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Abstract: In this work, the probability of return for random walks on Z, whose increment is given by
the k-bonacci sequence, is determined. Additionally, the Hausdorff, packing and box-counting dimen-
sions of the set of these walks that return an infinite number of times to the origin are given. As an ap-
plication, we study the return for tribonacci random walks to the first term of the tribonacci sequence.
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1. Introduction and Main Results

Random walks are one of the basic objects studied in probability theory. The motiva-
tion comes from observations of various random motions in the physical and biological
sciences. In 1921, Polya was one of the first to furnish a thorough analysis of Markovian
time-discrete random walks on periodic d-dimensional lattices. In these ‘Polya walks’,
the walker is allowed to step with equal probability only to any of its neighbor nodes.
He proved for such random walk that the walker is sure to return to its starting node for
dimensions d = 1, 2 for the lattice, whereas for dimensions d > 2, a finite escape probability
(probability of never returning) exists. This celebrated result has become known as the
Polya theorem or recurrence theorem. Since then, it has been studied by several authors,
highlighting its importance in several fields [1–7]. In this paper, we consider the k-bonacci
random walks and we compute the exact probability of return to the origin.

The Fibonacci sequence, commonly denoted by ( fn)n≥0, is a sequence of integers such
that each of them is the sum of the two preceding ones starting from zero and one, where{

f0 = 0, f1 = 1,
fn = fn−1 + fn−2, f or n ≥ 2.

This sequence was first introduced by Leonardo Fibonacci and is tightly connected to
the golden ratio ϕ = (1 +

√
5)/2 = 1.61803398 . . .. Since then, many researchers have been

interested in the study of the properties of this sequence and its applications. For example,
one can cite [8], where it was proven that ( fn)n≥0 increases exponentially with n at a rate
given by ϕ. A more general case was explored in [9], where the author considered the
random Fibonacci sequence (tn)n≥0 defined by t1 = t2 = 1 and the following for n > 2:

tn = ±tn−1 ± tn−2,
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where each ± sign is independent and either positive or negative with a probability of 1/2.
It is not even obvious that |tn| should increase with n. However, it was proven that the
following is almost certainly true:

lim
n→+∞

n
√
|tn| = 1.13198824 . . .

Later, in [10], the author considered the Fibonacci random walk and determined the
probability of its return to the origin. More precisely, he considered the random walk on Z
whose increments are given by ( fn)n≥0 such that

F̂n =
n

∑
i=1

fiwi,

where (wi)i≥1 is a sequence of independent, identically distributed random variables with
P(wi = ±1) = 1/2.

We denote with N the set of positive integers and consider the space of infinite se-
quences A = {−1, 1}N. We define for an elementary event w ∈ A the set

F(w) =
{

n ≥ 1, F̂n(w) = 0
}

.

Denoting with ”]B” the cardinality of a given set B, we set

Ri =
{

w ∈ A | ]F(w) = i
}

, i ∈ N

and
N =

{
w ∈ A | ]F(w) = ∞

}
.

It is known from [10] that the probability of Ri is 3/4i+1. In particular, P(N) = 0.
The idea of studying such types of problems comes from a classical result from Polya [11],
who was interested in a simple random walk of a length n ≥ 1 on the integers, given by

Sn =
n

∑
j=1

wj.

This means that Sn is seen as the position after n steps of a walk on the integers of an
individual, who is supposed to start its motion at the origin of the lattice (i.e., S0 = w0 = 0).
Pólya [11] showed this walk to be recurrent, which means that it almost surely returns to
the origin in a finite number of steps. The reader can also see, for example, refs. [12–14] for
more discussions on this problem.

In this paper, we are interested, for a given integer k ≥ 2, in the k-bonacci random
walk given by F̂n, where we take into consideration the k-bonacci sequence ( fn)n≥0 defined
by f0 = 0:

fn =
k

∑
j=1

fn−j, for n ≥ k + 1. (1)

as well as the k initializing terms ( fn)1≤n≤k which are supposed to satisfy the
following condition:

n

∑
j=1

f j < fn+2 and
n

∑
j=1
± f j 6= 0 for 1 ≤ n ≤ k, (2)

The condition in Equation (2) is guaranteed, for example, in the following situation:

fn = 1 +
n−1

∑
j=0

f j, for 1 ≤ n ≤ k.
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We study the probability of return of the k-bonacci random walk to the origin. For this,
we establish a necessary and sufficient condition for the k-bonacci random walk to reach
zero at least one time (Proposition 1). Our first main result is the following:

Theorem 1. For i ∈ N, P(Ri) =
2k − 1
2k(i+1)

.

Next, we are interested in the set N of walks returning infinitely many times to
zero. Since P(N) = 0, it is natural to ask a question about the size of N as a subset of A.
Denoting with dimH , dimP and dimB the Hausdorff, packing and box-counting dimensions,
respectively, we can state our second result as follows:

Theorem 2. dimH(N) = dimP(N) = dimB(N) =
1

k + 1
.

2. Fractal Dimensions and Preliminary Results
2.1. Fractal Dimensions

For a non-empty subset U of the Euclidian space Rn, the diameter of U is defined as

|U| = sup{|x− y|, x, y ∈ U}.

Let I and F be non-empty subsets of N and Rn, respectively. (I may be either finite or
countable.) We say that (Ui)i∈I is a δ covering of F if

F ⊂
⋃
i∈I

Ui and 0 < |Ui| ≤ δ, ∀i ∈ I.

The s-dimensional Hausdorff measure of F is defined as

Hs(F) = lim
δ→0+

inf
{

∑
i∈N
|Ui|s

}
,

where the infimum is taken over all the countable δ coverings (Ui)i∈N of F. The Hausdorff
dimension of F is defined as

dimH F = sup{s > 0, Hs(F) = ∞} = inf{s > 0, Hs(F) = 0},

with the conventions sup ∅ = 0 and inf ∅ = ∞.
The s-dimensional packing measure of F is defined as

P s(F) = lim
δ→0+

sup
{

∑
i∈N
|Bi|s

}
,

where the supremum is taken over all the packings {Bi}i∈N of F by balls centered on F and
with a diameter smaller than or equal to δ. The packing dimension of F is defined as

dimP(F) = sup{s > 0, P s(F) = ∞} = inf{s > 0, P s(F) = 0}.

Let Nδ(F) be the smallest number of sets with a diameter of at most δ which can cover
F. The lower and upper box-counting dimensions of F are respectively defined as follows:

dimB(F) = lim inf
δ→0

log Nδ(F)
log(δ)

,

and

dimB(F) = lim sup
δ→0

log Nδ(F)
log(δ)

.
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If dimB(F) = dimB(F), then this common value is denoted as dimB(F) and referred
to as the box-counting dimension (or simply the box dimension) of F such that

dimB(F) = lim
δ→0

log Nδ(F)
log(δ)

.

For more details, the reader can be referred to, for example [15–20].

2.2. Fractal Dimension of the Iterated Function System (IFS)

Let m and p be two positive integers with p ≥ 2 and X be a non-empty closed set of
Rm. A family {Si, i = 1, . . . , p} of contractive mappings on X is called an iterated function
system (IFS) on X [21]. Hutchinson showed in [22] that there is a unique non-empty
compact set K of X, called the attractor of {Si, i = 1, . . . , p}, such that

K =
p⋃

i=1

Si(K).

The local dimension at a point x ∈ Rm is defined by

d(µ, x) = lim
r→0

log µ
(

B(x, r)
)

log(r)
,

where B(x, r) denotes the closed ball of a radius r centered at x. A probability measure µ
on Rm is said to be exactly dimensional if there is a constant C such that

d(µ, x) = C, µ− a.e.x ∈ Rm.

It was proven that the Hausdorff dimension of the measure µ is

dim(µ) = C.

This result was first shown by Young [23]. The reader can also be referred to [19,20,24]
for more details.

Definition 1. Let m and p ≥ 2 be two positive integers, X be a non-empty closed set of Rm and
S = {Si}1≤i≤p be an IFS on X. Then, S is said to satisfy the open set condition (OSC) if there is a
non-empty, bounded and open set V such that

1.
p⋃

i=1

Si(V) ⊂ V.

2. Si(V)
⋂

Sj(V) = ∅, if i 6= j.

This definition allows us to recall the following result, which will allow us to calculate
the fractal dimension of N:

Theorem 3. [Theorem 9.3 in [18]] Let m and p be two positive integers, with p ≥ 2, X as a
non-empty closed set of Rm and S = {Si}1≤i≤p as an IFS on X. Suppose that for 1 ≤ i ≤ p, Si is
a similarity with a ratio ri and attractor F. In addition, suppose that S satisfies the OSC, and let s
be a unique value such that

p

∑
i=1

rs
i = 1.

Then, we have
dimH(F) = dimB(F) = s.
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In particular, if r1 = . . . = rp = r for some r, then

dimH(F) = dimB(F) = − log n
log r

.

The reader can find a proof of the dimension formula for self-similar sets either in [18]
or in [25]. It is well known [18] that

dimH(F) ≤ dimP(F) ≤ dimB(F).

As a consequence, Theorem 3 allows us to deduce the following:

Corollary 1. According to [18], suppose that the conditions of Theorem 3 are satisfied. If we also
have r1 = · · · = rp = r, then

dimH(F) = dimP(F) = dimB(F) = − log n
log r

.

2.3. Preliminary Results

We considered the k-bonacci sequence ( fi)i≥0 defined by Equations (1) and (2). Let
n ≥ k + 1. We easily obtain through induction that

n

∑
j=1

f j < fn+2. (3)

Moreover, we have

fn+1 =
n

∑
j=n−k+1

f j = fn +
n−1

∑
j=n−k+1

f j

= fn +
n−1

∑
j=n−k

f j − fn−k

= 2 fn − fn−k.

This means that
2 fn ≥ 1 + fn+1. (4)

Since we have that fn−k > 1 for n ≥ k + 2, then the result follows. We give in the
following a necessary and sufficient condition to obtain ∑n

i=1 wi fi = 0. For this, we consider
for any integer i ≥ 2 the finite sequences

vi+ = +1, +1, . . . , +1,︸ ︷︷ ︸ −1 and vi− = −1, −1, . . . , −1,︸ ︷︷ ︸ +1.

i times i times

We also consider, for a given integer p ≥ 1, the condition C(k, p),

(wp, wp+1, . . . , wp+k) ∈ {vk+, vk−}.

It is clear that if the condition C(k, p) holds, then
p+k

∑
j=p

wj f j = 0.

Proposition 1. Consider the k-bonacci sequence ( fi)i≥0 given by Equations (1) and (2), and let
w = (wi)i≥0 ∈ A. We have

F̂n(w) = 0 (5)

if and only if n = (k + 1)m for some integer m > 0 and

C
(
k, (k + 1)i + 1

)
holds for all 0 ≤ i < m. (6)
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To prove this proposition, we need to show the following result:

Lemma 1. Suppose that C(k, p) does not hold for an integer p ≥ 1. Then, we have

1.
∣∣∣ p+k

∑
j=p

wj f j

∣∣∣ ≥ 2 fp.

2. |F̂p+k(w)| > 1.

Proof.

1. Under Equation (1), we have

∣∣∣ p+k

∑
j=p

wj f j

∣∣∣ =
∣∣∣ p+k−1

∑
j=p

(wj + wp+k) f j

∣∣∣. (7)

We supposed that wp+k = 1 (the case wp+k = −1 is analogous). We considered the set

Ap,k = {j, p ≤ j ≤ p + k− 1, wj + wp+k 6= 0}.

Since C(k, p) does not hold, then Ap,k 6= ∅. Thus, Equation (7) leads to

∣∣∣ p+k

∑
j=p

wj f j

∣∣∣ = 2 ∑
j∈Ap,k

f j ≥ 2 fp.

2. If p = 1, and C(k, 1) does not hold, then by using Lemma 1 (1), we obtain

|F̂k+1(w)| ≥ 2 f1 > 1.

Otherwise, we have

|F̂p+k(w)| ≥
∣∣∣ p+k

∑
j=p

wj f j

∣∣∣− |F̂p−1(w)|.

Since C(k, p) does not hold, then using Lemma 1 (1) again leads to

|F̂p+k(w)| ≥ 2 fp − |F̂p−1(w)| ≥ 2 fp −
p−1

∑
j=1

f j.

By applying Equations (3) and (4) successively, we obtain |F̂p+k(w)| > 2 fp − fp+1 ≥ 1.

Proof of Proposition 1. ⇐: Obviously, if Equation (6) is realized, then through Equation
(1), we obtain Equation (5).

⇒: Conversely, suppose that Equation (5) is insured. Then, using the condition
in Equation (2), it becomes n ≥ k + 1. Let m be a unique positive integer such that
n = (k + 1)m + t(n).

1. If there exits p ∈ {(k + 1)j + t(n), 0 ≤ j < m} such that C(k, p) is not satisfied, then
we set

p(n) = sup
{

p = (k + 1)j + t(n) + 1, 0 ≤ j < m, C(k, p) does not hold
}

.

Thanks to Lemma 1, we have F̂n(w) = F̂p(n)+k(w) 6= 0.
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2. If t(n) 6= 0, and C(k, p) is satisfied for all p ∈ {(k + 1)j + t(n), 0 ≤ j < m}, then under
the condition in Equation (2), we have

F̂n(w) = F̂t(n)(w) +
m−1

∑
i=0

( k+1

∑
t=1

w(k+1)i+t(n)+t f(k+1)i+t(n)+t︸ ︷︷ ︸
)
= F̂t(n)(w) 6= 0.

0

Consequently, we must have that t(n) = 0 and Equation (6) satisfied. This ends
the proof.

3. Proof of Theorem 1

Let i ≥ 1. From Proposition 1, we deduce that F̂n reaches the origin exactly i times if
and only if n ≥ (k + 1)i, with

F̂(k+1)i = 0 and F̂(k+1)(i+1) 6= 0.

Moreover, we have

P
(

F̂(k+1)i = 0
)
=

2i

2(k+1)i
=

1
2ki

and
P
(

F̂(k+1)(i+1) = 0
/

F̂(k+1)i = 0
)
=

2
2k+1 =

1
2k .

It follows that

P(Ri) = P
(

F̂(k+1)(i+1) 6= 0 and F̂(k+1)i = 0
)

= P
(

F̂(k+1)(i+1) 6= 0
/

F̂(k+1)i = 0
)
× P

(
F̂(k+1)i = 0

)
=

2k − 1
2k(i+1)

.

4. Proof of Theorem 2

We consider the metric d, defined for any couple
(
(ui)i, (vi)i

)
of A×A by

d
(
(ui)i, (vi)i

)
=

∞

∑
i=1

|ui − vi|
2i .

Endowed with this metric,
(
A, d

)
becomes a compact metric space. As a direct

consequence of Proposition 1, we obtain the following lemma:

Lemma 2. We have N = {vk+, vk−}N.

Now, we consider the mappings T1 and T2, defined for any w = (wi)i ∈ A by

T1(w) = (vk+, w1, w2, . . .) and T2(w) = (vk−, w1, w2, . . .).

For i ∈ {1, 2} and for any (u, v) =
(
(uj)j, (vj)j

)
∈ A2, we have

d
(
Ti(u), Ti(v)

)
=

∞

∑
j=1

∣∣(Ti(u)
)

j −
(
Ti(v)

)
j

∣∣
2j =

∞

∑
j=k+2

|uj − vj|
2j =

1
2k+1 d(u, v).
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This means that T1 and T2 are contracting similarities on the metric space (A, d),
with contraction rates

r1 = r2 =
1

2k+1 .

Coming back to [22], one deduces the existence of a unique, compact, self-similar
subset F of A such that F = T1(F) ∪ T2(F). Lemma 2 implies that F = N. Furthermore, we
have T1(N) ∩ T2(N) = ∅. Hence, N is a self-similar set satisfying the open set condition in
the compact metric space (A, d). Their fractal dimension is then given by Theorem 3:

dimH(N) = dimP(N) =
ln(2)

ln(2k+1)
=

1
k + 1

.

Finally, by taking into account Corollary 1, we obtain the result.

5. Application

We are interested in applying the ideas presented in the previous sections to a class of
tribonacci sequences, defined by f0 = 0, f1 = 1, f2 = 3, f3 = 6 and

fi =
3

∑
j=1

fi−j, for i ≥ 4. (8)

The return point on which we focus our attention is no longer the origin. Our ideas
are still applicable when considering the number of visits of F̂n to f1. We considered, for an
elementary event w ∈ A, the set F1(w), for which F̂n(w) reaches f1 after n steps of the walk
such that

F1(w) = {n ≥ 1, F̂n(w) = f1}.

For i ∈ N, we denote as R1,i the event for which the element F̂n passes through f1
exactly i times, where

R1,i =
{

w ∈ A | ]F1(w) = i
}

.

Our first result can be stated as follows:

Theorem 4. For i ∈ N, P(R1,i) =
7

23(i+1)+1
.

In a similar way, we considered the set N1 consisting of elements of A, for which F̂n
passes through f1 an infinite number of times such that

N1 =
{

w ∈ A | ]F1(w) = ∞
}

.

Theorem 5. We have

dimH(N1) = dimP(N1) = dimB(N1) =
1
4

.

In the same spirit of Proposition 1, we have the following:

Proposition 2. Consider the tribonacci sequence ( fi)i≥0 given by Equation (8), and let (wi)i≥0 ∈ A
with w1 = 1. We have

F̂n(w) = f1 (9)

if and only if either n = 1 or n = 4m + 1 for some integer m ≥ 1 and

C(3, 4j + 2) holds for all 0 ≤ j < m. (10)
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Proof. ⇐: Obviously, if either n = 1 or n = 4m + 1 for some integer m ≥ 1, and
Equation (10) holds, then thanks to Equation (8), we obtain Equation (9).

⇒: Conversely, supposing that n ≥ 4, and that C(3, n− p) is not satisfied, we obtain a
contradiction through Lemma 1. Otherwise, through arguing by induction, we obtain

F̂n(w) = F̂t(n)(w).

If t(n) 6= 1, then F̂t(n) is even and positive, and thus |F̂t(n)| > f1. Again, this is
a contradiction.

It follows that either n = 1 or t(n) = 1, and Equation (10) holds.

5.1. Proof of Theorem 4

We take i ≥ 1. From Proposition 2, we deduce that F̂n reaches f1 exactly i times if and
only if n ≥ 4i + 1, with

F̂4i+1 = 1 and F̂4(i+1)+1 6= 1.

Moreover, we have

P
(

F̂4i+1 = 1
)
=

2i

24i+1 =
1

23i+1 and P
(

F̂4(i+1)+1 = 1
/

F̂4i+1 = 1
)
=

2
24 =

1
8

.

It follows that

P(R1,i) = P
(

F̂4(i+1)+1 6= 1
/

F̂4i+1 = 1
)
× P

(
F̂4i+1 = 1

)
=

7
23(i+1)+1

.

5.2. Proof of Theorem 5

We have that
N1 = {1} × {v3+, v3−}N.

We consider the mapping T, defined for any w = (wi)i ∈ A, with

T(w) = 1, w.

For (u, v) =
(
(uj)j, (vj)j

)
∈ A2, we have

d
(
T(u), T(v)

)
=

∞

∑
j=1

|T(u)j − T(v)j|
2j =

∞

∑
j=2

|uj−1 − vj−1|
2j =

1
2

d(u, v).

This means that T is a bi-Lipschitz mapping. Since N1 = T(N), we have

dimH(N1) = dimH(N) =
1
4

.

Coming back to Theorem 3 and Corollary 1, we deduce that

dimH(N1) = dimB(N1) = dimP(N1) =
1
4

.

6. Concluding Remarks and Perspectives

In this paper, we studied the probability of return for random walks on Z, whose
increment is given by the k-bonacci sequence. In particular, we generalized the results given
in [10] ( Theorems 1 and 2). Moreover, we considered the set N of walks returning infinitely
many times to zero. Since we had P(N) = 0 from Theorem 1 , then we were interested
in Theorem 2 to describe geometrically the set N by computing its fractal dimension.
In Section 5, we considered a particular interesting case—the tribonacci random walks
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(k = 3)—and we studied the return to the first term of this sequence. Finally, we think
it is very interesting to make points regarding some remarks and possible extensions of
our work:

1. The results given by Theorems 4 and 5 still remain valid if we take w1 = −1. In other
words, if we take the tribonacci sequence defined by Equation (8) and consider the set

F−1(w) = {n ≥ 1, F̂n(w) = − f1}

and if we denote for i ∈ N0 the event for which elements Fn passes through f1 exactly
i times by R−1,i such that

R−1,i =
{

w ∈ A | ]F−1(w) = i
}

,

then we have that P(R−1,i) =
7

23(i+1)+1
.

Moreover, if the set N−1 consists of the elements of A for which F̂n passes through
(− f1) an infinite number of times, where

N−1 =
{

w ∈ A | ]F−1(w) = ∞
}

,

then N−1 is such that dimH(N−1) = dimP(N−1) = dimB(N−1) =
1
5

.

2. The results obtained in this work and those given in the previous works concerning
the number of returns of F̂n to the origin or even to ± f1, as studied in Section 5,
depended strongly on the k initializing terms of the k-bonacci sequence (i.e., ( fi)1≤i≤k).
In particular, thanks to (AS), F̂n is allowed to visit zero or ± f1 only one time in its
first k steps of the walk, where (F̂i)1≤i≤k. If (AS) is no longer satisfied, then F̂n can
reach the values of zero or ± f1 more than one time before its (k + 1)th term F̂k+1.
Obviously, the equivalences established either in this or in the previous studies are
no longer valid. One can think about adapting the techniques used in this work or
giving another approach to study such problems.

3. One can ask to think of the possibility of reaching other terms of the k-bonacci sequence
and the eventual necessary or sufficient conditions to realize this task with F̂n.
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