Cerofolini’s Model and the Fractal Adsorption Isotherms
Abstract
:1. Introduction
2. Theory
2.1. Cerofolini’s Model
2.2. Geometric and Energetic Surface Heterogeneities. Partially Correlated Surfaces
3. Results and Discussions. Energetic Fractal Relations and Fractal Isotherms
3.1. A Simple Fractal Relation between Excess Energy and Adsorption Energy
3.2. A Generalized Fractal Relation between Excess Energy and Adsorption Energy
3.3. A Fractal Relation between Adsorption Energy and Pore Size
3.4. Energetic Fractal Dimension Computation: “A Simple Application”
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cerofolini, G.F. A model which allows for the Freundlich and the Dubinin-Radushkevich adsorption isotherms. Surf. Sci. 1975, 51, 333–335. [Google Scholar] [CrossRef]
- Cerofolini, G.F. Equilibrium surfaces. Surface Sci. 1976, 61, 678–682. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S. Adsorption, Surface Area and Porosity; Academic Press: New York, NY, USA, 1982; pp. 15–20. [Google Scholar]
- Avnir, D.; Farin, D.; Pfeifer, P. Surface geometric irregularity of particulate materials: The fractal approach. J. Colloid Interface Sci. 1985, 103, 112–123. [Google Scholar] [CrossRef]
- Cole, M.W.; Holter, N.S.; Pfeifer, P. Henry’s law of adsorption on a fractal surface. Phys. Rev. B 1986, 33, 8806–8809. [Google Scholar] [CrossRef]
- Fripiat, I.J.; Gatineau, L.; van Damme, H. Multilayer physical adsorption on fractal surface. Langmuir 1986, 2, 562–567. [Google Scholar] [CrossRef]
- Pfeifer, P.; Obert, M.; Cole, M.W. Fractal BET and FHH Theories of Adsorption: A Comparative Study. Proc. R. Soc. Lond. A 1989, 423, 169–188. [Google Scholar] [CrossRef]
- Pfeifer, P.; Wu, Y.J.; Cole, M.W.; Krim, J. Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 1989, 62, 1997–2000. [Google Scholar] [CrossRef] [PubMed]
- Avnir, D.; Jaroniec, M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir 1989, 5, 1431–1433. [Google Scholar] [CrossRef]
- Avnir, D.; Biham, O.; Lidar, D.; Malci, O. Is the geometry of nature fractal? Science 1998, 279, 39–40. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, P. Fractal dimension as working tool for surface-roughness problems. Appl. Surf. Sci. 1984, 18, 146–164. [Google Scholar] [CrossRef]
- Conner, W.; Bennett, C.O. Are the pore and surface morphologies of real catalysts fractal? J. Chem. Soc. Faraday Trans. 1993, 89, 4109–4114. [Google Scholar] [CrossRef]
- Rudzinski, W.; Lee, S.-L.; Yan, C.-C.; Panczyk, T. A Fractal Approach to Adsorption on Heterogeneous Solid Surfaces. 1. The Relationship between Geometric and Energetic Surface Heterogeneities. J. Phys. Chem. B 2001, 105, 10847–10856. [Google Scholar] [CrossRef]
- Terzyk, A.P.; Gauden, P.A.; Kowalczyk, P. Fractal Geometry Concept in Physical Adsorption on Solids. Arab. J. Sci. Eng. 2003, 28, 133–167. [Google Scholar]
- Rudzinski, W.; Everett, D.H. Adsorption of Gases on Heterogeneous Surfaces; Academic Press: London, UK, 1992; pp. 180–190. [Google Scholar]
- Giona, M.; Giustiniani, M.; Ludlow, D. Influence of geometric and energetic heterogeneity on adsorption isotherms. Fractals 1995, 3, 235–250. [Google Scholar] [CrossRef]
- Ehrburger-Dolle, F. Analysis of the derived curves of adsorption isotherms. Langmuir 1997, 13, 1189–1198. [Google Scholar] [CrossRef]
- Horvath, G.; Kawazoe, K.J. Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon. J. Chem. Eng. Jpn. 1983, 16, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Saito, A.; Foley, H.C. Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J. 1991, 37, 429–436. [Google Scholar] [CrossRef]
- Everett, D.H.; Powl, J.C. Adsorption in slit-like and cylindrical micropores in the henry’s law region. A model for the microporosity of carbons. J. Chem. Soc. Faraday Trans. 1976, 72, 619–636. [Google Scholar] [CrossRef]
- Kaminsky, R.D.; Maglara, E.; Conner, W.C. A Direct Assessment of Mean-Field Methods of Determining Pore Size Distributions of Microporous Media from Adsorption Isotherm Data. Langmuir 1994, 10, 1556–1565. [Google Scholar] [CrossRef]
- Cheng, L.S.; Yang, R.T. Improved Horvath—Kawazoe equations including spherical pore models for calculating micropore size distribution. Chem. Eng. Sci. 1994, 16, 2599–2609. [Google Scholar] [CrossRef]
- Mariwala, R.K.; Foley, H.C. Calculation of Micropore Sizes in Carbogenic Materials from Methyl Chloride Adsorption Isotherms. Ind. End. Chem. Res. 1994, 33, 2314–2321. [Google Scholar] [CrossRef]
- Dubinin, M.M. Porous Structure of Adsorbents and Catalysts. Adv. Colloid Interface Sci. 1968, 2, 217–235. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Astakhov, V.A. Development of the Concepts of Volume Filling of Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents. Russ. Chem. Bull. 1971, 20, 8–12. [Google Scholar] [CrossRef]
- Ionescu, N.I. Cerofolini’s Model and the Adsorption Isotherms. Rev. Roum. Chim. 1979, 24, 83–84. [Google Scholar]
- Hobson, J.P.; Armstrong, R.A. A study of physical adsorption at very low pressures using ultrahigh vacuum techniques. J. Phys. Chem. 1963, 67, 2000–2007. [Google Scholar] [CrossRef]
- Dobrescu, G.; Papa, F.; Atkinson, I.; Culita, D.; Balint, I. Correlation between the basicity and the fractal dimension of Rh-nanoparticles supported on Al2O3, TiO2 and WO3. IOSR-JAC 2021, 14, 11–25. [Google Scholar] [CrossRef]
- Dobrescu, G.; Papa, F.; State, R.; Raciulete, M.; Berger, D.; Balint, I.; Ionescu, N.I. Modified Catalysts and Their Fractal Properties. Catalysts 2021, 11, 1518. [Google Scholar] [CrossRef]
- Family, F.; Vicsek, T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A Math. Gen. 1985, 18, L75–L81. [Google Scholar] [CrossRef]
- Chauvy, P.F.; Madore, C.; Landolt, D. Variable length scale analysis of surface topography: Characterization of titanium surfaces for biomedical applications. Surf. Coat. Technol. 1998, 110, 48–56. [Google Scholar] [CrossRef]
Sample | TEM Fractal Dimension | Method | Self-Similarity Domain (nm) | DR Fractal Dimension Equation (22a) | Self-Similarity Domain (p/p0) |
---|---|---|---|---|---|
Rh/Al2O3 | 2.872 ± 0.001 2.784 ± 0.051 | C V | 4.4–14.4 7.2–11.8 | 2.607 ± 0.004 | 0.033–0.850 |
Rh/TiO2 | 2.733 ± 0.001 2.832 ± 0.009 | C V | 4.9–14.4 5.4–17.3 | 2.604 ± 0.003 | 0.011–0.750 |
Rh/WO3 | 2.490 ± 0.001 2.469 ± 0.035 2.330 ± 0.001 2.226 ± 0.047 | C C V V | 0.2–2.7 2.7–13.8 4.5–11 11–29.3 | 2.448 ± 0.012 2.589 ± 0.014 | 0.005–0.200 0.200–0.750 |
Sample | Energetic Fractal Dimension De | Standard Errors |
---|---|---|
Rh/Al2O3 | 0.715 | 0.023 |
Rh/TiO2 | 1.179 | 0.003 |
Rh/WO3 | 1.939 | 0.038 |
2.430 | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrescu, G.; Papa, F.; Culita, D.; Balint, I.; Ionescu, N.I. Cerofolini’s Model and the Fractal Adsorption Isotherms. Fractal Fract. 2023, 7, 262. https://doi.org/10.3390/fractalfract7030262
Dobrescu G, Papa F, Culita D, Balint I, Ionescu NI. Cerofolini’s Model and the Fractal Adsorption Isotherms. Fractal and Fractional. 2023; 7(3):262. https://doi.org/10.3390/fractalfract7030262
Chicago/Turabian StyleDobrescu, Gianina, Florica Papa, Daniela Culita, Ioan Balint, and Niculae I. Ionescu. 2023. "Cerofolini’s Model and the Fractal Adsorption Isotherms" Fractal and Fractional 7, no. 3: 262. https://doi.org/10.3390/fractalfract7030262
APA StyleDobrescu, G., Papa, F., Culita, D., Balint, I., & Ionescu, N. I. (2023). Cerofolini’s Model and the Fractal Adsorption Isotherms. Fractal and Fractional, 7(3), 262. https://doi.org/10.3390/fractalfract7030262