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Abstract: Proper control is necessary for ensuring that UAVs successfully navigate their surroundings
and accomplish their intended tasks. Undoubtedly, a perfect control technique can significantly
improve the performance and reliability of UAVs in a wide range of applications. Motivated by this, in
the current paper, a new data-driven-based fractional-order control technique is proposed to address
this issue and enable UAVs to track desired trajectories despite the presence of external disturbances
and uncertainties. The control approach combines a deep neural network with a robust fractional-
order controller to estimate uncertainties and minimize the impact of unknown disturbances. The
design procedure for the controller is outlined in the paper. To evaluate the proposed technique,
numerical simulations are performed for two different desired paths. The results show that the control
method performs well in the presence of dynamic uncertainties and control input constraints, making
it a promising approach for enabling UAVs to track desired trajectories in challenging environments.

Keywords: UAV; robust controller; neural network estimator; fractional calculous; intelligent observer

1. Introduction

Unmanned aerial vehicles (UAVs) have the potential to be used for a wide range of
applications, including surveillance, transportation, and environmental monitoring, among
others [1,2]. However, controlling the trajectory and behavior of UAVs can be challenging
due to the presence of uncertainties and external disturbances [3]. To address this issue,
this paper proposes a new neural network-based fractional-order control technique for
enabling UAVs to track desired trajectories despite the presence of these challenges [4,5].

Fractional calculus is a mathematical approach that allows for the study of arbitrary-
order derivatives and integrals, which can be more general and more accurate than tra-
ditional integer-order derivatives and integrals [6–8]. One of the main advantages of
fractional calculus is its ability to more accurately model the dynamic behavior of many
physical systems, which can lead to improved accuracy and precision in various applica-
tions [9]. In addition, fractional calculus has the ability to capture the complex, non-integer
order relationships that may be present in real-world systems, and it can provide a more
robust and stable foundation for modeling and control [10]. Overall, the use of fractional
calculus can lead to improved understanding and prediction of complex systems, as well
as improved performance and reliability in various applications [7,11–14].

Several recent studies have focused on the application of fractional calculus for control
purposes. In ref. [15], a long-memory recursive prediction error method was proposed for
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recursive continuous-time system identification using fractional-order models. In ref. [16],
the performances of prosthetic hands were enhanced using a fractional proportional integral
(FPI) controller and ant colony optimization (ACO) algorithm. In ref. [17], an automated
and simple conception of multivariable QFT using fractional-order controllers design was
proposed, resulting in improved robust control of MIMO systems. Rammal et al. [18] used
the flatness property for fault detection and isolation in fractional-order linear systems. In
ref. [19], a method was presented for the computation of fractionally flat outputs for linear
fractionally flat systems based on the notion of unimodular completion.

A data-driven approach is a method of solving a problem or making a decision in
which data are collected and analyzed rather than relying on preconceived notions or
predetermined theories [20]. This type of approach is often used in machine learning
and artificial intelligence, where algorithms are used to learn from data rather than being
explicitly programmed to perform a specific task. In a data-driven approach that uses
neural networks, data are collected and used to train a neural network model [21–23]. The
model is then able to make predictions or decisions based on new input data without being
explicitly programmed to perform the task. This allows the model to adapt and improve
over time as it is exposed to more data [24].

The nonlinear dynamics of neural networks have been an area of increasing interest in
recent years [25,26], as they offer a promising avenue for the development of intelligent
control systems. This research field is concerned with the study of how neural networks
behave over time when subjected to nonlinear inputs, with inherent nonlinearities arising
from the activation functions used in the neurons [27,28]. These nonlinear dynamics can
be harnessed for control purposes, as neural networks are capable of approximating the
underlying dynamics of a system and generating control signals based on the observed
inputs [29]. By leveraging the adaptive and robust nature of neural networks, control
systems can be developed that are capable of effectively dealing with complex and dynamic
environments [30]. The potential applications of these methods are vast, ranging from
robotics to autonomous vehicles, and they represent an exciting direction for future research
in the field of intelligent control [31,32]. Neural networks can also be used to estimate
uncertainties and filter out noise, which can improve the accuracy and reliability of control
systems. Overall, the use of neural networks in control can lead to improved performance
and robustness in a wide range of applications [33].

Sliding mode control has gained significant popularity in recent years as a viable
solution for controlling nonlinear systems. This is attributed to its exceptional robustness
in the presence of uncertainties and disturbances, as well as its relative simplicity in both
design and implementation [34,35]. The sliding mode control technique employs a sliding
manifold that constrains the system state to lie within a set of conditions, leading to a high
degree of robustness against model uncertainties, disturbances, and external noise [36–40].
In recent works, sliding mode control has been utilized in various applications, such as syn-
chronization of fractional-order hyperchaotic memristor oscillators [41], stabilization and
tracking control of non-holonomic spherical robots [42], finite-time disturbance-observer-
based integral terminal sliding mode control for three-phase synchronous rectifiers [43],
control of coexisting attractors in bistable piezomagnetoelastic power generators [44], and
fault-tolerant terminal sliding mode control for Euler–Bernoulli nano-beams [38]. These
works have demonstrated the advantages of sliding mode control, including robustness,
tracking performance, and stability of closed-loop systems, making it a promising technique
for nonlinear systems.

There have been many different control techniques proposed for UAVs, and the
best approach for a particular UAV will depend on its specific characteristics and the
requirements of the task it is performing [33]. Some of the control techniques that have
shown particular promise for UAVs include model-based techniques, such as linear [45]
and nonlinear control [46,47], as well as machine learning-based techniques, such as neural
networks and reinforcement learning. Other approaches that have been successful for UAV
control include adaptive control [48,49], robust control [50,51], and optimal control [52,53].
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These techniques can be used individually or in combination, depending on the needs
of the UAV and the constraints of the task it is performing. Ultimately, the best control
technique for a UAV will depend on a variety of factors, including the complexity of the
system, the presence of uncertainties and disturbances, and the performance requirements
of the task.

The current study aims to improve the control of UAVs in the face of external distur-
bances and uncertainties, with the aim of improving the performance and reliability of
UAVs in a wide range of applications. The novelty of the proposed control method in this
article compared to earlier works is that it combines a deep neural network with a robust
fractional-order controller to estimate uncertainties and minimize the impact of unknown
disturbances in UAVs. The proposed control technique uses a data-driven approach to
improve the performance and reliability of UAVs in a wide range of applications, and it is
based on fractional calculus, which allows for the study of arbitrary-order derivatives and
integrals and can be more general and accurate than traditional integer-order derivatives
and integrals. The use of fractional calculus in this control technique can lead to improved
understanding and prediction of complex systems, as well as improved performance and
reliability in various applications. Additionally, the use of a deep neural network in this
control method allows the controller to adapt and improve over time as it is exposed to
more data, leading to improved performance and robustness in the presence of external
disturbances and uncertainties. The design procedure for the controller is outlined in
the paper, and the technique is evaluated through numerical simulations of two different
desired paths. The results show that the proposed control method performs well under
dynamic uncertainties and control input constraints, making it a promising approach for
enabling UAVs to track desired trajectories in challenging environments.

The rest of the paper is organized as follows. In Section 2, the dynamic model of
the modified UAV is presented. In Section 3, the neural network estimator and problem
formulation are delineated. In Section 4, the design procedure of the new controller is
described. In Section 5, numerical simulations are presented. Finally, in Section 6, the main
conclusions of the paper are summarized.

2. Modified UAV

In this section, the focus is on a specific model of an UAV that has five rotors. This
model is modified to include a larger, constant-speed rotor in the center of the system in
order to increase the UAV’s ability to carry payloads. The structure of this modified UAV
is shown in Figure 1. It is important to note that during flight, the control of this UAV is
only performed using the four side rotors, while the added, constant-speed rotor is solely
responsible for enhancing the UAV’s endurance for carrying larger payloads.
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Figure 1. The layout of the modified UAV [54].

The motion principle of the modified UAV refers to the way in which the UAV is able
to move or fly through the air. The flight dynamics are crucial for the safe and efficient
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operation of the aircraft. It determines how the UAV moves through the air, including
its speed, altitude, and direction. Understanding and controlling the motion principle
is essential for navigation, maneuverability, and stability, and it is a key aspect of UAV
design and control systems. Here, to reduce the gyroscopic effects and prevent the UAV
from rotating around its own axis, two pairs of rotors, (1,3) and (2,4), are made to rotate in
opposite directions. By adjusting the angular velocity (rotational speed) of the four side
rotors, the UAV is able to move in the desired direction. Figure 2 illustrates the principle of
motion for the modified UAV. In other words, the figures show how the UAV is able to fly
by manipulating the rotational speeds of the side rotors.
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Figure 2. (a) Scheme and (b) motion principle of the modified UAV [54].

To maintain a stable hover, the rotational speeds of the rotors that are positioned
facing each other must be equal. The yaw rotation (rotation about the z-axis) is achieved by
adjusting the speeds of each pair of facing rotors. Additionally, changing the speeds of all
four rotors together will cause the UAV to move vertically, either upwards or downwards,
along the z-axis. By altering the rotational speed of rotors 2 and 4 in opposite directions,
the UAV will roll or rotate about the x-axis. Similarly, by adjusting the speeds of rotors 1
and 3 in opposite directions, the UAV will pitch or rotate about the y-axis. These rotations
allow the UAV to change its orientation and move in different directions.

Based on the dynamic of the system depicted, the following equations are provided
by force and torques on the vehicle’s body:

F = Kt
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4
)
+ Kt5Ω2

5 = f1 + f2 + f3 + f4 + f5,
τx = Ktl

(
Ω2

2 −Ω2
4
)
,

τy = Ktl
(
Ω2

3 −Ω2
1
)
,

τz = Kd
(
Ω2

1 −Ω2
2 + Ω2

3 −Ω2
4
)
+ Kd5Ω2

5,

(1)

where F indicates the force applying to the body along the z-axis. Additionally, τx, τy, and
τz denote the torques generated by the rotors that cause the UAV to rotate around the x-axis,
y-axis, and z-axis. Ωi denotes rotor angular velocity where i represents the rotor number
(i = 1, 2, ..., 5). Furthermore, the thrust force produced by each rotor is represented by fi
(i = 1, 2, ..., 5). The thrust and drag factors are represented by Kt and Kd, respectively [54].
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Based on the frame system shown in Figure 2, the modified UAV’s translational dynamics,
which shows how it moves in relation to a fixed reference frame, are described as follows:

mt·aE = FE
external =

 ..
x
..
y
..
z

 =
1

mt

 F sin θ − k f
.
x2

−F cos θ sin ϕ− k f
.
y2

−F cos θ cos ϕ−mtg− k f
.
z2

, (2)

where mt is the total UAV’s mass, and the acceleration of the center of mass is denoted by
aE. The air friction coefficient that affects the translational motion of the UAV is represented
by k f . This coefficient measures the amount of resistance or drag that the air exerts on
the UAV as it moves through it. Additionally, variables ϕ, θ, and ψ represent the roll,
pitch, and yaw angles, respectively. These angles describe the orientation of the UAV’s
body in relation to a fixed reference frame. The relationship between the Euler rates (the
rates at which the Euler angles change) and the angular body rates (the rates at which the
orientation of the UAV’s body changes) is expressed as follows:

ωB =

 p
q
w

 =

1 0 − sin θ
0 cos ϕ cos θ sin ϕ
0 − sin ϕ cos θ cos ϕ




.
ϕ
.
θ
.
ψ

. (3)

Additionaly, the rotational dynamics of modified UAVs are given by:

∑ MG =
5
∑

i=1

(
∂Hi
∂t + ωB

i × Hi + R0i/G ×miai

)
,

→

 .
p
.
q
.

w

 =


(

A1qw− JzqΩ− J′zqΩ5 + τx − k f t p
)

/Ix(
B1 pw− Jz pΩ− J′z pΩ5 + τy − k f tq

)
/Iy(

C1 pq− Jz
.

Ω− J′z
.

Ω5 + τz − k f tw
)

/Iy

.
(4)

In this equation, H represents the angular momentum of the UAV, R0i/G represents the
distance between the center of mass and each particle, I represents the moment of inertia,
and J represents the rotor inertia. The air friction coefficient that affects the rotational
motion of the UAV is represented by k f t. Furthermore, parameters A1, B1, C1, and Ω are
provided by: 

A1 = Iy − Iz − 4Jy − 2J′z,
B1 = Iz − Ix − 4Jz − 2J′z,
C1 = Ix − Iy,
Ω = Ω1 −Ω2 + Ω3 −Ω4.

(5)

To derive the equations of motion, the aerodynamic effects are treated as a disturbance,
and it is assumed that the Euler angles are relatively small. Under these assumptions,
the rate of change of the Euler angles and the angular velocity of the UAV in the body
coordinate system are equal, meaning that: p

q
w

 =


.
ϕ
.
θ
.
ψ

, (6)

where p, q, and w are the angular velocity components around the x-axis, y-axis, and z-axis,
respectively. Based on the assumption that the Euler angles are small, the equation of
motion for the UAV is described as follows:
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m
..
x = F sin θ,

m
..
y = −F cos θ sin ϕ,

m
..
z = F cos θ cos ϕ−mg,

Ix
..
ϕ = A1

.
ψ

.
θ − Jz

.
θ Ω− J′z

.
θ Ω5 + τx,

Iy
..
θ = B1

.
ψ

.
ϕ− Jz

.
ϕ Ω− J′z

.
ϕ Ω5 + τy,

Iz
..
ψ = C1

.
ϕ

.
θ − Jz

.
Ω− J′z Ω5 + τz.

(7)

3. Neural Network Estimator and Problem Formulation

Herein, an overview of the radial basis function (RBF) neural network estimator is
provided, followed by the presentation of the problem formulation for the control scheme.

3.1. RBF Neural Network Estimator

An RBF neural network estimator is a type of neural network that is used for approxi-
mating functions or making predictions. It is composed of three layers: an input layer, a
hidden layer, and an output layer. The hidden layer consists of a number of “radial basis
functions”, which are centered at different points and have a certain width or spread. These
functions are used to transform the input data into a higher-dimensional space, where it
becomes easier to separate or classify. The output layer then combines the outputs of the
hidden layer using linear combinations to produce the final output. RBF neural networks
are particularly useful for tasks that involve interpolation or extrapolation, and they have
been applied to a wide range of fields, including control systems, pattern recognition, and
function approximation. The structure of the RBF neural network estimator is shown in
Figure 3, where the output of the estimator, denoted as f̂i, is calculated as follows:

f̂i = ŵ f φi = f ∗i + ε =
m

∑
j=1

ω∗i,j φi,j(Ei) + ε = w∗f φi + ε, i = 1, 2, . . . no (8)

φi,j(Ei) = exp

(
−
∣∣∣∣Ei − cj

∣∣∣∣22

2b2
j

)
. j = 1, 2, . . . , m. (9)
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In this equation, ω∗i,j represents the ideal constant weight of the RBF, which is used
to adjust the strength or importance of each function in the hidden layer. The RBF of
the hidden nodes is represented by φi,j. m and no denote the hidden nodes’ and outputs’
numbers, respectively. N represents the inputs’ number, and bj represents the width
value of the basis function, which determines the spread or influence of the function.
Ei = [Ei,1, Ei,2, . . . , Ei,N ] is the input vector for the RBF, which consists of the input data
for the network. ε represents the bounded RBF approximation error, which measures the
difference between the output of the network and the true value. cj is the center of the basis
function, which determines its position in the input space [39].
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3.2. Problem Formulation

The general form of the equation that describes the behavior of a nonlinear system
can be expressed as follows:

xn = f (x) + d(x, t) + u. (10)

In this equation, x =
[

x,
.
x, . . . , x(n−1)

]T
∈ Rn represents the state vector of the

system. f (x) is the uncertain function of the system, which is bounded by an unknown
positive constant f1, such that || f ( x)||< f1 < ∞ . u represents the constrained control input
or the input signal that is applied to the system in order to control its behavior. Furthermore,
the external disturbance acting on the system is bound by ε, such that ||d(x, t)||< ε . This
disturbance includes any part of the control signal that exceeds the control bounds (uextera))
and cannot be applied to the system. It is important to consider the effect of this disturbance
on the system’s behavior. Given a desired trajectory xd, the tracking error and its function
can be defined as follows:

e = x− xd,
s = e(n−1) + λn−1e(n−2) + . . . + λ1e.

(11)

In this equation, λ1, . . . , λn−1 are positive constants that are chosen by the user. The
time derivative of the error function (11) is provided by:

.
s = e(n) + λn−1e(n−1) + . . . + λ1

.
e= f (x) + u + d(x, t) + qa, (12)

in which qa = −x(n)d + λn−1e(n−1) + . . . + λ1
.
e.

4. Control Design

The general state space equation of a nonlinear system affected by disturbance is
provided by 

.
xi = xi+1 i = 1, 2, ..., n− 1,
.
xn = f (x) + g(x)u + d(t),
y = x1.

(13)

To establish the stability of the error system and the ability of the disturbance observer
and terminal sliding mode control to track disturbances over a finite time period, the
following lemma and theorem are utilized.

Lemma 1 ([32]). Let V(t) be a positive definite function that is continuous. It is proven that V(t)
converges to its equilibrium point in the finite time ts

ts ≤ t0 +
1

ϑ(1 + χ)
ln

ϑV1−χ(t0) + ξ

ξ
, (14)

where ϑ > 0, ξ > 0, and 0 < χ < 1 if the following inequality is hold

.
V(t) + ϑV(t) + ξVχ ≤ 0, ∀t > t0. (15)

Additionally, in order to develop the finite-time sliding mode tracking controller, the
following sliding surfaces are established.

s1 = y− yd

s(n)1 = y(n) − y(n)d =
.
xn − y(n)d .

(16)

Using a recursive technique, the jth-order derivative of si is calculated as:

s(j)
i = s(i+1)

i−1 +
d(j)

dt(j)

[
αi−1si−1 + βi−1spi−1\qi−1

i−1

]
. (17)
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By taking into account (15) and (17), the following equation is derived:

.
sn = s(n)1 +

n−1

∑
j=1

αjs
(n−j)
j +

n−1

∑
j=1

β j
d(n−j)

dt(n−j)
s

pj/qj
j + ek, (18)

where ek = s1 + Dq
t s1 + Dq

t s2 + . . . + Dq
t sn. In which, Dq

t denotes the fractional derivative
with fractional order q. We add this term in the sliding surface and accordingly to the
control signal to take into account the memory effects uncertainties and unknown function
of the system. In other words, the inclusion of a fractional-order derivative term in the
sliding surface allows for the control signal to take into account the effects of memory and
non-local properties in the system. These effects can cause uncertainties and unknown
functions in the system, which can make it difficult to control the system with traditional
integer-order derivatives. Furthermore, by including the fractional-order derivative term
in the sliding surface, the control signal can more accurately account for these uncertainties
and unknown functions. This allows for more precise control of the system, even in the
presence of these uncertainties and unknowns. This is because fractional-order derivatives
are able to more accurately represent the dynamics of the system and account for the
memory effects and non-local properties that can cause these uncertainties and unknowns.
Additionally, the fractional-order derivative term in the sliding surface allows for the
control signal to be more robust to uncertainties and unknown functions in the system.
This improves the overall performance of the control system, as it is able to respond more
effectively to changes in the system dynamics and account for the effects of memory and
non-local properties.

It is worth mentioning that these advantages come at the cost of mathematical complex-
ity and additional computational requirements. Therefore, the design of a fractional-order
controller is more challenging and might require specialized methods and tools. In what
follows, the design of this controller is delineated.

As per (13) and (18), the derivative of sn is represented as follows:

.
sn =

.
xn − y(n)d +

n−1
∑

j=1
αjs

(n−j)
j +

n−1
∑

j=1
β j

d(n−j)

dt(n−j) s

pj
qj
j

= f (x) + g(x)u + d− y(n)d ++
n−1
∑

j=1
αjs

(n−j)
j +

n−1
∑

j=1
β j

d(n−j)

dt(n−j) s

pj
qj
j + ek.

(19)

Finally, the data-driven-based terminal sliding mode tracking control signal is provided by:

u = − u0
g(x) ,

u0 = f (x)− yn
d +

n−1
∑

j=1
αjs

(n−j)
j +

n−1
∑

j=1
β j

d(n−j)

dt(n−j) s

pj
qj
j + Ŵφ + ek + k sign (sn)

+δsn + µs
pn
qn
n ,

(20)

where δ and µ are positive scalar parameters that are used to adjust the performance of the
control system are positive parameters. In addition, k must be greater than the absolute
value of ε (k > | ε |). In the inputs of the neural network are sliding errors (s1 . . . sn) and
the output of the neural network, represented as Ŵφ, is then combined with the control
signal. This combination allows the neural network to learn the inherent behavior of the
system and provide additional control signals when necessary to drive the system toward
the desired behavior. The use of a neural network to generate the control signal allows for
the control method to be highly flexible and adaptive to changing conditions or variations
in the system. Additionally, the error of the weight estimation is defined as

W̃ = W∗ − Ŵ. (21)
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The equation that governs the adaptation of the weights of the neural network con-
troller is presented as follows:

.
Ŵ = −γ snφ, (22)

where γ is a positive design parameter.

Proof. By substituting (20) into (19) and taking into account that d− Ŵφ = ε, the following
equation is obtained:

.
sn = −δsn − µs

pn
qn
n − k sign (sn) + d− Ŵφ = −δsn − µs

pn
qn
n − W̃φ− ε. (23)

By taking into account (20), the following result is derived:

.
sn = −δsn − µs

pn
qn
n − k |sn|. (24)

We can assume the Lyapunov function candidate to be:

V =
1
2

s2
n +

1
2γ

W̃i
2. (25)

Considering Equation (23), the derivative of the Lyapunov function V(t) with respect to
time can be obtained.

.
V ≤ −δs2

n − µs
p2
q2
n − k |sn| − W̃i snφ + 1

γ W̃iD
q
t W̃i − ε

= δs2
n − µs

pn
qn
n − k |sn| − W̃i snφ =

≤ −2δV − µ2
pn+qn

2qn V
pn+qn

2qn .

(26)

Additionally, it is known that
.

Ŵ = −γ snφ and k > | ε |, which leads to

.
V ≤ −δs2

n − µs
pn
qn
n

≤ −2δV − µ2
pn+qn

2qn V
pn+qn

2qn .
(27)

Using Lemma 1 and Equation (27) as theoretical foundations, it can be deduced that
when using the disturbance–observer-based terminal sliding mode tracking controller, the
closed-loop system signals will reach a stable state within a specific timeframe. �

Figure 4 illustrates the data-driven -based finite time fractional-order controller process.
It uses the data-driven observer’s output to estimate all uncertainties and suppress their
effects. Uncertain parameters exist in real-world applications, and modeling of the system
cannot consider all of them, which is why a robust and intelligent controller is designed.
The data-driven-based disturbance observer is proposed to overcome the lack of accuracy
due to uncertainty.
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5. Simulation Results

The following states are defined for the UAV:

ϕ = X1ϕ,
.
ϕ =

.
X1ϕ = X2ϕ,

θ = X1θ ,
.
θ =

.
X1θ = X2θ ,

ψ = X1ψ,
.
ψ =

.
X1ψ = X2ψ,

x = X1x,
.
x =

.
X1x = X2x,

y = X1y,
.
y =

.
X1y = X2y,

z = X1z,
.
z =

.
X1z = X2z.

(28)

Without limiting the generality, the mathematical representation of the UAV’s behavior,
Equation (7), is expressed in the state-space form as:{ .

Xi = Xi+1,
.

Xn = f (X) + g(X)u + d,
(29)

where

X1 =



X1ϕ

X1θ

X1ψ

X1x
X1y
X1z

, X2 =



X2ϕ

X2θ

X2ψ

X2x
X2y
X2z

, u =



uϕ

uθ

uψ

uz
uz
uz

, d =



dϕ

dθ

dψ

dx
dy
dz

, (30)

where, in accordance with Equation (7), uz = F, uϕ = τx , uθ = τy and uψ = τz. Further-
more, f (q) and g(q) are written as

f (X) =



fϕ

fθ

fψ

0
0
fz

 =



1
Ix

(
A1X2θX2ψ − JzX2θΩ− J′zX2θ Ω5 + τx

)
+ dϕ

1
Ix

(
B1X2ψX2ϕ − JzX2ϕ Ω− J′zX2ϕ Ω5

)
+ dθ

1
Ix

(
C1X2ϕX2θ − Jz

.
Ω− J′z Ω5

)
+ dψ

0 + dx
0 + dy
−g + dz


; g(X)

= dig (6)×



1/Ix
1/Iy
1/Iz

sin X1θ/m
− sin X1ϕ cos X1θ/m

(1/m)
(
cos X1ϕ cos X1θ

)

.

(31)
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The UAV system has six degrees of freedom, while the system has only four control
inputs, making it an underactuated system. To overcome this issue, this paper defines
virtual position control inputs, ux = sin q1θ and uy = sin q1ϕ cos q1ϕ. These virtual control
inputs are used to produce the desired roll and pitch angles by tracking the errors of
positions x and y. This approach is used to tackle the underactuated problem in the UAV
system, which allows for better control of the UAV by providing additional control inputs
that are derived from the system’s existing states. This improves the overall performance
of the UAV by allowing it to respond more accurately to changes in the system dynamics
and external disturbances. As a result, by defining these two virtual control inputs, the
UAV’s flight dynamics can be reformulated as follows:

g(q) = dig (6)×



1/Ix
1/Iy
1/Iz
1/m
−1/m

(1/m)
(
cos q1ϕ cos q1θ

)

, u =



uϕ

uθ

uψ

ux
uy
uz

. (32)

The initial conditions for the system are defined as zero for all states. The desired
roll and pitch angles, θd and ϕd, are chosen based on the virtual control inputs, which are
calculated as θd = sin−1(ux) and ϕd = sin−1

(
uy

cos(θd)

)
. Additionally, the parameters of the

dynamic model of the modified UAV are listed in Table 1 for reference.

Table 1. The parameters of the modified UAV.

Parameter Symbol Value

Mass of UAV mt 2 kg

Distance from rotor and center of mass l 0.4 m

Moment of inertia (x-axis) Ix 4.8 × 10−3 kg·m2

Moment of inertia (y-axis) Iy 4.8 × 10−3 kg·m2

Moment of inertia (z-axis) Iz 8.1 × 10−3 kg·m2

Rotor inertia Jz 8 × 10−5 kg·m2

Rotor inertia (rotor 5) J′z 2 × 10−5 kg·m2

Thrust factor Kt 4 × 10−5

Thrust factor of rotor 5 Kt5 2 × 10−5

Drag factor Kd 3 × 10−6

Drag factor of rotor 5 Kd 1.5 × 10−6

Gravity g 9.8 m/s2

Rotor angular velocity (r = 1, 2, 3, 4) Ωr max 350 rad/s

Rotor angular velocity (Rotor 5) Ω5 max 500 rad/s

5.1. Control of UAV with Uncertain Parameters

To evaluate the effectiveness of the controller, the following uncertainties were consid-
ered for the parameters of the system.

Iyapplied = Ix + 5× 10−4 sin(t),
Iyapplied = Iy + 3× 10−4 sin(t)

Izapplied = Iz + 1× 10−4 Dq
t sin(t) + 1× 10−4 cos(t),

(33)
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in which these uncertain and time-varying parameters are considered for all numerical
simulations. We consider the following complex a desired path for the system to follow:

xd = 1 + 0.4t, yd = −
(
2 + t

20
)

sin(t), zd = −
(
2 + t

20
)

cos(t), ψ = 0. (34)

MATLAB 2021-a was used for numerical simulations. Figure 5 shows the state of the
system over time and how it reaches the desired values quickly. The goal of this figure is
to show the proposed control scheme’s efficiency in achieving the desired state. It can be
observed that the system reaches the desired values quickly, indicating the control method’s
ability to stabilize the system effectively. Figures 6 and 7 provide more information about
the control inputs and rotor speeds, respectively. Figure 6 illustrates the control inputs
obtained through the proposed control method, which were constrained. Figure 7, on the
other hand, presents the speed of each rotor, which is a critical measurement to assess the
system’s performance.
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In addition to what was stated before, Figure 8 provides a detailed representation
of the system’s dynamic behavior. The three-dimensional phase plot allows for a better
understanding of how the system behaves in terms of its position and velocity. This
type of representation is particularly useful in visualizing the system’s trajectory over
time and the impact of the disturbances and limitations on the system’s performance. As
can be seen in the figure, the proposed control scheme guides the system to follow the
desired trajectory, despite the presence of unknown external disturbances and control input
limitations. This indicates that the proposed control method is robust and able to effectively
stabilize the system in the face of these challenges. Furthermore, the proposed control
scheme is able to guide the system to follow the desired path closely, which demonstrates
the control method’s high precision and accuracy. Overall, Figure 8 provides a clear visual
representation of the proposed control scheme’s ability to effectively stabilize the system.
The three-dimensional phase plot allows for a detailed understanding of how the system is
behaving, and the results demonstrate that the proposed control method is robust, precise,
and able to effectively stabilize the system in the presence of unknown external disturbances
and control input limitations.
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5.2. Comparison of Results

Real-world systems often exhibit uncertain dynamics that can be characterized by
fractional-order functions. To address this type of uncertainty, our proposed controller
is designed to be robust and capable of handling such disturbances. To evaluate the
performance of the controller under such conditions, we analyze the system’s behavior
in the presence of a fractional-order external disturbance. The following disturbance is
applied to the system:

Dq
t dz = sin(t). (35)

We subject the system to an external disturbance that varies over time according to the
fractional order Equation (34), with q = 0.8. Additionally, we compare the performance of
the proposed controller to that of an integer order controller. The integer order controller
is similar to the proposed controller but does not include the fractional order term (ek), as
shown in Equation (20). The control signal of the integer order controller is determined
as follows:

u = − u0
g(x) ,

u0 = f (x)− yn
d +

n−1
∑

j=1
αjs

(n−j)
j +

n−1
∑

j=1
β j

d(n−j)

dt(n−j) s

pj
qj
j + Ŵφ + k sign (sn) + δsn+µs

pn
qn
n ,

(36)

The sliding surface used in this controller is identical to the signal used in the proposed
controller, and it also includes a neural network estimator.

Figure 9 illustrates the system state’s time history under both the proposed control
technique and the integer order controller. While the neural network has significantly
improved the performance of the integer order controller, its accuracy is not perfect due
to the fractional nature of the external disturbance. In contrast, the proposed controller
is able to easily handle the disturbance and accurately follow the desired trajectory, as
evidenced by the z and ϕ responses in Figure 9. Further information about the control
inputs and rotor speeds can be found in Figures 10 and 11, respectively. Notably, the integer
order controller exhibits several jumps in rotor speed and control input, which can limit
its practical applications. Therefore, the proposed controller is preferred for its superior
performance and a wider range of potential applications.
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Figure 12 presents a three-dimensional phase plot that clearly shows the superior
performance of the proposed controller compared to its integer counterpart in terms of both
accuracy and robustness. The proposed controller is able to effectively handle the external
disturbance, resulting in a trajectory that more closely matches the desired path than that of
the integer controller. This further emphasizes the effectiveness of the proposed controller
and its potential for real-world applications.
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It is worth noting that the proposed controller has demonstrated remarkable robust-
ness in handling the fractional nature of the external disturbance, as evidenced by its ability
to accurately follow the desired trajectory with a high degree of precision. This robustness
is a key advantage of the proposed controller and highlights its potential for addressing
uncertainties and disturbances in practical applications.

The numerical results obtained in our study provide clear confirmation of the ro-
bustness of our proposed controller when accounting for the memory effect of fractional
calculus. Furthermore, the comparison to the integer controller sheds light on the impor-
tance of this type of controller which, in addition to the intelligent estimator, is enhanced
by fractional factors, suggesting potential avenues for enhancing system performance in
uncertain environments.

6. Conclusions

We proposed a new approach to control the tracking of a modified UAV through
data-driven fractional-order control. Our method includes extracting the dynamic model of
the UAV and providing its state-space equations. The control scheme is designed to handle
the uncertainties and disturbances that are typical in UAV systems by incorporating a
neural network observer. This observer uses data from the system to estimate the uncertain
dynamics of the system and provide a more accurate representation of the system’s behavior.
We also used a finite-time and fractional-order control scheme to reduce the impact of
these uncertainties. The fractional-order terms in the sliding surface and control input
improve the performance of the system in dealing with a wide range of uncertainties which
the system will encounter since it can better capture the memory effects. Furthermore,
by applying the Lyapunov theorem, we have ensured the finite-time convergence of the
system. To conclude, the proposed control technique has been demonstrated to have
excellent performance through numerical results. The proposed control technique for a
modified UAV could have practical applications in a number of fields, including aerial
photography, search and rescue operations, and remote sensing. For example, in aerial
photography, the proposed control scheme could provide improved stability and accuracy
in capturing aerial images. In search and rescue operations, the control scheme could help
a UAV navigate through challenging environments and provide real-time data and images
for rescue teams. In remote sensing, the control scheme could help a UAV accurately collect
data from remote areas and provide improved accuracy in data analysis and interpretation.
However, as a future research direction, one can study the robustness of the proposed
control scheme against faults and also investigate the use of other types of neural networks
to improve the closed-loop system’s performance. This could include using other types of
neural networks, such as recurrent neural networks (RNNs), which have been shown to be
effective in a variety of control applications.
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