant phase elements—CPEs) to traditional circuit and control systems can enhance the
design flexibility [12–14].

In order to better describe the characteristics of circuit systems with fractional-order
components, it is of necessity to develop a set of reliable calculation and analysis methods.
Basically, the lumped parameter model with fractional-order differential equations is a
well-established approach to quantify the characteristics of fractional-order circuit systems,
and a number of calculation and analysis works have been proposed for such systems—
definition-based methods [15], rational approximation methods [16–18], and numerical
methods [19–21], to name but a few. The methods listed above have been applied to the
modeling and analysis of a wide variety of fractional-order circuit systems [22–24].

To the best of the authors’ knowledge, most existing calculation and analysis methods
are applied only to continuous fractional-order circuit systems, for instance, the discussion
on the convergence issue of solutions for continuous cobweb models in Ref. [25] and the
study on the existence and uniqueness of the solution of Hadamard fractional Itô–Doob
stochastic integral equations in Ref. [26]. However, existing works are rarely applied to
piecewise smooth ones [27–29]. In practice, the piecewise-smooth characteristic is common
in circuit systems, especially for those with semiconductor switching devices, and such a
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characteristic may bring in effects on the accuracy of numerical methods. Therefore, it is
worthwhile to compare and evaluate the effectiveness of existing methods in analyzing
piecewise smooth fractional-order systems.

In allusion to the state of the art, this work tries to unfold the applicability of three
typical calculation methods for piecewise smooth fractional-order circuit systems. The rest
of the work is organized as follows: test scenarios are established in Section 1, in which a
non-solid aluminum electrolytic capacitor is employed in the test bench since this kind of
component has been confirmed to have frequency-related fractional-order characteristics
in a wide frequency band [11]. Section 2 deduces the solutions of the test scenarios by
different approaches. Section 3 compares and discusses the results of different approaches,
while Section 4 concludes the work.

2. Test Bench Settings and Mathematical Model
2.1. Test Bench Settings

In a previous work, it was confirmed that the electrode surface in the capacitor has an
infinite self-similar structure, and the particle distribution law in it has a long-tail effect
under the electric field, which is suitable to be described by the fractional equivalent
impedance model [11]. The internal structure and fractional-order equivalent impedance
circuit is presented in Figure 1.

Figure 1. Internal structure and fractional-order equivalent impedance circuit model of non-solid
aluminum electrolytic capacitors.

In the above figure, the symbol C is the nominal capacitance of the capacitor, while
the symbol α is an estimated fractional order of 0 to 1, and the symbol RΩ is the equivalent
series resistance of the capacitor. A test bench is established in this section, which contains
such a capacitor. The schematic of this test bench is displayed in Figure 2.

Figure 2. Schematic of the test bench.
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The design of the test bench refers to the previous work [30], in which a type GPS-
3303C 3-channel isolated dc power supply is adopted to provide power, and an oscilloscope
is employed to record the data. In the platform, a type STP80NF70 power MOSFET ST is
adopted, the gate-source voltage of which is controlled by a driving circuit. As a result,
the test bench will work in charging and discharging the cycle working mode, so the circuit
can be deemed as a piecewise smooth circuit system. On the right side of the red dash
line in Figure 2, the resistor R1 = 5 Ω provides a discharging path for the capacitor, while
R2 = 10 Ω is mainly used as the current sensing and limiting resistor. The circuit in the
box with a red background is the fractional-order equivalent circuit of a 10 µF Rubycon
PX series non-solid aluminum electrolytic capacitor. The voltage and the current of the
capacitor are vcap(t) and icap(t), respectively, and two probes of the oscillascope are used
to observe them. In addition, the voltage of the equivalent CPE is assumed to be vc(t).
A glimpse of the experimental scene is given in Figure 3.

Figure 3. A glimpse of the experimental scene.

2.2. Mathematical Model

The test platform can be regarded as a charge–discharge circuit for the non-solid alu-
minum electrolytic capacitor. One can find that there is only one energy-storage component
in the platform, so the interferences and errors are minimized compared with the schemes
with rational approximation methods or those with magnetic elements. In the following
parts, the test platform will be operated in two test scenarios to verify the applicability of
different calculation and analysis methods.

According to the fractional-order equivalent impedance circuit of the capacitor in
Figure 1, the current icap(t) and the voltage vcap(t) of the capacitor satisfy the following
relationships: 

icap(t) = C · dαvc(t)
dtα

vcap(t) = vc(t) + RΩ · C ·
dαvc(t)

dtα
,

(1)

It is noteworthy that the nominal capacitance C is 10 µF in this work, while RΩ and
the fractional-order α related to the fractional-order characteristics of the capacitor can be
identified by using the method proposed in a previous work [11], wherein their values are
0.8852, 1.2629 Ω, respectively.

In order to validate different methods, we established two groups of test scenarios,
the basic and the advanced. In the basic test group, we consider two operating modes.
The first one is sinusoidal mode, where the power supply is a single phase AC power
supply with a pre-determined frequency. The second one is step mode, where a DC power
supply is employed as the source and the power MOSFET ST is turned on at time t = 0
with a constant forward voltage drop Vds(on) = 0.7 V.
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• The state of the sinusoidal mode can be governed by

vc(t) + (R2 + RΩ) · C · dαvc(t)
dtα

= vin(t)−Vds(on), (2)

where vin(t) = K · sin(ωt) is a sinusoidal function. K is the predetermined magnitude
of the signal, ω = 2π fs is the angular frequency, and fs is the frequency of the
sinusoidal function.

• The state of the step mode can be governed by

vc(t) + (R2 + RΩ) · C · dαvc(t)
dtα

= Vin −Vds(on), (3)

in which Vin is a predetermined constant value.

In the first group of test scenarios, the test bench works under continuous mode or step
response mode. This group are used to assess the feasibility of different calculation methods.

In the second group of the test scenario, the power MOSFET ST is controlled by a
periodic square waveform with a duty ratio D = 0.5 and a variable frequency fs from 100 Hz
to 1 kHz. The performance of the circuit under test in one steady-state cycle Ts can be
governed by

• Charge performance in t ∈ [kTs, kTs + DTs] is

vcap(t) = Vin −Vds(on) − R2 · icap(t), (4)

where k is the k-th switching cycle, Ts is the switching period, and

Vin −Vds(on) = vcap(t) + R2 · icap(t)

= vc(t) + (R2 + RΩ) · C · dαvc(t)
dtα

. (5)

• Discharge performance in t ∈ [kTs + DTs, (k + 1)Ts] is

vcap(t) = −(R1 + R2) · icap(t), (6)

and

0 = vcap(t) + (R1 + R2) · icap(t)

= vc(t) + (R1 + R2 + RΩ) · C · dαvc(t)
dtα

. (7)

In the second group of test scenarios, the capacitor of the test bench will be charged
and discharged cycle by cycle, and thus the circuit under test is a typical piecewise smooth
circuit system.

One can find that, to reveal the time-domain performance of these two scenarios,
the voltage vC should be calculated. However, this voltage is an equivalent quantity
of the CPE, and thus one cannot probe it directly and has to solve the fractional-order
differential Equations (2)–(7), which are all fractional-order differential equations with
constant coefficients. Rewrite these equations to the following generalized form:

a1i ·
dαx
dtα

+ a0i · x = ui, (8)

where i = 1, 2, 3, 4, x = vC is the only state variable of the circuit, and the coefficients
are: a11 = a12 = a13 = (R2 + RΩ)C, a14 = (R1 + R2 + RΩ)C, a01 = a02 = a03 = a04 = 1,
u1 = K · sin(ωt)−Vds(on), u2 = u3 = Vin −Vds(on), and u4 = 0.

All the coefficients are predetermined in their own time intervals. Meanwhile, the ini-
tial conditions of Equation (8) are continuous in their own domains of definition, and
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hence according to Theorem 3.2 of Ref. [31], fractional-order differential Equation (8) has
unique solutions. At this time, the initial values problem of fractional-order differential
equations arises.

3. Computation Approaches

In this section, the principles of some related techniques are introduced first. Then
three different approaches are applied to calculate Equations (2)–(7), and the results are
adopted for validation and comparison. The first calculation method is a numerical calcula-
tion method, that is, the fractional Adams–Bashforth–Moulton-type method (F-ABM) [21].
The second calculation method is based on the Grünwald–Letnikov (G-L) definition [15].
To obtain solutions by using the first and the second methods, the stroboscopic map
technique should be applied [32]. The third calculation method is Oustaloup’s rational
approximation method [16], which will be conducted by using the state-space averaging
(SSA) technique [33].

3.1. Preliminaries: Principles of Some Related Techniques
3.1.1. Stroboscopic Map Technique

One can always apply the most calculation approaches to calculate fractional-order
differential equations in continuous cases directly. However, in discontinuous cases, or the
piecewise smooth case discussed in this work, one may have to face a different situation,
for example, the sign function of f (x) = sign(x), which has the value of 1 for all x > 0 and
the value of −1 for all x < 0, and Figure 4.

Figure 4. A graph of typical sign(x) function.

The sign function of f (x) = sign(x) appears in a variety of piecewise smooth fractional
systems, which creates the initial value problem at the discontinuous point x = 0, and one
needs to physically interpret initial conditions at this point.

In the step mode of the basic test scenario, the proposed test bench also experiences
a similar situation like the sign function. In addition, in the advanced test scenario, the
capacitor experiences a recurrence of charging and discharging behaviors in each switching
cycle, and thus the test bench will be in continuous state switching. Along with the on- and
off operations of the power MOSFET ST , there is a set of discontinuous points. Accordingly,
a technique called stroboscopic map should be employed in both analytical and numerical
calculations. This technique has widely been adopted in the dynamic analysis of piecewise-
smooth systems and switching power converters. By this technique, the dynamic behavior
of the test circuit at each switching state Sn will be collected in one switching cycle, that
is, the solution xn of the previous switching state at time tn will be employed as the initial
value of the next switching state, and thus a cycle-by-cycle calculation can be carried out.
The principle of the stroboscopic map technique is depicted in Figure 5.
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Figure 5. Principle of stroboscopic map technique.

3.1.2. State-Space Averaging (SSA) Technique

In practice, some methods are difficult to be directly used in the advanced test scenario
of this work. In allusion to this, the SSA technique can be exploited, by which the steady-
state characteristic analysis can be achieved. By this technique, the average value of vc(t)
in one switching cycle can be expressed by

〈vc〉Ts
=

1
Ts

∫ t0+Ts

t0

vc(t)dt (9)

Accordingly, in the steady state, when the low-frequency hypothesis and the small
ripple hypothesis are satisfied, the test platform in the discontinuous case can be governed
by the following SSA model:

(R2 + RΩ) · C ·
dα〈vc〉Ts

dtα
+ 〈vc〉Ts

+
[
1− d(t)

]
· R1 · C ·

dα〈vc〉Ts

dtα
= d(t)

[
Vin −Vds(on)

]
, (10)

in which the terms 〈vc〉Ts
and d(t) can be decomposed into DC terms Vc and D, AC terms

v̂c and d̂, as follows: 
〈vc〉Ts

= Vc + v̂c

d(t) = D + d̂
(11)

3.2. Solutions of the Test Bench
3.2.1. Solutions Obtained by G-L Definition

According to the G-L definition, the fractional-order derivative of state variable x(t)
can be written in the following discrete form [15]:

dαx(t)
dtα

≈ 1
hα

t/h

∑
j=0

pα
j xt−jh

=
1
hα

[
xt +

t/h

∑
j=1

pα
j xt−jh

]
, (12)

where h is the predetermined discrete step size, and pα
j can be deduced by

pα
0 = 1, pα

j =
(

1− 1 + α

j

)
pα

j−1. (13)

Introducing Equation (13) into Equation (12) leads to the following recurrence
form solution:

xt =
1

a1i + hαa0i

[
hαui,t −

t/h

∑
j=1

pα
j xt−jh

]
. (14)
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Then, one can obtain G-L based solutions of Equation (8) by point-by-point iteration
of Equation (14). In addition, the numerical solutions of charging and discharging state
in the advanced test scenario are collected in each switching cycle by the aforementioned
stroboscopic map technique.

3.2.2. Solutions Obtained by F-ABM Method

In the case of−1 ≤ α ≤ 1, according to the definition of the F-ABM method [19], the ini-
tial value problem of the fractional-order system of Equation (8) can be determined by:

x(n + 1) = x(0) +
hα

Γ(2 + α)
f
[
tn+1, xP(n + 1)

]

+
hα

Γ(2 + α)

n

∑
j=0

Aj,n+1 f
[
tj, x(j)

]
, (15)

where the term n is any integer, and Aj,n+1 is

Aj,n+1 =


= nα+1 − (n− α)(n + 1)α, j = 0
= (n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, 1 ≤ j ≤ n
= 1, j = n + 1

(16)

The predictor xP(n + 1) in Equation (15) is

xP(n + 1) = x0 +
1

Γ(α)

n

∑
j=0

Bj,n+1 f
[
tj, x(j)

]
, (17)

in which the term Bj,n+1 is

Bj,n+1 =
hα

α

[
(n + 1− j)α − (n− j)α

]
. (18)

Then the numerical solutions of Equation (8) can be obtained by Equation (15). Ad-
ditionally, the numerical solutions of the charging and discharging state in the advanced
test scenario will be collected in each switching cycle by the aforementioned stroboscopic
map technique.

3.2.3. Solutions Obtained by Oustaloup’s Rational Approximation Method

By Oustaloup’s rational approximation method, a continuous filter can be designed in
the frequency domain to achieve fractional-order calculus operations approximately. More
specifically, by the Laplace transform, the fractional-order operation dα

dtα can be transformed
to an s-domain term sα, then the frequency domain characteristics of sα can be approximated
in the pre-defined frequency interval [ωL, ωH ] by an s-domain rational fraction function:

dα

dtα
⇒ K

n

∏
i=−n

s + zi
s + pi

, (19)

where the gain K, zeros zi, and poles pi are
K = (0.9 ·ωH)

α

zi = −ωL · µ((i+N+0.5−0.5·α)/(2·N+1))

pi = −ωL · µ((k+N+0.5+0.5·α)/(2·N+1)),

(20)
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respectively. The coefficient µ is

µ =
ωH
ωL

. (21)

Then the numerical solutions of Equation (8) can be obtained by encapsulating
Equation (19) to a module in MATLAB/Simulink, such as those introduced in litera-
ture [16–18]. In addition, Equation (10) of the SSA technique should be applied. The block
diagrams of the basic test scenario and the advanced test scenario are provided in Figure 6,
where the block s−α with red background is encapsulated according to Equation (19).

Figure 6. Principle block diagrams: (a) basic test scenario, (b) advanced test scenario.

4. Results Comparison and Evaluation

According to the scenario settings and the related derivation, comparative works are
carried out in this section, and the numerical results are obtained by the F-ABM method,
G-L definition, and Oustaloup’s method, collected in groups. In addition, experiment
waveforms are provided as reference.

4.1. Results of Calculation and Simulation

The first group of results are from the basic test scenario. By using the aforementioned
three approaches, one can obtain numerical simulation results as depicted in Figure 7.
The second group of results is from the advanced test scenario, with the simulation results
given in Figure 8. In both cases, the blue solid line represents the voltage of power
supply, while the red dash-and-dot line corresponds to the results of Oustaloup’s rational
approximation method, the black dash line corresponds to the results of G-L definition,
and the green solid line corresponds to the results of the F-ABM method.
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Figure 7. Comparison of basic test scenarios: (a) sinusoidal case, (b) step case.

Figure 8. Comparison of advanced test scenarios: (a) advanced scenario with fs = 100 Hz,
(b) advanced scenario with fs = 200 Hz.
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In the above two figures, the sub-graphs with red and blue backgrounds refer to the
enlarged parts.

In the sinusoidal case, it can be seen that the results of the three methods mesh well
with each other in the steady state. There is a lag of around 0.5 ms between the voltage vc(t)
and the voltage of the power supply, which is determined by the capacitance C = 10 µF
and the fractional order α = 0.8852 of the equivalent impedance model of the capacitor.

In step case, it can be seen that at the discontinuous point, the peak currents obtained
by the three methods are almost the same, the value is around 1.0395 A. However, note
that, the results obtained by three methods are slightly different at a steady state. In detail,
the steady-state voltage calculated by Oustaloup’s method is about 0.1 V lower than the
results obtained by the G-L definition and F-ABM method. In addition, the steady-state
current calculated by Oustaloup’s method is about 0.01 A higher than the results obtained
by the G-L definition and F-ABM method.

In advance test scenarios, it can be seen that the results of three methods mesh well
with each other. However, note that there are spikes of the voltages vc(t) and vcap(t) at
discontinuous points if one uses Oustaloup’s method. With the acceleration frequency fs of
charge–discharge state transition, this spike phenomenon becomes obvious. In addition,
the steady-state current icap(t) and the voltage vcap(t) calculated by the three methods
are slightly different. With the acceleration frequency fs of the charge–discharge state
transition, this difference becomes obvious.

4.2. Evaluation and Discussion

In order to further validate the calculation results, experiment waveforms are provided
in Figures 9 and 10.

Figure 9. Experiment results of basic test scenarios: (a) sinusoidal case, (b) step case.

Figure 10. Experiment results of advanced test scenarios: (a) advanced scenario with fs = 100 Hz,
(b) advanced scenario with fs = 200 Hz.
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In Figure 9, the blue solid lines are the voltage v2(t) of the resistor R2. It can be
regarded as the sampling for the current icap(t) flowing through the capacitor. The red
solid lines correspond to the voltage of the power supply, the green solid line corresponds
to the voltage vcap(t) of the capacitor.

It can be found that experimental waveforms are very similar to the theoretical cal-
culation and simulation results. In order to assess the results of the calculation, statistical
analysis was used to qualify different methods.

First of all, we compare the spike current ispike, the averaged steady-state capacitor
voltage v̄cap, and the averaged steady-state capacitor current īcap in the step case in Table 1.

Table 1. Comparison of the spike current ispike, the averaged steady-state capacitor voltage v̄cap,
and the averaged steady-state capacitor current īcap in step case.

v̄cap īcap ispike

G-L definition 11.2894 V ≈1.29 mA 1.0012 A
F-ABM 11.3025 V ≈−0.2 mA 1.0308 A
Oustaloup’s 11.2816 V 0.0110 A 1.0379 A
Experiments 11.5570 V ≈1 mA 0.9869 A

From Table 1, it can be seen that most of the calculation results of the three methods
have little deviation from the experimental results in the step case. However, compared
with the other results, the averaged current īcap obtained by Oustaloup’s method is too large.
This current value is unreasonable because in both theory and practice, if the electric field
applied to the capacitor is constant, the current of the capacitor should be in a trickle state.

Then, we compare the calculations results in sinusoidal case and advanced scenarios
and list the peak-to-peak values obtained by different methods in Table 2.

Table 2. Comparison of peak-to-peak values of capacitor voltage vcpp and current icpp.

In Sinusoidal Case In Advanced Scenario with
fs = 100 Hz

In Advanced Scenario with
fs = 200 Hz

G-L definition (0.5851 A, 21.9082 V) (1.6848 A, 11.0712 V) (1.6656 A, 10.6078 V)
F-ABM (0.5908 A, 21.9414 V) (1.6853 A, 10.7952 V) (1.6686 A, 10.0280 V)
Oustaloup’s (0.5514 A, 22.3235 V) (1.9266 A, 11.6760 V) (1.9088 A, 12.2848 V)
Experiments (0.6211 A, 21.1210 V) (1.6991 A, 11.6547 V) (1.6624 A, 11.3748 V)

From Table 2, it can be seen that the calculation results of the three methods have little
deviation from the experimental results in the sinusoidal case, which means that the three
methods are applicable for continuous situations.

However, compared with other results, the peak-to-peak current ipp obtained by
Oustaloup’s method is larger in advanced scenarios. In addition, one can observe pulse
voltage signals at some edge time points in the simulation results obtained by Oustaloup’s
method, which cannot be observed in both experiments and the results of the other two
methods. In principle, this pulse voltage phenomenon mainly occurs at the on and off
operation edges of the power MOSFET ST . At these time points, the test circuit switches
between charging and discharging states, just like the high-level and low-level signals of
the sign function in Figure 6 undergo periodic switching. As a result, the state equation
of the test circuit switches between Equation (5) and (7), and the test bench is a typical
piecewise smooth circuit system.

Basically, the expressions of most frequency-domain rational approximation methods
are the approximation of the amplitude–frequency or phase–frequency characteristics
of ideal fractional calculus operators in a predetermined frequency band, and usually
considering the situation of being continuously differentiable. However, at the boundary
points of piecewise smooth scenarios, the state equation of the test bench is discontinuous
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and non-derivable. Therefore, the approximation results of the rational approximation
method are not that effective. This pulse–voltage phenomena can also be explained by the
Fourier transform of a step function.

5. Conclusions

This paper compares the effectiveness of the G-L definition based method, the F-ABM
method, and Oustaloup’s rational approximation method for fractional-order piecewise
smooth circuit systems. A test platform for verification is developed, in which a fractional-
order component, a non-solid electrolytic capacitor, is adopted. The test platform can be
operated under basic and advanced test scenarios. The basic scenario contains a continuous
sinusoidal case and a step case, while the advanced scenario is the periodic charging and
discharging operation of the capacitor.

Three computational methods work well in basic test scenarios, especially in the si-
nusoidal case, which indicates that these methods are effective in continuous situations.
However, in the step case, the averaged current obtained by Oustaloup’s method is too
large. In advance scenarios, the waveforms obtained by three methods are similar to the
experimental results. Two iterative numerical calculation methods, G-L definition method
and F-ABM method, perform well in fs = 100 Hz and fs = 200 Hz advanced scenar-
ios, the deviation between their calculation results and the experimental results is small.
However, applying Oustaloup’s method in advanced scenarios leads to large calculation
deviations. Moreover, if one employs Oustaloup’s method in advanced scenarios, there is a
pulse–voltage phenomenon when the circuit changes from the charging state to discharging
state, which cannot be observed in both experiments and the results of the two iterative
numerical calculation methods. The comparison and experimental verification results show
that the G-L definition based method and F-ABM method are effective for fractional-order
piecewise-smooth circuit systems.

The results provided by this research will provide more confidence for understanding
the dynamics of real-world systems governed by fractional calculus. For those discrete-
or continuous-time piecewise-smooth fractional-order dynamical systems, such as power
electronic converters, which are typical piecewise smooth fractional-order circuit systems,
if the fractional-order characteristics of passive components used in topology are considered,
the discussion in the work provides a reference for effective deployment calculation methods.
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