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Abstract: The Caputo fractional α-derivative, 0 < α < 1, for non-smooth functions with 1 + α

regularity is calculated by numerical computation. Let I be an interval and Dα(I) be the set of all
functions f (x) which satisfy f (x) = f (c) + f ′(c)(x− a) + gc(x)(x− c)|(x− c)|α, where x, c ∈ I and
gc(x) is a continuous function for each c. We first extend the trapezoidal method on the set Dα(I) and
rewrite the integrand of the Caputo fractional integral as a product of two differentiable functions. In
this approach, the non-smooth function and the singular kernel could have the same impact. The
trapezoidal method using the Riemann–Stieltjes integral (TRSI) depends on the regularity of the two
functions in the integrand. Numerical simulations demonstrated that the order of accuracy cannot be
increased as the number of zones increases using the uniform discretization. However, for a fixed
coarsest grid discretization, a refinable mesh approach was employed; the corresponding results
show that the order of accuracy is kα, where k is a refinable scale. Meanwhile, the application of the
product of two differentiable functions can also be applied to some Riemann–Liouville fractional
differential equations. Finally, the stable numerical scheme is shown.

Keywords: fractional derivative; Caputo derivative; trapezoidal method; Riemann–Stieltjes integral

1. Introduction

Fractional calculus [1–3] has attracted increased interest over the last decade and has
been applied in several fields including finance, control theory, electronic circuit theory,
mechanics, physics, and signal processing [4–11]. There are two popular definitions of the
fractional differentiation: the Riemann–Liouville derivative and the Caputo derivative. Let
0 < α < 1, n be a positive integer with n− 1 ≤ α < n, and a ∈ R.

Riemann–Liouville derivative: The Riemann–Liouville derivative of a function f (x)
starting at the point a is

aDα
t f (t) =

1
Γ(n− α)

dn

dtn

∫ t

a

f (τ)
(t− τ)α−n+1 dτ.

Caputo derivative: The Caputo derivative of a function f (x) starting at the point a is

C
a Dα

t f (t) =
1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dτ. (1)

The comparison of these two definitions can be found in [12] and the definitions of
fractional derivatives are also revised in some studies [11–14].

The trapezoidal rule was used for integration or differential equations in the following
papers [15–17]. However, the functions of the integrand are assumed to be regular. This
paper is devoted to the computation of the Caputo fractional derivative on financial
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derivatives [18–21]. In some of them, the functions of the stock or option prices are only of
Lipschitz continuity. Our goal is to calculate the Caputo fractional integral for non-smooth
functions. This calculation will also encounter the difficulty induced by the singular kernel.
In [18], an implicit numerical discretization is used for the Riemann–Liouville integral to
calculate the chaotic behavior for financial models. In [22], the treatment for a singular
kernel involves the linear expansion of the smooth functions and direct integration of the
product of the linear polynomial and the singular kernel. In our approach, we consider the
function non-smooth. The function could be also singular, and the impact of the function
for the integral is similar to the kernel.

Let n be a positive integer and [a, b] be an interval. Define h = (b − a)/n and
xi = a + ih, where i = 0, 1, 2, . . . , n. To explore the niche of this research, let us explain the
following examples. The set of Ck([a, b]) represents the collection of all functions whose
domain on [a, b] and they are of a continuous k-th derivative. If f ∈ C2([a, b]), it is well
known in the textbook of numerical analysis, and the approximation is

∫ b

a
f (x) dx =

h
2

[
f (a) + f (b) + 2

n−1

∑
j=1

f (xj)

]
− (b− a)

12
h2 f ′′(ξ),

where ξ is in (a, b). For the particular case, f (x) =
√

x− a, the order of accuracy of
the trapezoidal rule method is reduced because the function f (x) belongs exclusively to
C0([a, b]).

Definition 1. Let I be an interval and the set

Dα(I) ≡
{

f : f (x) = f (c) + f ′(c)(x− c) + gc(x)(x− c)|x− c|α
}

, (2)

where gc(x) is a continuous function for each c ∈ I.

For example, I = [0, 1], α = 1/2, and f (x) = x3/2. Then,

x3/2 = c3/2 +
3
2

c1/2(x− c) + gc(x)(x− c)|x− c|1/2

with

gc(x) =

{
x3/2−c3/2− 3

2 c1/2(x−c)
(x−c)|x−c|1/2 , x 6= c,

0, x = c 6= 0.

If c = 0, then g0(0) = 1 and gc(x) is continuous on [0, 1] for each c ∈ [0, 1]. Hence,
x3/2 ∈ D1/2([0, 1]). Moreover, for a fixed x, the function h(c) = gc(x) may not be continu-
ous on c since g0(0) = 1 and gc(0) = −1/2 for all c > 0.

This paper is organized as follows. The order of accuracy for the trapezoidal method
on the set Dα(I) is derived in Section 2. The proposed method for calculation of Caputo
fractional derivative is described in Section 3, using three examples. Smooth, regular and
non-regular functions are used in numerical simulations in Section 4. Section 5 shows the
analysis of the method to explain the obtained results and Section 6 demonstrates two
applications of the proposed method. The conclusion is given in the last section.

2. Order of Accuracy for Trapezoidal Method on Dα

In this section, we extend the analysis of the order of accuracy for the trapezoidal
method on the set Dα(I). Let us begin to consider the interpolation on the set Dα(I).

Lemma 1. Let f ∈ Dα(I). The linear interpolation of f on [a, b] ⊂ I has the property

f (x) = f (a)
b− x
b− a

+ f (b)
x− a
b− a

+
h(x)
b− a

(x− a)(b− x),
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where h(x) is a continuous function and x ∈ [a, b].

Proof. Since

f (x) = f (a) + f ′(a)(x− a) + ga(x)(x− a)|x− a|α,

f (x) = f (b) + f ′(b)(x− b) + gb(x)(x− b)|x− b|α,

we obtain

f (x) = f (a)
b− x
b− a

+ f (b)
x− a
b− a

+
1

(b− a)
( f ′(a)− f ′(b))(x− a)(b− x)

+
1

b− a
(ga(x)|x− a|α − gb(x)|b− x|α)(x− a)(b− x)

≡ f (a)
b− x
b− a

+ f (b)
x− a
b− a

+
h(x)
b− a

(x− a)(b− x).

Here, h(x) = f ′(a)− f ′(b) + ga(x)|x− a|α − gb(x)|b− x|α.

Lemma 2. Let f ∈ Dα(I) and [a, b] ⊂ I. Then,

∫ b

a
f (x)dx =

1
2
( f (a) + f (b))(b− a) +

h(ξ)
6

(b− a)2,

where h(ξ) is a continuous function.

Proof. This lemma holds. It is followed by Lemma 1 and

∫ b

a
f (x)dx =

∫ b

a

[
f (a)

b− x
b− a

+ f (b)
x− a
b− a

+
h(x)
b− a

(x− a)(b− x)
]

dx

=
1
2
( f (a) + f (b))(b− a) +

h(ξ)
b− a

∫ b

a
(x− a)(b− x)dx

=
1
2
( f (a) + f (b))(b− a) +

h(ξ)
6

(b− a)2,

where ξ in (a, b), and the second equality is followed by the weighted mean value theorem.

Lemma 3. Let f ∈ Dα(I) and [a, b] ⊂ I. Then,

f ′(b)− f ′(a) = (gb(a)− ga(b))|b− a|α.

Proof. From the following,

f (b)− f (a)
b− a

= f ′(a) + ga(b)|b− a|α,

f (a)− f (b)
a− b

= f ′(b) + gb(a)|b− a|α,

and taking the subtraction of the above two equations, it yields

f ′(b)− f ′(a) = (gb(a)− ga(b))|b− a|α. (3)

Moreover, |ga(x)|x− a|α − gb(x)|b− x|α| ≤ (|ga(x)|+ |gb(x)|)|b− a|α for x ∈ [a, b]
and |h(x)| ≤ (|gb(a) − ga(b)| + |ga(x)| + |gb(x)|)|b − a|α. Since h is continuous and
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bounded by the extremum theorem of continuous functions on a closed interval, Lemma 2
can be re-estimated to be Theorem 1 below.

Theorem 1. Let f ∈ Dα(I) and [a, b] ⊂ I. Then,

∫ b

a
f (x)dx =

1
2
( f (a) + f (b))(b− a) + O((b− a)2+α).

Remark. If f ∈ C2(I) then gc =
1
2 f ′′(ξ), where ξ between c and x, then α = 1.

Theorem 2. Let f ∈ Dα(I) and [a, b] ⊂ I. If

f (x) = f (c) + f ′(c)(x− c) + gc(x)(x− c)|x− c|α

and |gc(a)| is uniformly bounded for all c ∈ [a, b], then

∫ b

a
f ′(x)dx =

1
2
( f ′(a) + f ′(b))(b− a) + O((b− a)1+α).

Proof. Using (3) as

f ′(x)− f ′(a) = (gx(a)− ga(x))|x− a|α,

taking the integration of the above equation on [a, b], we have

∫ b

a
[ f ′(x)− f ′(a)] dx =

∫ b

a
(gx(a)− ga(x))|x− a|α dx.

Since |gx(a)| is uniformly bounded for all x ∈ [a, b] and ga(x) is continuous on
x ∈ [a, b], it implies that |gx(a)− ga(x)| is uniformly bounded for x ∈ [a, b] and

∫ b

a
(gx(a)− ga(x))|x− a|α dx = O(

∫ b

a
(x− a)α dx) = O((b− a)1+α). (4)

Then, ∫ b

a
f ′(x) dx = f ′(a)(b− a) +

∫ b

a
[ f ′(x)− f ′(a)] dx

=
1
2
( f ′(a) + f ′(b))(b− a)− 1

2
( f ′(b)− f ′(a))(b− a)

+
∫ b

a
(gx(a)− ga(x))|x− a|α dx

=
1
2
( f ′(a) + f ′(b))(b− a) + O((b− a)1+α).

The last equality is followed by 1
2 ( f ′(b)− f ′(a))(b− a) = 1

2 (gb(a)− ga(b))(b− a)1+α

and (4). Therefore, this theorem holds.

3. Method

For the sake of simplicity and without loss generality, the case of n = 1 is considered
in the whole paper. Equation (1) is equal to

C
a Dα

t f (t) =
1

Γ(1− α)

∫ t

a
f ′(τ)(t− τ)−α dτ, (5)
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or

C
a Dα

t f (t) =
1

Γ(1− α)

∫ t

a
f ′(τ)ϕ′(t− τ) dτ, (6)

here, ϕ(t) = − 1
1−α t1−α.

Let the interval I = [0, 1] and N be a positive integer. The interval I is divided into
N-subintervals [t`−1, t`] with the sample points t`, ` = 1, 2, . . . , N.

C
0 Dα

t f (tk) =
1

Γ(1− α)

k

∑
`=1

∫ t`

t`−1

f ′(τ)ϕ′(tk − τ)dτ.

Since ϕ is monotonic whenever 0 < α < 1, the inverse of ϕ exists. Using the substitu-
tion rule, y = ϕ(t− τ) for fixed t, the integral∫ t`

t`−1

f ′(τ)ϕ′(tk − τ)dτ

can be rewritten into ∫ y`

y`−1

f ′(tk − ϕ−1(y))dy, (7)

where y`−1 = ϕ(tk − t`−1) and y` = ϕ(tk − t`). The linear interpolation of f ′(y) on the
interval I with the endpoints ϕ(tk − t`) and ϕ(tk − t`−1) is

f ′(y) = f ′(t`−1)
y` − y

y` − y`−1
+ f ′(t`)

y− y`−1
y` − y`−1

. (8)

Substituting (8) into (7), it yields∫ y`

y`−1

f ′(tk − ϕ−1(y))dy ≈ 1
2
( f ′(t`−1) + f ′(t`))(y` − y`−1)

=
1
2
( f ′(t`−1) + f ′(t`))(ϕ(tk − t`)− ϕ(tk − t`−1)). (9)

The approximation in the last equation listed above represents the trapezoidal method
but uses the Riemann–Stieltjes integral. The roles of f and g may be interchanged.
Equation (9) is modified to

∫ y`

y`−1

f ′(tk − ϕ−1(y))dy ≈ H
1
2
( f ′(t`−1) + f ′(t`))(ϕ(tk − t`)− ϕ(tk − t`−1))

+(1− H)
1
2
( f (t`)− f (t`−1))(ϕ′(tk − t`) + ϕ′(tk − t`−1)), (10)

where H = H(|ϕ(tk − t`)− ϕ(tk − t`−1)| − | f (t`)− f (t`)|) is the Heaviside step function.
We refer to the approach in (10) as the TRSI method. If the function f is smooth and ϕ is
non-smooth, then TRSI in (10) may only use H = 1. On the other hand, the function ϕ is
smooth and f is non-smooth, then TRSI in (10) may only use H = 0. For Caputo fractional
derivatives, ϕ is described as the form − 1

1−α t1−α and its derivative is singular at its origin.
Therefore, if the function f is smooth, then H = 0 only occurs at the singularity of ϕ′.
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The stability of the TRSI method to use Equation (6) is to estimate the following:

|Ca Dα
t f (tk)| ≤

∣∣∣∣∣ 1
Γ(1− α)

k

∑
`=1

∫ t`

t`−1

f ′(τ)ϕ′(tk − τ) dτ

∣∣∣∣∣
≤

∣∣∣∣∣ 1
Γ(1− α)

k

∑
`=1

min{|ϕ(tk − t`)− ϕ(tk − t`−1))|, | f (t`)− f (t`−1)|}×

1
2
(| f ′(t`−1) + f ′(t`)|+ |ϕ′(tk − t`) + ϕ′(tk − t`−1)|)

∣∣∣∣.
If 1

∆t min{|ϕ(tk − t`)− ϕ(tk − t`−1))|, | f (t`)− f (t`−1)|} is uniformly bounded for ∆t,∫ t
0 | f
′(s)|ds and

∫ t
0 |ϕ

′(s)|ds are bounded,M, then

|Ca Dα
t f (tk)| ≤

M
Γ(1− α)

(∫ tk

0
| f ′(s)| ds +

∫ tk

0
|ϕ′(s)|ds

)
and it follows that TRSI is stable. The condition 1

∆t min{|ϕ(tk− t`)− ϕ(tk− t`−1))|, | f (t`)−
f (t`−1)|} is uniformly bounded. It also indicates the existence of the Riemann–Stieltjes
integral. It is identical to the existence of the Riemann–Stieltjes integral

∫ b

a
f ′(s)dϕ(s),

requires the condition that the discontinuity of f ′ and ϕ cannot occur coincidentally, and
vice versa. Therefore, the stability theorem of the TRSI method is stated in the follow-
ing theorem.

Theorem 3. The TRSI method is stable if the condition that the discontinuity of f ′ and ϕ cannot
occur coincidentally is held.

4. Simulations

Let us consider the interval I = [0, 1] and there are N uniform cells; that is, each
subinterval [t`−1, t`] has the length ∆t = 1

N with the sample points t` = `
N . We will vary

N = 2K from K = 5 to K = 12. To probe the behavior of the TRSI method, let us define the
1-norm, 2-norm and ∞-norm in vectors of numerical solutions by

‖ f (·)‖1 =
N

∑
`=1
| f (t`)|∆t, ‖ f (·)‖2 = (

N

∑
`=1
| f (t`)|2)1/2∆t, ‖ f (·)‖∞ = max

1≤`≤N
| f (t`)|.

Furthermore, the order of accuracy is defined as

Oq,K = log2(
‖eK‖q

‖eK+1‖q
),

where q = 1, 2, ∞ and eK is the error between the numerical and exact solutions at the size of
zones 2K. In the following subsection, we adopt three examples as model examples which
represent the smooth, regular and non-smooth functions from Example 1 to Example 3
below, respectively.
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4.1. Model Examples

Example 1 . Let us consider f (t) = 1
4 t4 and g(t) = 2t

1
2 . The polynomial is smooth because

f (n) exists for any n, which is a non-negative integer. The Caputo fractional derivative of
f (t) for α = 1

2 is

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ =

1
Γ( 1

2 )

∫ t

0
τ3(t− τ)−

1
2 dτ. (11)

The analytic solution is C
0 Dα

t f (t) = 32
35
√

π
t

7
2 . The errors between the exact and numeri-

cal solutions are shown in Table 1, which demonstrates that the order of accuracy is near
1.5 for 1-norm, 2-norm and ∞-norm.

Table 1. The errors between numerical and analytic solutions for f (t) = 1
4 t4 and the order of accuracy.

The order of accuracy is near 1.5 for 1-norm, 2-norm and ∞-norm.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

32 1.038× 10−3 1.415× 10−3 3.124× 10−3 32/64 1.41 1.41 1.40

64 3.915× 10−4 5.312× 10−4 1.186× 10−3 64/128 1.43 1.44 1.43

128 1.449× 10−4 1.960× 10−4 4.391× 10−4 128/256 1.45 1.46 1.46

256 5.291× 10−5 7.140× 10−5 1.602× 10−4 256/512 1.47 1.47 1.47

512 1.914× 10−5 2.579× 10−5 5.784× 10−5 512/1024 1.48 1.48 1.48

1024 6.880× 10−6 9.256× 10−6 2.075× 10−5 1024/2048 1.48 1.48 1.49

2048 2.461× 10−6 3.308× 10−6 7.413× 10−6 2048/4096 1.49 1.49 1.49

4096 8.771× 10−7 1.179× 10−6 2.639× 10−6 - - - -

Example 2. Let us consider f (t) = 3
2 t3/2 and g(t) = 2t

1
2 . The power function f ′ only can

take the first derivate because f ′′ is singular at the origin. The Caputo fractional derivative
of f (t) for α = 1

2 is

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ =

1
Γ( 1

2 )
,
∫ t

0
τ

1
2 (t− τ)−

1
2 dτ. (12)

The analytic solution is C
0 Dα

t f (t) =
√

π
2 t. The errors are shown in Table 2. The results

demonstrate that the order of accuracy is near 1.5, 1.45 and 1 for 1-norm, 2-norm and
∞-norm, respectively.

Table 2. The errors between numerical and analytic solutions for f (t) = 2
3 t3/2 and the order of accu-

racy. The order of accuracy is near 0.52, 0.54 and 0.16 for 1-norm, 2-norm and ∞-norm, respectively.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

32 2.390× 10−3 2.920× 10−3 1.006× 10−2 32/64 1.47 1.41 1.00

64 8.649× 10−4 1.100× 10−3 5.032× 10−3 64/128 1.48 1.42 1.00

128 3.109× 10−4 4.115× 10−4 2.516× 10−3 128/256 1.48 1.42 1.00

256 1.112× 10−4 1.531× 10−4 1.258× 10−3 256/512 1.49 1.43 1.00

512 3.967× 10−5 5.668× 10−5 6.290× 10−4 512/1024 1.49 1.44 1.00

1024 1.411× 10−5 2.091× 10−5 3.145× 10−4 1024/2048 1.49 1.44 1.00

2048 5.001× 10−6 7.686× 10−6 1.572× 10−4 2048/4096 1.50 1.45 1.00

4096 1.777× 10−6 2.818× 10−6 7.862× 10−4 - - - -



Fractal Fract. 2023, 7, 263 8 of 17

Example 3. Let us consider f (t) = 2t1/2 and g(t) = 3
2 t

2
3 . The power function f does not

have the first derivative because f ′(0) does not exist. The Caputo fractional derivative of
f (t) for α = 1

3 is

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ =

1
Γ( 2

3 )

∫ t

0
τ−

1
2 (t− τ)−

1
3 dτ. (13)

The analytic solution is C
0 Dα

t f (t) =
Γ( 1

2 )

Γ( 7
6 )

t
1
6 . The errors are shown in Table 3. The

order of accuracy is near 0.52, 0.54 and 0.16 for 1-norm, 2-norm and ∞-norm, respectively.
In Figure 1, the top-left panel shows the exact solution (red dot line) and the numerical
solution (blue solid line). The errors between the numerical and exact solutions are shown
in the top-right panel. The zoom-in profiles on [0, 0.2] are shown in the corresponding
panels below.

0 0.5 1

0

0.5

1

1.5

2

0 0.5 1

0

0.01

0.02

0.03

0.04

0 0.005 0.01 0.015 0.02

0

0.5

1

1.5

2

0 0.005 0.01 0.015 0.02

0

0.01

0.02

0.03

0.04

0.05

Figure 1. The profiles of the simulations of Example 3. The analytic (ua) and the numerical uN

solutions are shown in the top-left panel. The absolute value of the error |ua − uN | is shown in the
top-right panel. The zoom-in profiles on [0, 0.2] are shown in the corresponding panels below.

The approximation of the non-smooth or continuous function may improve the accu-
racy by refining the meshes. However, it is not equivalent to a finer mesh refinement in this
case, as the kernel function ϕ(tk − s) is not only non-smooth, but it is singular for fixed tk.
Therefore, we divide the subinterval by K-zones again. More precisely,

∫ t`

t`−1

f ′(s)(tk − s)−α ds =
K
∑

m=1

∫ t`,m

t`,m−1

f ′(s)ϕ′(tk − s) ds,

where t`,m = t`−1 + m∆K, m = 0, 1, 2, . . . ,K, with ∆K =
t`−t`−1
K . The results of fixed

N = 128 for K = 2p, p = 2, 3, . . . , 6 are shown in Table 4 and the corresponding pro-
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files are shown in Figure 2. The errors were reduced from 2.8× 10−2 to 4.7× 10−5; see
Tables 3 and 4, respectively.

Table 3. The errors between numerical and analytic solutions for f (t) = 2t1/2 and the order of
accuracy. It shows that the order of accuracy is near 0.52, 0.54 and 0.16 for 1-norm, 2-norm and
∞-norm, respectively.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

32 1.565× 10−2 1.967× 10−2 6.281× 10−2 32/64 0.63 0.58 0.16

64 1.009× 10−2 1.315× 10−2 5.596× 10−2 64/128 0.61 0.58 0.16

128 6.635× 10−3 8.825× 10−3 4.985× 10−2 128/256 0.58 0.57 0.16

256 4.445× 10−3 5.948× 10−3 4.441× 10−2 256/512 0.55 0.56 0.16

512 3.029× 10−3 4.031× 10−3 3.957× 10−2 512/1024 0.54 0.55 0.16

1024 2.087× 10−3 2.746× 10−3 3.525× 10−2 1024/2048 0.52 0.55 0.16

2048 1.451× 10−3 1.881× 10−3 3.140× 10−2 2048/4096 0.52 0.54 0.16

4096 1.014× 10−3 1.294× 10−3 2.780× 10−2 - - - -

Table 4. The errors between numerical and analytic solutions for f (t) = 2t1/2 and the order of
accuracy using TRSI with refining mesh. The order of accuracy is near 1.76, 1.61 and 1.59 for 1-norm,
2-norm and ∞-norm, respectively.

K(N = 128) E1 E2 E∞ Kp−1/Kp O1 O2 O∞

4 9.393× 10−4 1.651× 10−3 1.399× 10−2 4/8 1.88 1.76 1.72

8 2.548× 10−4 4.860× 10−4 4.260× 10−3 8/16 1.86 1.72 1.67

16 7.013× 10−5 1.480× 10−4 1.343× 10−3 16/32 1.83 1.67 1.63

32 1.973× 10−5 4.636× 10−5 4.328× 10−4 32/64 1.80 1.64 1.60

64 5.690× 10−6 1.487× 10−5 1.418× 10−4 64/128 1.76 1.61 1.59

128 1.685× 10−6 4.861× 10−6 4.708× 10−5 - - - -

4.2. A Comparison Study

The modified trapezoidal rule (MTR) [22] uses the linear interpolation on f ′(s) rather
than f ′(s)(tk − s)−α in the traditional sense for the following integral, and we rewrite it as
shown below. The integral can be approximated by∫ t`

t`−1

f ′(s)(tk − s)−α ds ≈ f ′(t`−1)

t` − t`−1
Wk

L,` +
f ′(t`)

t` − t`−1
Wk

R,`,

where

Wk
L,` =

(tk − t`)2−α

1− α
− (tk − t`)(tk − t`−1)

1−α

1− α
− (tk − t`)2−α

2− α
+

(tk − t`−1)
2−α

2− α
,

Wk
R,` =

(tk − t`)2−α

2− α
− (tk − t`−1)

2−α

2− α
− (tk − t`−1)(tk − t`)1−α

1− α
+

(tk − t`−1)(tk − t`−1)
1−α

1− α
.

The errors are shown in Tables 5 and ?? for model example 1 and 2, respectively.
However, Example 3 cannot be simulated by the MTR method because the derivative of
the exact function does not exist at the origin.
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Figure 2. The profiles of the simulations of Example 3 with a refinable approach. The analytic (ua)
and the numerical uN solutions are in the top-left panel. The absolute value of the error |ua − uN | is
in the top-right panel. The zoom-in profiles on [0, 0.2] are shown in the corresponding panels below.

Table 5. The errors between numerical and analytic solutions for f (t) = 1
4 t4 and the order of accuracy

using the MTR method. It shows that the order of accuracy is 2.0 for 1-norm, 2-norm and ∞-norm.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

32 1.423× 10−4 1.776× 10−4 3.473× 10−4 32/64 2.00 1.99 1.98

64 3.565× 10−5 4.459× 10−5 8.830× 10−5 64/128 1.99 1.99 1.98

128 8.958× 10−6 1.121× 10−5 2.233× 10−5 128/256 1.99 1.99 1.98

256 2.252× 10−6 2.818× 10−6 5.629× 10−6 256/512 1.99 1.99 1.99

512 5.656× 10−7 7.077× 10−7 1.415× 10−6 512/1024 1.99 1.99 1.99

1024 1.419× 10−7 1.776× 10−7 3.553× 10−7 1024/2048 2.00 2.00 2.00

2048 3.559× 10−8 4.451× 10−8 8.907× 10−8 2048/4096 2.00 2.00 2.00

4096 8.917× 10−9 1.115× 10−8 2.231× 10−8 - - - -

Table 6. The errors between numerical and analytic solutions for f (t) = 2
3 t3/2 and the order of

accuracy. It shows that the order of accuracy is near 1.49, 1.44 and 1.0 for 1-norm, 2-norm and
∞-norm, respectively.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

32 1.161× 10−3 1.362× 10−3 4.187× 10−3 32/64 1.45 1.40 1.00

64 4.237× 10−4 5.176× 10−4 2.093× 10−3 64/128 1.47 1.41 1.00

128 1.533× 10−4 1.950× 10−4 1.047× 10−3 128/256 1.48 1.42 1.00
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Table 6. Cont.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

256 5.507× 10−5 7.293× 10−5 5.233× 10−4 256/512 1.48 1.43 1.00

512 1.969× 10−5 2.713× 10−5 2.617× 10−4 512/1024 1.49 1.43 1.00

1024 7.019× 10−6 1.004× 10−5 1.308× 10−4 1024/2048 1.49 1.44 1.00

2048 2.496× 10−6 3.703× 10−6 6.542× 10−5 2048/4096 1.49 1.44 1.00

4096 8.861× 10−6 1.361× 10−6 3.271× 10−5 - - - -

5. Error Analysis

Let us start to observe the approximation of the function y =
√

t by the linear interpo-
lation L(t) on [t`−1, t`],

L(t) =
√

t` −
√

t`−1
t` − t`−1

(t− t`−1) +
√

t`−1.

The error e(t) = y(t)−L(t) on [t`−1 − t`] has the maximum error

|e(t∗)| = | (t` − t`−1)
2

4(
√

t` +
√

t`−1)2 |,

where t∗ = 1
4 (
√

t` +
√

t`−1)
2. Let t` = `∆t, ` = 0, 1, . . . , N; the error for ` = 1 is 1

4 ∆t.
This explains that the reason for Example 2 using the trapezoidal method is only of first-
order accuracy.

Theorem 4. Let the function L`(t) be the linear interpolation of the function f ′(t) on each
subinterval [t`−1, t`], ` = 1, 2, . . . , N and

∫ t
0 |ϕ

′(t− τ)| dτ is uniformly bounded for 0 ≤ t ≤ 1.
The modified trapezoidal rule for calculation

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ

has the error bounded by C max`{|L`(t)− f ′(t)|} and

C =
1

Γ(1− α)

∫ t

0
|t− τ| dτ.

Proof. The error is given by

| 1
Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ − 1

Γ(1− α)

∫ t

0
L`(τ)(t− τ)−α dτ|.

It follows that the error is less than

1
Γ(1− α)

∫ t

0
| f ′(τ)−L`(τ)|(t− τ)−α dτ ≤ 1

Γ(1− α)

∫ t

0
max
`
| f ′(τ)−L`(τ)(t− τ)|−α dτ

= max
`
| f ′(τ)−L`(τ)|

1
Γ(1− α)

∫ t

0
|t− τ|−α dτ

Theorem 4 can be applied to explain the results (Tables 5 and ??) for Example 1 and
Example 2 obtained using MTR. Next, we will analyze the TRSI method. Let us first
recall the error analysis for smooth functions as Theorem 5 below for the trapezoidal
method in comparison with the estimation of the errors for the functions in Dα(I) shown
in Theorem 6 below.
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Let

H(t) =
∫ t

t`−1

f ′(s)g′(tk − s) ds

and ∆t = (t` − t`−1). Then,

H(t`) = H(t`−1) +H′(t`−1)(∆t) +
1
2
H′′(t`−1)(∆t)2 + O((∆t)3)

if H has the third continuous derivative. Furthermore, if f ′′′ and g′′′ are continuous
whenever ` < N, then

f ′(t`) = f ′(t`−1) +
1
2

f ′′(t`−1)(∆t) + O((∆t)2),

g′(tk − t`) = g′(tk − t`−1)−
1
2

g′′(tk − t`−1)(∆t) + O((∆t)2).

It follows that∫ t`

t`−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(t`−1) + f ′(t`))(g(tk − t`)− g(tk − t`−1)) + O((∆t)3).

The above approximation leads to the theorem below.

Theorem 5. If f ′′′ exists and is continuous and g(t) = − t1−α

1−α , 0 < α < 1 then

∫ t`

t`−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(t`−1) + f ′(t`))(g(tk − t`)− g(tk − t`−1)) + O((∆t)3)

for ` < k. Furthermore,

k−1

∑
`=1

∫ t`

t`−1

f ′(s)g′(tk − s) ds =
k−1

∑
`=1

1
2
( f ′(t`−1) + f ′(t`))(g(tk − t`)− g(tk − t`−1)) + O((∆t)2)

and for ` = k, the following approximation is reduced to∫ tk

tk−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(tk) + f ′(tk−1))(g(tk − tk)− g(tk − tk−1)) + O(∆t).

From (7) and Theorem 2, if f ∈ Dα(I), then we have∫ y`

y`−1

f ′(tk − ϕ−1(y))dy =
1
2
(

f ′(t`−1) + f ′(t`)
)
(y` − y`−1) + O((y` − y`−1)

1+α)

for ` < k and for ` = k, it is reduced to∫ y`

y`−1

f ′(tk − ϕ−1(y))dy =
1
2
(

f ′(t`−1) + f ′(t`)
)
(y` − y`−1) + O((y` − y`−1)

α).

Furthermore, the term O((y` − y`−1)
1+α) = O((t` − t`−1)

1+α). On the other hand,

∫ y`

y`−1

f ′(tk − ϕ−1(y))dy =
1
2
( f (t`)− f (t`−1))(ϕ′(tk − t`) + ϕ′(tk − t`−1))

+O(( f (t`)− f (t`−1))
3)

=
1
2
( f (t`)− f (t`−1))(ϕ′(tk − t`) + ϕ′(tk − t`−1)) + O((t` − t`−1)

3)
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Theorem 6. If f ∈ Dα(I) and g(t) = − t1−α

1−α , 0 < α < 1 then

∫ t`

t`−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(t`−1) + f ′(t`))(g(tk − t`)− g(tk − t`−1)) + O((∆t)1+α)

for ` < k. Furthermore,

k−1

∑
`=1

∫ t`

t`−1

f ′(s)g′(tk − s) ds =
k−1

∑
`=1

1
2
( f ′(t`−1) + f ′(t`))(g(tk − t`)− g(tk − t`−1)) + O((∆t)α)

and for ` = k, the following approximation is reduced to∫ tk

tk−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(tk) + f ′(tk−1))(g(tk − tk)− g(tk − tk−1)) + O((∆t)α).

Let k be a positive integer and 0 < α < 1. If an integration scheme has the order of
accuracy α,

∫ b

a
f ′(s)g′(b− s) ds = N (hj) + O(hα

j ),

where hj = (b− a)/2j and N for some numerical method, then the refinable approach
using the mesh hj+k is read as

∫ b

a
f ′(s)g′(b− s) ds = N (hj+k) + O(hα

k+j).

This implies that the order of accuracy is log2(h
α
j /hα

k+j) = log2(2
kα) = kα.

6. Applications

We are going to demonstrate the applications of the integrand in (10) rewritten as a
product of two derivatives of functions on fractional differential equations with Caputo
and Riemann–Liouville derivatives.

6.1. Fractional Differential Equation with Caputo Derivatives

We first solve the fractional differential equation to evaluate the TRSI method

IVP:
{ C

0 Dα
t y + y = 3

4 t
√

π + t3/2

y(0) = y′(0) = 0

The exact solution for (14) is y(t) = t3/2.
The discretization approach at the zone [t`−1, t`] is

1
Γ(1− α)

`

∑
m=1

∫ tm

tm−1

y′(s)(t` − s)−αds + y(t`) =
3
4

t`
√

π + (t`)3/2. (14)

If y(tm) and y′(tm) for m = 0, 1, . . . , `− 1 are given, then we have to solve y(t`) and
y′(t`). There are two unknowns, y(t`) and y′(t`), in Equation (14) but only one equation.
We further impose the condition

y(t`)− y(t`−1)

∆t
=

y′(t`) + y′(t`−1)

2
,
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which means that the central difference at the midpoint of t` and t` approximation. It
gives us

∆t
2

y′(t`)− y(t`) =
∆t
2

y′(t`−1)− y(t`−1). (15)

Coupling (14) and (15), the linear system for y′(t`) and y(t`) is obtained[
a11 a12
a21 a22

][
y′(t`)
y(t`)

]
=

[
b1
b2

]
,

where a12 = 1, a22 = −1, a21 = ∆t
2 ,

a11 =
1

Γ(1− α)
(−ϕ(∆t)),

b1 =
3
4

t`
√

π + (t`)3/2 +
ϕ(∆t)

2Γ(1− α)

− 1
Γ(1− α)

`−1

∑
m=1

1
2
(y′(tm) + y′(tm−1))(ϕ(t` − tm)− ϕ(t` − tm−1)).

The errors between the analytic and numerical solutions for the IVP problem are
shown in Table 7. It shows the order of accuracy is 1.49 for the 1-norm and 2-norm and
1.46 for the ∞-norm.

Table 7. The errors between the analytic and numerical solutions for the IVP problem are shown in
this table. The order of accuracy is 1.49 for 1-norm and 2-norm and 1.46 for ∞-norm.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

32 8.440× 10−4 8.490× 10−4 1.000× 10−3 32/64 1.45 1.44 1.38

64 3.094× 10−4 3.121× 10−4 3.847× 10−4 64/128 1.46 1.46 1.40

128 1.123× 10−4 1.135× 10−4 1.461× 10−4 128/256 1.47 1.47 1.41

256 4.045× 10−5 4.097× 10−5 5.486× 10−5 256/512 1.48 1.48 1.43

512 1.449× 10−5 1.470× 10−5 2.041× 10−5 512/1024 1.49 1.48 1.44

1024 5.172× 10−6 5.254× 10−6 7.536× 10−6 1024/2048 1.49 1.49 1.45

2048 1.841× 10−6 1.872× 10−6 2.764× 10−6 2048/4096 1.49 1.49 1.46

4096 6.538× 10−7 6.656× 10−7 1.008× 10−6 - - - -

6.2. Fractional Differential Equation with Riemann–Liouville Derivatives

In this subsection, we consider the fractional ordinary equation [23]:

IVP2:

{
d
dt

1
Γ(1−α)

∫ t
0 y′(s)(t− s)−α + y(t) = 3

4
√

π + t3/2

y(0) = y′(0) = 0

The exact solution is the same as the previous case, y(t) = t3/2. Taking the integration
from t0 = 0 to t`, we obtain

1
Γ(1− α)

∫ t`

0
y′(s)(t` − s)−αds +

∫ t`

0
y(t) dt =

3
4

t`
√

π +
2
5
(t`)5/2

or
1

Γ(1− α)

`

∑
m=1

∫ tm

tm−1

y′(s)(t` − s)−αds +
∫ t`

0
y(t) dt =

3
4

t`
√

π +
2
5
(t`)5/2.
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We use the traditional trapezoidal method for the second integral on the left-hand
side as the same approach in [23]. Meanwhile, people can define the coefficients ã11 = a11,
ã21 = a21, b̃2 = b2 and

ã12 =
1
2

∆t, b̃1 = b1 −
1
2

`−1

∑
m=1

(y(tm) + y(tm−1))∆t,

where a11, a12, a21, a22, b1, and b2 are defined in the (6.1). The numerical solution is obtained
by solving the following linear system:[

ã11 ã12
ã21 ã22

][
y′(t`)
y(t`)

]
=

[
˜b1
b̃2

]
.

The errors between the exact and numerical solutions are shown in Table 8, which
demonstrates that the order of accuracy is near 1.49 for 1-norm and 2-norm and 1.48
for ∞-norm.

Table 8. The errors between the analytic and numerical solutions for the IVP2 problem are shown in
this table. It shows the order of accuracy is 1.49 for 1-norm and 2-norm and 1.48 for ∞-norm.

N` E1 E2 E∞ N`/N`+1 O1 O2 O∞

32 1.082× 10−3 1.105× 10−3 1.349× 10−3 32/64 1.43 1.43 1.41

64 4.015× 10−4 4.107× 10−4 5.069× 10−4 64/128 1.45 1.45 1.44

128 1.468× 10−4 1.504× 10−4 1.873× 10−4 128/256 1.47 1.46 1.45

256 5.311× 10−5 5.449× 10−5 6.846× 10−5 256/512 1.48 1.47 1.46

512 1.909× 10−5 1.961× 10−5 2.482× 10−5 512/1024 1.48 1.48 1.47

1024 6.826× 10−6 7.018× 10−6 8.942× 10−6 1024/2048 1.49 1.49 1.48

2048 2.433× 10−6 2.503× 10−6 3.207× 10−6 2048/4096 1.49 1.49 1.48

4096 8.652× 10−7 8.907× 10−7 1.147× 10−6 - - - -

7. Conclusions

The analysis of the trapezoidal method was extended from C2 to Dα(I) and, for each
f ∈ Dα(I), has the order of accuracy 1 + α. The trapezoidal method using the Riemann–
Stieltjes integral on Caputo fractional derivatives for non-smooth functions was proposed,
and the approximation ability was also investigated using three models of examples
of smoothness, regularity and non-smoothness. The product of the integrand reveals
that, if f ∈ Dα(I) and the integration is approximated by using the differential d f , then
the trapezoidal method has the second order of accuracy compared to the traditional
one. On the other hand, if the integration is approximated by using the differential
dϕ, ϕ(x) = − 1

1−α x1−α, then the order of accuracy for the trapezoidal method is of the α
fractional order of accuracy. The novelty of this method can be addressed to automatically
choose the non-smooth functions or the singular kernel for linear interpolation.

The errors in Table 3 show that increasing the number of zones cannot significantly
improve the accuracy, and the order of accuracy is 0.16 for ∞-norm. Therefore, a refining
mesh shown in Table 4 demonstrated that the order of accuracy is 1.59 for the ∞-norm. To
confirm this point, we further apply the refinable approach to MTR. The result for the MTR
method using a refinable approach is shown in Table 9; the order of accuracy improves
from 1.0 to 1.50 for the ∞-norm, see Tables ?? and 9.
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Table 9. The errors between numerical and analytic solutions for f (t) = 2t1/2 and the order of
accuracy using MTR with refining mesh. The order of accuracy is near 1.5 for 1-norm, 2-norm and
∞-norm.

K(N = 128) E1 E2 E∞ Kp−1/Kp O1 O2 O∞

4 1.900× 10−5 2.366× 10−5 1.156× 10−4 4/8 1.50 1.50 1.51

8 6.713× 10−6 8.352× 10−6 4.064× 10−5 8/16 1.50 1.51 1.50

16 2.373× 10−6 2.951× 10−6 1.434× 10−5 16/32 1.50 1.50 1.50

32 8.389× 10−7 1.043× 10−6 5.066× 10−6 32/64 1.50 1.50 1.50

64 2.966× 10−7 3.688× 10−7 1.790× 10−6 64/128 1.50 1.50 1.50

128 1.049× 10−7 1.304× 10−7 6.328× 10−7 - - - -
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