Approximate Solutions for Time-Fractional Fornberg–Whitham Equation with Variable Coefficients
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
- (1)
- (2)
3. Analysis of Variational Iteration Method
4. Analysis of Adomian Decomposition Method
5. Analysis of Homotopy Analysis Method
6. Applications and Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azevedo, J.; Cuevas, C.; Henriquez, E. Existence and asymptotic behaviour for the time-fractional Keller–Segel model for chemotaxis. Math. Nachr. 2019, 292, 462–480. [Google Scholar] [CrossRef]
- Zabidi, N.A.; Abdul Majid, Z.; Kilicman, A.; Rabiei, F. Numerical Solutions of Fractional Differential Equations by Using Fractional Explicit Adams Method. Mathematics 2020, 8, 1675. [Google Scholar] [CrossRef]
- Jafari, H.; Seifi, S. Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2006–2012. [Google Scholar] [CrossRef]
- Jafari, H.; Golbabai, A.; Seifi, S.; Sayevand, K. Homotopy analysis method for solving multi-term linear and nonlinear diffusion–wave equations of fractional order. Comput. Math. Appl. 2010, 59, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Donatelli, M.; Mazza, M.; Serra-Capizzano, S. Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 2016, 307, 262–279. [Google Scholar] [CrossRef]
- Donatelli, M.; Mazza, M.; Serra-Capizzano, S. Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations. SIAM J. Sci. Comput. 2018, 40, A4007–A4039. [Google Scholar] [CrossRef]
- Lin, X.l.; Ng, M.K.; Sun, H.W. A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 2017, 336, 69–86. [Google Scholar] [CrossRef]
- Bu, W.; Liu, X.; Tang, Y.; Yang, J. Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Model. Simul. Sci. Comput. 2015, 6, 1540001. [Google Scholar] [CrossRef]
- Whitham, G.B. Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1967, 299, 6–25. [Google Scholar]
- Fornberg, B.; Whitham, G.B. A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1978, 289, 373–404. [Google Scholar]
- Kumar, D.; Singh, J.; Baleanu, D. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag–Leffler-type kernel. Eur. Phys. J. Plus 2018, 133, 1–10. [Google Scholar] [CrossRef]
- Gupta, P.K.; Singh, M. Homotopy perturbation method for fractional Fornberg–Whitham equation. Comput. Math. Appl. 2011, 61, 250–254. [Google Scholar] [CrossRef]
- Merdan, M.; Gökdoğan, A.; Yıldırım, A.; Mohyud-Din, S.T. Numerical simulation of fractional Fornberg-Whitham equation by differential transformation method. In Abstract and Applied Analysis; Hindawi: London, UK, 2012; Volume 2012. [Google Scholar]
- Alderremy, A.; Khan, H.; Shah, R.; Aly, S.; Baleanu, D. The analytical analysis of time-fractional Fornberg–Whitham equations. Mathematics 2020, 8, 987. [Google Scholar] [CrossRef]
- Abidi, F.; Omrani, K. The homotopy analysis method for solving the Fornberg–Whitham equation and comparison with Adomian’s decomposition method. Comput. Math. Appl. 2010, 59, 2743–2750. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.L.; Liu, S.Y. He’s fractional derivative and its application for fractional Fornberg-Whitham equation. Therm. Sci. 2017, 21, 2049–2055. [Google Scholar] [CrossRef]
- Sartanpara, P.P.; Meher, R.; Meher, S. The generalized time-fractional Fornberg–Whitham equation: An analytic approach. Partial. Differ. Equ. Appl. Math. 2022, 5, 100350. [Google Scholar] [CrossRef]
- Ahmad, H.; Seadawy, A.R.; Ganie, A.H.; Rashid, S.; Khan, T.A.; Abu-Zinadah, H. Approximate Numerical solutions for the nonlinear dispersive shallow water waves as the Fornberg–Whitham model equations. Results Phys. 2021, 22, 103907. [Google Scholar] [CrossRef]
- Shah, N.A.; Dassios, I.; El-Zahar, E.R.; Chung, J.D.; Taherifar, S. The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg–Whitham Equation and Comparison with Decomposition Transform Method. Mathematics 2021, 9, 141. [Google Scholar] [CrossRef]
- Iqbal, N.; Yasmin, H.; Ali, A.; Bariq, A.; Al-Sawalha, M.M.; Mohammed, W.W. Numerical methods for fractional-order Fornberg-Whitham equations in the sense of Atangana-Baleanu derivative. J. Funct. Spaces 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Lenells, J. Traveling wave solutions of the Camassa-Holm and Korteweg-de Vries equations. J. Nonlinear Math. Phys. 2004, 11, 508–520. [Google Scholar] [CrossRef]
- Chen, J. The stability of solutions for the generalized degasperis-procesi equation with variable coefficients. Math. Probl. Eng. 2015, 2015, 207427. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Feng, Y.; Li, S. Variational Problems with Partial Fractional Derivative: Optimal Conditions and Noether’s Theorem. J. Funct. Spaces 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.K.; Kumar, P. Fractional variational iteration method for solving fractional partial differential equations with proportional delay. Int. J. Differ. Equ. 2017, 2017, 5206380. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Manafian, J.; Saadatmandi, A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. Int. J. 2010, 26, 448–479. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 2007, 54, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.M. The variational iteration method for analytic treatment for linear and nonlinear ODEs. Appl. Math. Comput. 2009, 212, 120–134. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method–a kind of non-linear analytical technique: Some examples. Int. J. Non-Linear Mech. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- He, J. A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 230–235. [Google Scholar] [CrossRef]
- Adomian, G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [Google Scholar] [CrossRef] [Green Version]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Springer Science & Business Media: New York, NY, USA, 2013; Volume 60. [Google Scholar]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University Shanghai, Shanghai, China, 1992. [Google Scholar]
- Liao, S. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Liao, S. Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 2005, 169, 1186–1194. [Google Scholar] [CrossRef]
- Liao, S. Beyond Perturbation: Introduction to the Homotopy Analysis Method; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
0 | 0 | 2 | 2 | 0 | |
0.1 | 0.1 | 2.541025554 | 1.991394551 | 0.549631003 | |
0.2 | 0.2 | 3.977083804 | 1.738334153 | 2.238749651 | |
0.3 | 0.3 | 7.163139295 | 1.104283175 | 6.058856120 | |
0.4 | 0.4 | 14.00596958 | 0.26301164 | 13.74295794 | |
0.5 | 0.5 | 28.80747376 | 0.69271694 | 28.11475682 | |
0.6 | 0.6 | 61.19402329 | 7.56126741 | 53.63275588 | |
0.7 | 0.7 | 132.1993350 | 35.0418419 | 97.15749309 | |
0.8 | 0.8 | 286.4869258 | 117.4884319 | 168.9984939 | |
0.9 | 0.9 | 616.2555191 | 331.9641125 | 284.2914066 | |
1 | 1 | 1306.952037 | 842.2302549 | 464.7217817 | |
0 | 0 | 2 | 2 | 0 | |
0.1 | 0.1 | 2.289636497 | 2.099416352 | 0.190220145 | |
0.2 | 0.2 | 3.053697547 | 2.085683315 | 0.968014232 | |
0.3 | 0.3 | 4.954885502 | 1.897138477 | 3.057747025 | |
0.4 | 0.4 | 9.382828821 | 1.54535058 | 7.837478241 | |
0.5 | 0.5 | 19.47518759 | 1.73147878 | 17.74370881 | |
0.6 | 0.6 | 42.52650372 | 5.62861132 | 36.89789240 | |
0.7 | 0.7 | 95.44637321 | 23.41453671 | 72.03183650 | |
0.8 | 0.8 | 216.6411190 | 82.8281667 | 133.8129523 | |
0.9 | 0.9 | 490.9981703 | 252.3203983 | 238.6777720 | |
1 | 1 | 1100.897757 | 689.6370408 | 411.2607162 | |
0 | 0 | 2 | 2 | 0 | |
0.1 | 0.1 | 2.219088227 | 2.152357150 | 0.066731077 | |
0.2 | 0.2 | 2.628656823 | 2.243794656 | 0.384862167 | |
0.3 | 0.3 | 3.627226957 | 2.269200185 | 1.358026772 | |
0.4 | 0.4 | 6.084771319 | 2.229972343 | 3.854798976 | |
0.5 | 0.5 | 11.96807065 | 2.40088841 | 9.567182238 | |
0.6 | 0.6 | 25.89804802 | 4.30750395 | 21.59054406 | |
0.7 | 0.7 | 58.93797052 | 13.61183285 | 45.32613767 | |
0.8 | 0.8 | 137.4703988 | 47.6301328 | 89.84026597 | |
0.9 | 0.9 | 323.2302447 | 153.3892413 | 169.8410034 | |
1 | 1 | 756.9909123 | 448.5531203 | 308.4377920 |
0 | 0 | 0 | 0 | 0 | |
0.1 | 0.1 | 1.163766699 | 12.05048415 | 13.21425085 | |
0.2 | 0.2 | 17.02984022 | 5.10644444 | 11.92339578 | |
0.3 | 0.3 | 42.93553452 | 37.84546649 | 5.090068030 | |
0.4 | 0.4 | 76.65912143 | 82.86707406 | 6.20795263 | |
0.5 | 0.5 | 115.6963634 | 137.0397754 | 21.34341200 | |
0.6 | 0.6 | 157.0968959 | 196.8876146 | 39.79071872 | |
0.7 | 0.7 | 197.4322793 | 258.4945593 | 61.06227998 | |
0.8 | 0.8 | 232.7973816 | 317.5061666 | 84.70878500 | |
0.9 | 0.9 | 258.8244368 | 369.1656052 | 110.3411684 | |
1 | 1 | 270.7035747 | 408.3658330 | 137.6622584 | |
0 | 0 | 0 | 0 | 0 | |
0.1 | 0.1 | 0.7564569989 | 4.459744999 | 3.703288000 | |
0.2 | 0.2 | 2.570402463 | 2.155229537 | 4.725632000 | |
0.3 | 0.3 | 12.49304336 | 10.02229136 | 2.470752000 | |
0.4 | 0.4 | 30.39666054 | 33.87621254 | 3.479551997 | |
0.5 | 0.5 | 56.60474123 | 69.97974123 | 13.37500000 | |
0.6 | 0.6 | 90.31573016 | 117.6308022 | 27.31507200 | |
0.7 | 0.7 | 129.5188924 | 174.7947804 | 45.27588800 | |
0.8 | 0.8 | 170.9122578 | 238.0579858 | 67.14572800 | |
0.9 | 0.9 | 209.8305525 | 302.5997445 | 92.76919200 | |
1 | 1 | 240.1867606 | 362.1867606 | 122 | |
0 | 0 | 0 | 0 | 0 | |
0.1 | 0.1 | 0.2413076664 | 1.122257724 | 0.8809500575 | |
0.2 | 0.2 | 0.1238826704 | 1.465903435 | 1.589786105 | |
0.3 | 0.3 | 2.829465294 | 1.811451685 | 1.018013609 | |
0.4 | 0.4 | 9.761568790 | 11.41702283 | 1.655454036 | |
0.5 | 0.5 | 22.59293105 | 29.70740172 | 7.114470668 | |
0.6 | 0.6 | 42.43691686 | 58.35320436 | 15.91628749 | |
0.7 | 0.7 | 69.50572834 | 98.00145900 | 28.49573066 | |
0.8 | 0.8 | 102.7699335 | 147.9479522 | 45.17801869 | |
0.9 | 0.9 | 139.6218079 | 205.8265090 | 66.20470108 | |
1 | 1 | 175.5469776 | 267.3218165 | 91.77483894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsidrani, F.; Kılıçman, A.; Senu, N. Approximate Solutions for Time-Fractional Fornberg–Whitham Equation with Variable Coefficients. Fractal Fract. 2023, 7, 260. https://doi.org/10.3390/fractalfract7030260
Alsidrani F, Kılıçman A, Senu N. Approximate Solutions for Time-Fractional Fornberg–Whitham Equation with Variable Coefficients. Fractal and Fractional. 2023; 7(3):260. https://doi.org/10.3390/fractalfract7030260
Chicago/Turabian StyleAlsidrani, Fahad, Adem Kılıçman, and Norazak Senu. 2023. "Approximate Solutions for Time-Fractional Fornberg–Whitham Equation with Variable Coefficients" Fractal and Fractional 7, no. 3: 260. https://doi.org/10.3390/fractalfract7030260
APA StyleAlsidrani, F., Kılıçman, A., & Senu, N. (2023). Approximate Solutions for Time-Fractional Fornberg–Whitham Equation with Variable Coefficients. Fractal and Fractional, 7(3), 260. https://doi.org/10.3390/fractalfract7030260