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Abstract: In this paper, the fixed-time multi-switch combination–combination synchronization (FTM-
SCCS) of fractional-order chaotic systems with uncertainties and external disturbances is studied.
The appropriate sliding mode surface and controller are proposed based on a Lyapunov theorem, and
fixed-time multi-switching combination–combination synchronizations between four fractional-order
chaotic systems are realized. The Lyapunov function is designed to prove the feasibility of the
controller theoretically, and the effectiveness and robustness of the synchronization mechanism are
further verified by numerical simulations. The advantage of this article is that it extends fixed-time
synchronization to multi-switch combination–combination synchronization, enabling synchroniza-
tion for a limited time, while increasing the complexity of the synchronization mechanism and
improving its confidentiality in communication applications.

Keywords: fixed time; multi-switch combination–combination synchronization; chaotic system;
Lyapunov stability theory

1. Introduction

In the last few decades, the study of chaotic systems has received increasing attention.
Chaos is a complex and fascinating natural phenomenon. It has complex, unpredictable
behavior, is dependent on changes in initial conditions and parameters, and it exists in
many classical systems, including the Lorenz system [1], Chen system [2], PMSM system [3],
etc. Since Pecora and Carroll first considered the problem of chaos synchronization in
1990 [4], the practical application of chaos synchronization in chemical reactions, power
transformation, information processing and other fields has attracted more and more
attention. Currently, an increasing number of synchronization approaches are studied, for
example, drive response synchronization [5], projection synchronization [6], adaptive fuzzy
synchronization [7], neural network synchronization [8], feedback synchronization [9],
pulse synchronization [10], and sliding mode synchronization [11].

Fractional calculus is the promotion of integer calculus, which has the same long
history as integer calculus. However, due to limited computing power in the past, it was
not paid attention to until recent decades with the improvement of computing power [12].
Compared with integral calculus, fractional calculus can describe chaotic and nonlinear
phenomena more accurately. With the rapid development of chaos theory and application
research, researchers have been widely concerned with the synchronization of fractional
chaotic systems, and this field has developed rapidly over the last few years. In 2016,
Wang et al. studied the synchronization of fractional-order chaotic systems with uncertain
parameters [13]. Huang et al. [14] studied synchronization and anti-synchronization in a
class of financial systems in 2017. In 2018, Mohammadzadeh proposed the synchronization
of a time-delay fractional system [15]. In 2020, Zhang and Wu found synchronization
of chaotic systems of different dimensions [16]. Haris et al. designed a new nonlinear
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feedback controller to realize synchronization of chaotic systems with unknown param-
eters [17]. In 2021, Ababneh studied synchronization and anti-synchronization between
fractional-order chaotic optical systems with unknown parameters by designing an adap-
tive controller [18]. In 2022, Li et al. proposed a new global Mittag–Leffler synchronization
criterion for fractional-order hyperchaotic financial systems by designing appropriate pulse
control and state feedback controllers [19]. However, these control methods can only
achieve asymptotic synchronization and stability; that is to say, they cannot achieve accu-
rate convergence in a limited time. Moreover, we cannot estimate the convergence time of
these control methods in advance. In actual situations, it is extremely important to achieve
a stable and synchronous state within a specified time, especially for those applications that
require precise convergence and strict settling time limitations. High-precision convergence
in finite time can be realized by finite time control, but convergence time is determined
by the initial conditions. However, it is difficult to obtain accurate initial condition in-
formation in practical applications; because of this, estimating the convergence time is
challenging, and finite-time control’s convergence time approaches infinity, as do the initial
circumstances. In order to overcome the limitation of initial conditions and obtain better
response performance, Polyakov proposed a fixed-time control strategy [20]. The upper
bound of stability time in this control strategy is independent of the initial conditions of the
system. On the basis of the fixed-time stability theorem, more and more articles have been
written about fixed-time synchronization; for example, [21,22] introduced the fixed-time
synchronization of fractal-order chaotic systems. In Reference [23], an adaptive control
method is added on the basis of sliding mode control to realize the synchronization of
second-order chaotic systems. In this paper, fixed-time synchronization of chaotic systems
with different dimensions is proposed and extended to network systems [24].

However, the above synchronization is restricted to one drive and one responsive
system. In the last several years, some new synchronization schemes have appeared, among
which many chaotic systems are concerned, such as combinatorial synchronization [25,26],
composite synchronization [27] and dual composite synchronization [28]. In 2008, Ucar
et al. proposed a multi-switch synchronization scheme [29]. It is a significant improve-
ment over the current synchronization system. According to this plan, the various states
of the driving system and the required states of the response system are synchronized.
In 2011, Wang et al. realized the multi-switch synchronization of chaotic systems with
unknown parameters [30]. In 2015, Vincent et al. first combined multi-switch synchro-
nization and combined synchronization to achieve multi-switch synchronization between
multiple chaotic systems [31]. Zheng et al. realized the synchronization of three differ-
ent chaotic systems in 2016 by means of nonlinear control [32]. In 2017, Song et al. used
Lorenz and Chen chaotic systems to achieve fractal-order multi-switch synchronization [33].
This synchronization method has been generalized to the uncertain fractional-order chaotic
system in the literature [34]. In 2019, Zhang et al. realized the multi-switch combination
synchronization of spatiotemporal coupled systems using the backstepping method [35].
Reference [36] proposed a new adaptive anti-synchronization control to realize multi-switch
anti-synchronization between two driving systems and one system. In 2020, Muhammad et
al. realized multi-switch combination synchronization between multiple chaotic systems of
different orders [37]. The benefit of this is that it becomes nearly impossible for an intrusive
party to ascertain which combinations are likely to be synchronized because the error
system grows to such a size. These schemes provide significant resistance and anti-attack
capabilities for secure communication. At present, multi-switch combination synchroniza-
tion has been applied to finite time synchronization [38], but there are no related articles on
fixed time. This paper combines fixed-time synchronization with multi-switch synchro-
nization, and realizes multi-switch combination–combination synchronization with fixed
time using an appropriate sliding mode surface and controller. In practical application, it is
difficult to obtain a definite system; most systems have uncertainty and external interfer-
ence. Therefore, this paper presents the fixed-time multi-switch combination–combination
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synchronization (FTMSCCS) of fractional-order chaotic systems with uncertainties and
external disturbances. The main contributions of this paper are as follows:

(1) By designing a suitable sliding mode surface and controller, the fixed-time synchro-
nization of a fractional-order chaotic system is realized, ensuring that the system can
synchronize in finite time and is not restricted by the initial value condition.

(2) Multi-switch synchronization and fixed-time synchronization are combined for the
first time to realize the fixed-time multi-switch synchronization of a fractional-order
chaotic system.

(3) Because of the multiplexing, the combinations of synchronizations become more
numerous, which makes it difficult for an intruder to predict the combination of
synchronizations that will occur, so this method has higher security in secure commu-
nication applications.

The advantage of this article is that it extends fixed-time synchronization to multi-
switch combination–combination synchronization, enabling synchronization for a limited
time, while increasing the complexity of the synchronization mechanism and improving its
confidentiality in communication applications. The structure of this paper is as follows:
in the first section, the basic knowledge of calculus and some necessary theorems are
introduced. In the second section, the problems are expounded, and the results are given.
In the third section, the results of the numerical simulation are given.

2. Preliminaries

Before we start building models, we introduce three definitions of calculus and some
fundamental theorems.

Definition 1 ([39]). Let us define the fractional-order derivatives of Grünwald–Letnikov as

GLDβ f (τ) = lim
h→0

1
hβ

M

∑
m=0

(−1)mCβ
m f (τ −mh), (1)

where β > 0, M = [ τ
h ], Cβ

m = (
β
m) =

β(β−1)...(β−m+1)
m! .

Definition 2 ([39]). Let us define the fractional-order integral of Riemann–Liouville as

Iβ f (τ) =
1

Γ(β)

∫ τ

τ0

(τ − η)β−1 f (η)dη, (2)

and its derivatives as:
RLDβ

t f (τ) =
dm

dτm
1

Γ(m− β)

∫ τ

τ0

(τ − η)m−β−1 f (η)dη, (3)

where Γ(·) is Gamma function, β > 0.

Definition 3 ([39]). Let us define the fractional-order derivatives of Caputo as

CDβ f (τ) =
1

Γ(m− β)

∫ τ

τ0

(τ − η)m−β−1 f m(η)dη, (4)

where β > 0, m = [β] + 1.

Lemma 1 ([40]). There is a continuous and differentiable function x(t) ∈ Rn ; we come to
the result: 1

2
C
t0

Dβ
t x2(t)− x(t)C

t0
Dβ

t x(t) ≤ 0, (5)

where t > t0, 0 < β < 1.

Definition 4 ([41]). If a continuous function χ: [0, t)→ [0, ∞) is strictly growing and χ(0) = 0,
then it is deemed to be of class-K.
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Lemma 2 ([41]). Given the fractional-order system
C
t0

Dβ
t x(t) = f (x, t), (6)

where x = 0 is a fixed point, β ∈ (0, 1). Assuming class-K functions χi(i = 1, 2, 3) and a
Lyapunov function v(x(t), t) exist, the following is true:

χ1(‖x‖) ≤ v(x(t), t) ≤ χ2(‖x‖), (7)

C
t0

Dβ
t v(x(t), t) ≤ −χ3‖x‖, (8)

we call system (6) asymptotically stable.

Proposition 1 ([39]). For fractional derivatives, the following equation holds:

t0 Dα
t (t0 D−β

t f (t)) =t0 Dα−β
t f (t), (9)

where α ≥ β ≥ 0.

The GL specification gives slightly inaccurate results at the beginning of the simulation.
The RL definition cannot be used to explicitly distinguish between fractional orders; it is
primarily for fractional-order integrations. The advantage of the Caputo formulation is
that the initial conditions for differential equations of fractional order are the same as those
for equations of integer order. As a result, the Caputo fractional definition is the one used
in this essay. CDβ is conveniently replaced with Dβ below.

Lemma 3 ([42]). Given the fractional-order system:

Dβx(t) = −axµ1 − bxµ2 , x(0) = x0, (10)

where a > 0, b > 0 are constants, and µ1 > 1, µ2 < 1 stand for positive odd integer ratio. Then, the
system (10)’s equilibrium point is fixed-time stable, and the upper bound on the settling time is:

T <
1

a(µ1 − 1)
+

1
b(1− µ2)

. (11)

Lemma 4. This inequality is true for any real variable λ1, λ2, . . . , λn:
n

∑
i=1

λi ≤
∣∣∣∣∣ n

∑
i=1

λi

∣∣∣∣∣ ≤ n

∑
i=1
|λi|. (12)

3. System and Problem Description

This section presents the drive system and response system, the controller and sliding
mode surface that realize their synchronization. Likewise, the drive system is described as

Dβ
t x(t) = f (x, t) + ∆ f (x, t) + d f (t), (13)

Dβ
t y(t) = g(y, t) + ∆g(y, t) + dg(t), (14)

where x(t) ∈ Rn, y(t) ∈ Rn are the state vectors, d f (t) ∈ Rn, dg(t) ∈ Rn are the external
disturbances, f (x, t) ∈ Rn and g(y, t) ∈ Rn represent the nonlinear functions, ∆ f (x, t) =
[∆ f1(x1, t), ∆ f2(x2, t), . . . , ∆ fn(xn, t)] ∈ Rnand ∆g(y, t) = [∆g1(y1, t), ∆g2(y2, t), . . . ,
∆gn(yn, t)] ∈ Rn are the nonlinear uncertainties.

Assumption 1. There are positive constants k∆ f
i , k∆g

i and kd f
i , kdg

i , such that |∆ fi(x, t)| ≤ k∆ f
i ,

|∆gi(y, t)| ≤ k∆g
i and |d f

i (t)| ≤ kd f
i , |dg

i (t)| ≤ kdg
i , where the uncertainties ∆ fi(x, t), ∆gi(y, t)

and external disturbances d f
i (t), dg

i (t) are bounded.

The response systems are given as
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Dβ
t w(t) = h(w, t) + ∆h(w, t) + dh(t) + ξ(t), (15)

Dβ
t z(t) = r(z, t) + ∆r(z, t) + dr(t) + ξ∗(t), (16)

where w(t) ∈ Rn, z(t) ∈ Rn are the state vectors, dh(t) ∈ Rn, dr(t) ∈ Rn are the external
disturbances, h(w, t) ∈ Rn and r(z, t) ∈ Rn represent the nonlinear functions, ∆h(w, t) =
[∆h1(w1, t), ∆h2(w2, t), . . . , ∆hn(wn, t)] ∈ Rn and ∆r(z, t) = [∆r1(z1, t), ∆r2(z2, t), . . . ,
∆rn(zn, t)] ∈ Rn are the nonlinear uncertainties, ξ(t) = [ξ1(t), ξ2(t), . . . , ξn(t)]T ∈ Rn, ξ∗(t) =
[ξ∗1(t), ξ∗2(t), . . . , ξ∗n(t)]T ∈ Rn are the control vectors, and there are nonlinear functions.

Assumption 2. The uncertainties ∆hi(w, t), ∆ri(z, t) and external disturbances dh
i (t), dr

i (t)
are bounded; there are positive constants k∆h

i , k∆r
i and kdh

i , kdr
i , such that |∆hi(w, t)| ≤ k∆h

i ,
|∆ri(z, t)| ≤ k∆r

i and |dh
i (t)| ≤ kdh

i , |dr
i (t)| ≤ kdr

i .

Definition 5. There are four constant matrices N, P, R and Q ∈ Rn×n, R 6= 0, Q 6= 0, and the
error vector e(t) satisfies:

lim
t→∞
‖e(t)‖ = lim

t→∞
‖Nx(t) + Py(t)− Rw(t)−Qz(t)‖ = 0, (17)

then the driving systems (13) and (14) and the response systems (15) and (16) are said to be
multi-switching combination–combination synchronization (MSCCS), where ‖ · ‖ represents the
symbolization of the matrix norm.

Remark 1. Scaling matrices are the names given to the constant matrices N, P, R, and Q. We can
suppose that the functional matrices for the star variables x, y, w, and z are these scaling matrices.

Remark 2. The above synchronization issue becomes combination synchronization if R = 0 and
Q = 0.

Remark 3. Let I be the n× n identity matrix. The above synchronization issue is diminished to
the projective synchronization if N = 0, R = I, Q = 0 or N = R = 0, Q = I or P = 0, R = I,
Q = 0 or P = R = 0, Q = I.

Remark 4. Let I be the n× n identity matrix. The above synchronization problem is converted to
the projective anti-synchronization if N = 0, R = −I, Q = 0 or P = 0, R = −I, Q = 0 or P = 0,
R = −I, Q = 0 or P = R = 0, Q = −I.

Remark 5. Combination–combination synchronization will become chaos synchronization if the
scaling matrices N = P = R = 0 or N = P = Q = 0.

Remark 6. For convenience, let us assume N = diag(α1, α2, . . . , αn), P = diag(β1, β2, . . . , βn),
R = diag(γ1, γ2, . . . , γn) and Q = diag(δ1, δ2, . . . , δn), then the error vector e can be written as:

ehpls = αhxh + βpyp − γlwl − δszs. (18)

According to this formula, we give a new definition of Definition 5.

Definition 6. When h = p = l 6= s or h = p = s 6= l or h = l = s 6= p or p = l = s 6= h or
h = p 6= l = s or h = l 6= p = s or h = s 6= p = l or h = p 6= l 6= s or h = l 6= p 6= s or
h = s 6= p 6= s or h 6= p = l 6= s or h 6= p 6= l = s or h 6= l 6= p = s or h 6= p 6= l 6= s and

lim
t→∞
‖ehpls‖ = lim

t→∞
‖αhxh + βpyp − γlwl − δszs‖ = 0, (19)

then the driving system (13) and (14) and the response system (15) and (16) are said to be multi-
switching combination–combination synchronization (MSCCS), where ‖ · ‖ represents the symbol-
ization of the matrix norm, and ehpls(t) is the error synchronization vector.
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From Equations (13)–(16), the error dynamical system is obtained as

Dβ(e(t)) =N[ f (x, t) + ∆ f (x, t) + d f (t)]

+ P[g(y, t) + ∆g(y, t) + dg(t)]

− R[h(w, t) + ∆h(w(t)) + dh(t)]

−Q[r(z, t) + ∆r(z(t)) + dr(t)]−U(x, y, w, z),

(20)

and
U(x, y, w, z) = Rξ(t) + Qξ∗(t). (21)

We consider the sliding surface as:

s = e + D−β(σ1|e|µ1 + σ2|e|µ2)sign(e), (22)

where sign(·) is a sign function and σ1 > 0, σ2 > 0, µ1 > 1, µ2 < 1 stands for positive odd
integer ratio.

The control function is given as follows:

U =N f (x, t) + Pg(y, t)− Rh(w, t)−Qr(z, t)

+ (σ1|e|µ1 + σ2|e|µ2)sign(e) + (Nk∆ f + Nkd f

+ Pk∆g + Pkdg + Rk∆h + Rkdh + Qk∆r + Qkdr

+ η1|s|µ3 + η2|s|µ4)sign(s).

(23)

Theorem 1. Consider the error dynamics (20) to make uncertainties and external disturbances to
meet Assumptions 1 and 2. The system’s state trajectory converges to the sliding surface after a
finite amount of time if the control input (23) is applied, and its upper bound is:

t1 <
1

η1(µ3 − 1)
+

1
η2(1− µ4)

. (24)

Proof. The definition of the sign function is:

sign(ϕ) =


1, ϕ > 0,

− 1, ϕ < 0,

0, ϕ = 0.

(25)

We choose the Lyapunov function as:

V = |s|. (26)

We take the derivative of Equation (26) and we find:

DβV = Dβssign(s)

= [Dβe + (σ1|e|µ1 + σ2|e|µ2)sign(e)]sign(s).
(27)

When we substitute Equations (20)–(23) into (27), we find:

DβV ={N[ f (x, t) + ∆ f (x, t) + d f (t)] + P[g(y, t) + ∆g(y, t) + dg(t)]

− R[h(w, t) + ∆h(w(t)) + dh(t)]−Q[r(z, t) + ∆r(z(t)) + dr(t)]

− [N f (x, t) + Pg(y, t)− Rh(w, t)−Qr(z, t) + (σ1|e|µ1 + σ2|e|µ2)sign(e)

+ (Nk∆ f + Nkd f + Pk∆g + Pkdg + Rk∆h + Rkdh + Qk∆r + Qkdr

+ η1|s|µ3 + η2|s|µ4)sign(s)] + (σ1|e|µ1 + σ2|e|µ2)sign(e)}sign(s).

(28)

By simplifying the above formula, we can find:



Fractal Fract. 2023, 7, 281 7 of 17

DβV =(N∆ f (x, t) + Nd f (t) + P∆g(y, t) + Pdg(t)− R∆h(w(t))

− Rdh(t)−Q∆r(z(t))−Qdr(t))sign(s)

− (Nk∆ f + Nkd f + Pk∆g + Pkdg + Rk∆h + Rkdh + Qk∆r + Qkdr)

− (η1|s|µ3 − η2|s|µ4 .

(29)

According to Lemma 4, we find

DβV ≤ |N∆ f (x, t)|+ |Nd f (t)|+ |P∆g(y, t)|+ |Pdg(t)| − |R∆h(w(t))| − |Rdh(t)|
− |Q∆r(z(t))| − |Qdr(t)| − Nk∆ f − Nkd f − Pk∆gPkdg − Rk∆h

− Rkdh −Qk∆r −Qkdr − η1|s|µ3 − η2|s|µ4

≤ −η1|s|µ3 − η2|s|µ4

≤ −η1Vµ3 − η2Vµ4 .

(30)

According to Lemma 3, the fixed-time convergence with the upper bound of conver-
gence time (24) is proved, thus completing the proof.

If the error state reaches the sliding surface, then we give its dynamics as follows (s = 0):

e = −D−β(σ1|e|µ1 + σ2|e|µ2)sign(e). (31)

Theorem 2. Considering sliding mode dynamics (31), the error state variable converges to the
origin within the upper limit of finite time:

t2 <
1

σ1(µ1 − 1)
+

1
σ2(1− µ2)

. (32)

Proof. We choose the Lyapunov function as:

V = |e|. (33)

The fractional derivative of it is:
DβV = Dβesign(e) = (Dβ(−D−β(σ1|e|µ1 + σ2|e|µ2)sign(e))sign(e)

= −(σ1|e|µ1 + σ2|e|µ2)

≤ −σ1Vµ1 + σ2Vµ2 .

(34)

According to Lemma 3, the fixed-time convergence with the upper bound of conver-
gence time (32) is proved, thus completing the proof.

Theorem 3. Considering the error dynamics (20), the uncertainties and external disturbances of the
error dynamics satisfy Assumptions 1 and 2. The system’s state trajectory converges to the sliding
surface after a finite amount of time if the control input (23) is applied, and its upper bound is:

t3 <
1

η1(µ3 − 1)
+

1
η2(1− µ4)

+
1

σ1(µ1 − 1)
+

1
σ2(1− µ2)

. (35)

Proof. Fixed-time stabilization along the sliding surface and fixed-time convergence to the
sliding surface are both parts of the proof procedure. Fixed-time before arrival is demon-
strated in Theorem 1, while fixed-time after reaching the sliding surface is demonstrated in
Theorem 2. The evidence for Theorem 3 is thus complete based on Theorems 1 and 2.

Regardless of the initial conditions, we use T , max t3 to the upper bound of stable
time for all synchronization.

Remark 7. The plan can complete accurate time synchronization and/or stability in a fixed time.
Only the design parameters affect the upper bound of the time, which is constant and does not
depend on the initial circumstances.
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4. Numerical Simulation

Some numerical simulation results are provided in this part in order to demonstrate
the viability of the suggested approach. All experiments were conducted in Matlab 2016b
on a personal computer with 8 GB RAM and an Intel(R) Core(TM) i5-5250U CPU processor,
and we solve fractional differential equations using Adams–Bashforth–Moulton.

The FTMSCCS method can be used for many identical or different chaotic (hyper-
chaotic) systems. This part shows the FTMSCCS of four chaotic systems, including Chen,
Lorenz, Liu and Lü chaotic systems, with external disturbances and uncertainties. We use
the Lorenz and Chen systems as the drive systems:

0Dβ
t x1(t) = a1(x2 − x1) + ∆ f1(x1, t) + d f

1(t),

0Dβ
t x2(t) = x1(b1 − x3)− x2 + ∆ f2(x2, t) + d f

2(t),

0Dβ
t x3(t) = x1x2 − c1x3 + ∆ f3(x3, t) + d f

3(t),

(36)


0Dβ

t y1(t) = a2(y2 − y1) + ∆g1(y1, t) + dg
1(t),

0Dβ
t y2(t) = (b2 − a2)y1 − y1y3 + b2y2 + ∆g2(y2, t) + dg

2(t),

0Dβ
t y3(t) = y1y2 − c3y3 + ∆g3(y3, t) + dg

3(t),

(37)

where a1 = 10, c1 = 28, b1 = 8/3, a2 = 35, b2 = 28, c2 = 3 are system parameters, and
xi(t), yi(t)(i = 1, . . . , 3) represent the state vectors. We assume that the uncertainties and
the external disturbances are:

∆ f1(x1, t) = 0.1x1sin(t), d f
1(t) = 0.1sin(2t),

∆ f2(x2, t) = 0.1x2sin(5t), d f
2(t) = 0.1sin(t),

∆ f3(x3, t) = 0.1x3sin(4t), d f
3(t) = 0.1sin(2/3t),

∆g1(y1, t) = 0.1y1sin(2t), dg
1(t) = 0.1sin(4/5t),

∆g2(y2, t) = 0.1y2sin3(t), dg
2(t) = 0.1sin(3/2t),

∆g3(y3, t) = 0.1y3sin(4t), dg
3(t) = 0.1sin(1/2t).

(38)

The Lü and Liu systems are viewed as response systems:
0Dβ

t w1(t) = a3(w2 − w1) + ∆h1(w1, t) + dh
1(t) + ξ1(t),

0Dβ
t w2(t) = −w1w3 + b3w2 + ∆h2(w2, t) + dh

2(t) + ξ2(t),

0Dβ
t w3(t) = w1w2 − c3w3 + ∆h3(w3, t) + dh

3(t) + ξ3(t),

(39)


0Dβ

t z1(t) = −(z3 + z2) + ∆r1(z1, t) + dr
1(t) + ξ∗1(t),

0Dβ
t z2(t) = z1 + a4z2 + ∆r2(z2, t) + dr

2(t) + ξ∗2(t),

0Dβ
t z3(t) = b4 + z3(z1 − c4) + ∆r3(z3, t) + dr

3(t) + ξ∗3(t),

(40)

where a3 = 36, c3 = 3, b3 = 20, a4 = 0.2, b4 = 0.2, c4 = 5.7 are system parameters,
wi(t), zi(t)(i = 1, . . . , 3) are the state vectors, and ξ = [ξ1, ξ2, ξ3]

T, ξ∗ = [ξ∗1 , ξ∗2 , ξ∗3 ] are the
controllers to be designed. We assume that the uncertainties and the external disturbances are

∆h1(w1, t) = 0.1w1sin(5t), dh
1(t) = 0.1sin(t),

∆h2(w2, t) = 0.1w2sin(2t), dh
2(t) = 0.1sin(1/3t),

∆h3(w3, t) = 0.1w3sin(2/5t), dh
3(t) = 0.1sin(2/3t),

∆r1(z1, t) = 0.1z1sin(2t), dr
1(t) = 0.1sin(1/5t),

∆r2(z2, t) = 0.1z2sin(t), dr
2(t) = 0.1sin(1/2t),

∆r3(z3, t) = 0.1z3sin(1/4t), dr
3(t) = 0.1sin(2t).

(41)



Fractal Fract. 2023, 7, 281 9 of 17

By the appropriate conditions of the indicators h, p, l, s = 1, 2, 3, as described in
Definition 6, there can be multiple possible switch combinations to define the error state of
the master–slave system (36)–(40). These combinations are as follows:

Combination1 : h = p = l 6= s : {e1112, e1113, e2221, e2223, e3331, e3332}
Combination2 : h = p = s 6= l : {e1121, e1131, e2212, e2232, e3313, e3323}
Combination3 : h = l = s 6= p : {e1211, e1311, e2122, e2322, e3133, e3233}
Combination4 : p = l = s 6= h : {e1222, e1333, e2111, e2333, e3111, e3222}
Combination5 : h = p 6= l = s : {e1122, e1133, e2211, e2233, e3311, e3322}
Combination6 : h = l 6= p = s : {e1212, e1313, e2121, e2323, e3131, e3232}
Combination7 : h = s 6= p = l : {e1221, e1331, e2111, e2331, e3113, e3223}
Combination8 : h = p 6= l 6= s : {e1123, e1132, e2213, e2231, e3312, e3321}
Combination9 : h = l 6= p 6= s : {e1213, e1312, e2123, e2321, e3132, e3231}
Combination10 : h = s 6= l 6= p : {e1231, e1321, e2132, e2312, e3123, e3213}
Combination11 : h 6= p = l 6= s : {e1223, e1332, e2113, e2331, e3112, e3221}
Combination12 : h 6= p 6= l = s : {e1233, e1322, e2133, e2311, e3122, e3211}

Based on different switching possibilities, the results of two randomly selected error
state vector combinations are established in this paper. Three arbitrary error states are
selected to form our Switch 1 and Switch 2, respectively:

switch 1


e1231 = ∂1x1 + β2y2 − r3w3 − δ1z1;
e3123 = ∂3x3 + β1y1 − r2w2 − δ3z3;
e2312 = ∂2x2 + β3y3 − r1w1 − δ2z2;

(42)

switch 2


e2121 = ∂2x2 + β1y1 − γ2w2 − δ1z1,
e1232 = ∂1x1 + β2y3 − γ3w3 − δ2z2,
e3313 = ∂3x3 + β3y3 − r1w1 − δ3z3;

(43)

we select N = diag(α1, α2, . . . , αn), P = diag(β1, β2, . . . , βn), R = diag(γ1, γ2, . . . , γn) and
Q = diag(δ1, δ2, . . . , δn). The αk, βl , γm, δn(k, l, m, n = 1, 2, 3) represent scale factors, which
can in fact take any value.

4.1. Switch 1

Switch 1: The error dynamics of Switch 1 are represented by:
Dβe1231 = ∂1Dβx1 + β2Dβy2 − r3Dβw3 − δ1Dβz1;
Dβe3123 = ∂3Dβx3 + β1Dβy1 − r2Dβw2 − δ3Dβz3;
Dβe2312 = ∂2Dβx2 + β3Dβy3 − r1Dβw1 − δ2Dβz2;

(44)

using Equations (36)–(41), Equations (44) is changed into:
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Dβe1231 =∂1[a1(x2 − x1) + ∆ f1(x1, t) + d f
1(t)]

+ β2[(b2 − a2)y1 − y1y3 + b2y2 + ∆g2(y2, t) + dg
2(t)]

− γ3[w1w2 − c3w3 + ∆h3(w3, t) + dh
3(t) + ξ3(t)]

− δ1[−(z3 + z2) + ∆r1(z1, t) + dr
1(t) + ξ∗1(t)];

Dβe3123 =∂3[x1x2 − c1x3 + ∆ f3(x3, t) + d f
3(t)]

+ β1[a2(y2 − y1) + ∆g1(y1, t) + dg
1(t)]

− γ2[−w1w2 + b3w2 + ∆h2(w2, t) + dh
2(t) + ξ2(t)]

− δ3[b4 + z3(z1 − (c4) + ∆r3(z3, t) + dr
3(t) + ξ∗3(t)];

Dβe2312 =δ2[x1(b1 − x3)− x2 + ∆ f2(x2, t) + d f
2(t)]

+ β3[y1y2 − c3y3 + ∆g3(y3, t) + dg
3(t)]

− r1[a3(w2 − w1) + ∆h1(w1, t) + dh
1(t) + ξ1(t)]

− δ2[z1 + a4z2 + ∆r2(z2, t) + dr
2(t) + ξ∗2(t)].

(45)

The controllers of the error system are given as:
u1 = γ3ξ3(t) + δ1ξ∗1(t),
u2 = γ2ξ2(t) + δ3ξ∗3(t),
u3 = γ1ξ1(t) + δ2ξ∗2(t).

(46)

According to (22), we take the sliding mode surface as:
s1231 = e1231 + D−β(σ1|e1231|µ1 + σ2|e1231|µ2)sign(e1231);

s3123 = e3123 + D−β(σ1|e3123|µ1 + σ2|e3123|µ2)sign(e3123);

s2312 = e2312 + D−β(σ1|e2312|µ1 + σ2|e2312|µ2)sign(e2312).

(47)

Based on (23), we take the controller to be:

u1 =∂1a1(x2 − x1) + β2(b2 − a2)y1 − β2y1y3 + β2b2y2 − r3w1w2

− r3c3w3 + δ1(z3 + z2) + (σ1|e1231|u1 + σ2|e10|u2) sign(e1231)

+ (∂1k∆ f1
1 + ∂1kd f

1 + β2k∆g2
2 + β2kdg

2 + γ3 · k∆h
3 + γ3 · kdh

3

+ δ1k∆r
1 + δ1kdr

1 + η1|s1231|u3 + η2|s1231|u4) · sign(s1231);

u2 =∂3x1x2 − ∂3 · c1x3 + β1a2(y2 − y1) + r2w1w2 − r2 · b3w2

− δ3b4 − δ3z3(z1 − c4) +
(
σ1|e3123|u1

1 + σ2|e3123|u2
)

sign(e3123)

+ (∂3k∆ f
3 + ∂3kd f

3 + β1k∆g
1 + β1kdg

1 + γ2 · k∆h
2 + γ2 · kdh

2

+ δ3 · k∆r
3 + δ3kdr

3 + η1|s3123|u3 + η2|s3123|u4) sign(s3123);

u3 =∂2x1(b1 − x3)− ∂2x2 + β3y1y2 − β3c3y3 − r1a3(w2 − w1)

− δ2z1 + δ2a4 · z2 + (σ1|e2312|u1 + σ2|e2312|u2) · sign(l2312)

+ (∂2k∆t
2 + ∂2kdt

2 + β3k∆g
3 + β3kdg

3 + γ1 · k∆h
1 + γ1 · kdh

1

+ delta2k∆r
2 + δ2kdr

2 + η1|s2312|u3 + η2|s2312|u4) · sign(s2312).

(48)

According to Theorem 6, if the sliding mode surface (47) and control function (48) are
selected, then the drive system (36) and (37) will implement FTMSCCS with the response
system (39) and (40).
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4.2. Switch 2

Switch 2: The error dynamics of Switch 2 are represented by:
Dβe2121 = ∂2Dβx2 + β1Dβy1 − r2Dβw2 − δ1Dβz1;
Dβe1232 = ∂1Dβx1 + β2Dβy2 − r3Dβw3 − δ2Dβz2;
Dβe3313 = ∂2Dβx3 ++β3Dβy3 − r1Dβw1 − δ3Dβz3;

(49)

using Equations (36)–(41), Equations (49) is changed into:

Dβe2121 =∂2[x1(b1 − x3)− x2 + ∆ f2(x2, t) + d f
2(t)]

+ β1

[
a2(y2 − y1) + ∆g1(y1, t) + dg

1(t)
]

− γ2

[
−w1w3 + b3w2 + ∆h2(w2, t) + dh

2(t) + ξ2(t)
]

− δ1[−(z3 + z2) + ∆r1(z1, t) + dr
1(t) + ξ∗1(t)];

Dβe1232 =∂1

[
a1(x2 − x1) + ∆ f1(x1, t) + d f

1(t)
]

+ β2

[
(b2 − a2)y1 − y1y3 + b2y2 + ∆g2(y2, t) + dg

2(t)
]

− γ3

[
w1w2 − c3w3 + ∆h3(w3, t) + dh

3(t) + ξ3(t)
]

− δ2[z1 + a4z2 + ∆r2(z2, t) + dr
2(t) + ξ∗2(t)];

Dβe3313 =∂3

[
x1x2 − c1x3 + ∆ f3(x3, t) + d f

3(t)
]

+ β3

[
y1y2 − c3y3 + ∆g3(y3, t) + dg

3(t)
]

− γ1

[
d3(w2 − w1) + ∆h1(w1, t) + dh

1(t) + ξ1(t)
]

− δ3[b4 + z3(z1 − c4) + ∆r3(z3, t) + dr
3(t) + ξ∗3(t)].

(50)

The controllers of the error system are given as:
U1 = γ2ξ2(t) + δ1ξ∗1(t);
U2 = γ3ξ3(t) + δ2ξ∗2(t);
U3 = γ1ξ1(t) + δ3ξ∗3(t).

(51)

According to (22), we take the sliding mode surface as:
s2121 = e1231 + D−β(σ1|e1231|µ1 + σ2|e1231|µ2)sign(e1231);

s1232 = e3123 + D−β(σ1|e3123|µ1 + σ2|e3123|µ2)sign(e3123);

s3313 = e2312 + D−β(σ1|e2312|µ1 + σ2|e2312|µ2)sign(e2312).

(52)

Based on (23), we take the controller to be:
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u1 =∂2x1(b1 − x3)− ∂2x2 + β1a2(y2 − y1) + r2w1w3

− r2b3w2 + δ1(z3 + z2) + (σ1|e2121|µ1 + σ2|e2121|µ2) sign(e2121)

+ (∂2k∆ f
2 + ∂2kd f

2 + β1k∆g
1 + β1kdg

1 + γ2k∆h
2 + γ2kdh

2

+ δ1kδr
1 + d1kdr

1 + η1|s2121|µ3 + η2|s2121|µ4) sign(s2121);

u2 =∂1a1(x2 − x1) + β2(b2 − a2)y1 − β2y1y3 + β2b2y2

− r3w1w2 + r3c3w3 − δ2z1 − δ2a4z2 +
(
σ1|e1232|µ1 + σ2|e1232|µ2

)
·

sign(e1232) +
(

∂1k∆ f
1 + ∂1kd f

1 + β2k∆g
2 + β2kdg

2 + γ3k∆h
3 + γ3kdh

3

+ δ2k∆r
2 + δ2kdr

2 +η1|s1232|µ3 + η2|s1232|µ4
)

sign(s1232);

u3 =∂3x1x2 − ∂3c1x3 + β3y1y2 − β3c3y3 − r1a3(w2 − w1)

− δ3b4 − δ3z3(z1 − c4) +
(
σ1|e3313|µ1 + σ2|e3313|µ2

)
sign(e3313)

+
(

∂3k∆ f
3 + ∂3kd f

3 + β3k∆g
3 + β3kdg

3 + γ1k∆h
1 + γ1kdh

1 + δ3k∆r
3 + δ3kdr

3

+η1|s3313|µ3 + η2|s3313|µ4
)

sign(s3313).

(53)

According to Theorem 3, if the sliding mode surface (47) and control function (48) are
selected, then the drive system (36) and (37) will implement FTMSCCS with the response
system (39) and (40).

Finally, we further prove our conclusion using a numerical simulation. Let
N = diag(1, 1, 1), P = diag(1, 1, 1), R = diag(1, 1, 1) and Q = diag(1, 1, 1) and the
fractional-order β = 0.9. The initial states of the drive and response systems are arbi-
trarily chosen as (x1(0), x2(0),
x3(0)) = (3, 1, 2), (y1(0), y2(0), y3(0)) = (2,−5, 5), (w1(0), w2(0), w3(0)) = (3, 2, 2), (z1(0),
z2(0), z3(0)) = (−1, 3, 6.5). We choose the switch surface and controller parameters as
µ1 = µ3 = 11/9, µ2 = µ4 = 5/9 and σ1 = σ2 = η1 = η2 = 10. Additionally, ki = [3, 3, 3]T ,
where ki , k∆ f

i + k∆g
i + k∆r

i + k∆h
i + kd f

i + kdg
i + kdr

i + kdh
i . According to (35), we find the

maximum synchronization time T < 1.35. When there are uncertainties and external
disturbances on Switch 1, the synchronization time and error vectors of the two systems
are as shown in Figure 1. The control input of Switch 1 is shown in Figure 2. When there
are uncertainties and external disturbances on Switch 2, the synchronization time and error
vectors of the two systems are as shown in Figure 3. The control input of Switch 2 is shown
in Figure 4.
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Figure 1. (a): The time response of synchronization error of Switch 1, (b–d): The state trajectories of
Switch 1.
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Figure 2. Switch 1 control input of error system.
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Figure 3. (a): The time response of synchronization error of Switch 2, (b–d): The state trajectories of
Switch 2.
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Figure 4. Switch 2 control input of error system.
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5. Conclusions

This paper extends fixed time to multi-switch combination–combination synchroniza-
tion. This method not only ensures that the transmitted signal has stronger anti-attack
and anti-translation abilities than a signal transmitted by a single transmitter, but also
ensures that the signal transmission is completed in a limited time. It can be concluded
that this method is very pragmatic in practical application. Aiming at four fractional-order
chaotic systems with uncertainty and external disturbance, an appropriate controller and
sliding mode surface are designed to realize the fixed-time multi-switch combination–
combinatorial synchronization of fractional-order chaotic systems. It is worth mentioning
that the defined sliding surface not only guarantees the stability of the fixed time, but
also the upper bound of the synchronization time is independent of differences in the
initial conditions of the master–slave system, and depends only on the design parameters.
Two switches are selected for numerical simulation, and the effectiveness and robustness of
the proposed method are verified. This method can further be applied to studies consider-
ing the case of parameter uncertainty, and can also be extended to more synchronization
mechanisms or complex network synchronization.
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