Multivariate Analysis on a Complex, Rare-Earth Doped Alumina Database with Fractal Dimension as a Microstructural Quantifier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- XRD diffraction analysis–for its mineralogical composition.
- Determination of ceramic properties–absorption and relative density.
- Scanning electron microscopy (SEM) for the fracture morphology of sintered samples.
2.2. Principal Component Analysis (PCA)
2.3. Image Processing
3. Results and Discussions
3.1. Experimental Results
3.1.1. Ceramic Properties
- heat treatment temperature;
- the type of thermal treatment (see the case of cold plasma);
- the nature of the alumina precursor;
- of the nature and amount of added dopant.
3.1.2. X-ray Diffraction Analysis
3.1.3. Microstructural Characterizations
3.2. Principal Component Analysis Results
- i.
- increasing temperature led to an increased density;
- ii.
- plasma treatment conducted to a higher absorption as compared to conventional heating processing;
- iii.
- a higher density means a lower porosity and a lower absorption; this explains the observed substantial dissimilarity (opposition) between the two groups, (A + P) and (T + ρ).
- over PC1, right-handed data belong to the plasma (P) processed observations (29–42); they have high Absorption levels. For example, observations 29 and 30 have the highest Absorption among all, i.e., 36.61% and 38.71%;
- observed projections on the plot’s left side are controlled by (T + ρ). The higher the value of the projection on the PC, in absolute value, the stronger the influence of the corresponding variable.
- over PC2, data placed on top (above PC1) are La2O3–doped Al2O3 while the ones below PC1 are Y2O3–doped Al2O3 and Nd2O3–doped Al2O3;
- increasing doping ions lead to a higher projection of the scores on PC2 in absolute value. For example, but not only, score #30 corresponds to the alumina doped with 500 ppm La2O3, while score #29 has been doped with 1000 ppm La2O3.
3.3. Image Processing and Fractal Dimension Calculation
- (a)
- microstructural features look different at different scales.
- (b)
- compacted areas and regions showing well-defined grain boundaries could be found in the same image (see Figure 4d);
- (c)
- fracturing process results, such as fracture planes and edges, can be found in some images.
- (d)
- high intergranular porosity in some cases or compacted areas containing isolated pores (microporosity);
- (e)
- artifacts.
3.4. PCA with Fractal Dimension Results
3.4.1. FD Computed with Find Edges Tool
3.4.2. FD Computed with Canny Edge Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Mei, H.; Liu, L.; Zhang, J. The effect of heating rate on sintering mechanism of alumina nanoparticles. J. Am. Ceram. Soc. 2022, 105, 7149–7158. [Google Scholar] [CrossRef]
- Shigeno, K.; Kuraoka, Y.; Asakawa, T.; Fujimori, H. Sintering mechanism of low-temperature co-fired alumina featuring superior thermal conductivity. J. Am. Ceram. Soc. 2021, 104, 2017–2029. [Google Scholar] [CrossRef]
- Ghorbel, I.; Ganster, P.; Moulin, N.; Meunier, C.; Bruchon, J. Direct microwave heating of alumina for different densities: Experimental and numerical thermal analysis. J. Am. Ceram. Soc. 2023, 106, 2773–2785. [Google Scholar] [CrossRef]
- Fang, J.; Thompson, A.M.; Harmer, M.P.; Chan, H.M. Effect of Yttrium and Lanthanum on the Final-Stage Sintering Behavior of Ultrahigh-Purity Alumina. J. Am. Ceram. Soc. 1997, 80, 2005–2012. [Google Scholar] [CrossRef]
- Cho, J.; Harmer, M.P.; Chan, H.M.; Rickman, J.M.; Thompson, A.M. Effect of yttrium and lanthanum on the tensile creep behavior of aluminum oxide. J. Am. Ceram. Soc. 1997, 80, 1013–1017. [Google Scholar] [CrossRef]
- DeLellis, D.P.; Mecholsky, N.A.; Mecholsky, J.J., Jr.; Quinn, G.D. A fractal analysis of crack branching in borosilicate glass. J. Am. Ceram. Soc. 2020, 103, 5283–5290. [Google Scholar] [CrossRef]
- Penilla, E.H.; Devia-Cruz, L.F.; Duarte, M.A.; Hardin, C.L.; Kodera, Y.; Garay, J.E. Gain in polycrystalline Nd-doped alumina: Leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials. Light Sci. Appl. 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Bodisová, K.; Klement, R.; Galusek, D.; Pouchly, V.; Drdlíkc Maca, K. Luminescent rare-earth-doped transparent alumina ceramics. J. Eur. Ceram. Soc. 2016, 36, 2976. [Google Scholar] [CrossRef]
- Terzi, M. Particle size distribution analysis in aggregate processing plants using digital image processing methods. Rev. Romana Mater/Rom. J. Mater. 2018, 48, 514–521. [Google Scholar]
- Ghizdăveț, Z.; Năstac, D.; Eftimie, M.; Stanciu, I.; Volceanov, A. Correlations composition-processing-microstructure on some clinkers. Implications. Rev. Romana Mater/Rom. J. Mater. 2016, 46, 453–464. [Google Scholar]
- Podczeck, F. A shape factor to assess the shape of particles using image analysis. Powder Technol. 1997, 93, 47–53. [Google Scholar] [CrossRef]
- Petcu, G.; Dobrescu, G.; Atkinson, I.; Ciobanu, M.; Blin, J.-L.; Parvulescu, V. Evolution of Morphology, Fractal Dimensions, and Structure of (Titanium) Aluminosilicate Gel during Synthesis of Zeolites Y and Ti-Y. Fractal Fract. 2022, 6, 663. [Google Scholar] [CrossRef]
- Chen, C.; Ding, X.; Wang, Y.; Luo, Z.; Zhai, P. Fractal Dimension Analysis of Structure and Bending Strength of Porous Alumina Prepared Using Starch and Carbon Fiber as Pore-Forming Agents. Fractal Fract. 2022, 6, 574. [Google Scholar] [CrossRef]
- Mahovic Poljacek, S.; Risovic, D.; Furic, K.; Gojo, M. Comparison of fractal and profilometric methods for surface topography characterization. Appl. Surf. Sci. 2008, 254, 3449–3458. [Google Scholar] [CrossRef]
- Milosevic, N.T.; Jelinek, H.F.; Rasjkovic, N.; Ristanovic, D. Richardson’s method of segment counting versus box-counting. In Proceedings of the 19th International Conference on Control Systems and Computer Science, Bucharest, Romania, 29–31 May 2013; IEEE: Washington, DC, USA. [Google Scholar] [CrossRef]
- Ghizdavet, Z.; Stanciu, I.M.; Melinescu, A.; Ianculescu, A. Correlations composition-processing–microstructure-properties for ceria-based solid electrolytes. Rev. Chim-Buchar. 2017, 68, 1044–1050. [Google Scholar] [CrossRef]
- Husain, A.; Reddy, J.; Bisht, D.; Sajid, M. Fractal dimension of coastline of Australia. Sci. Rep. 2021, 11, 6304. [Google Scholar] [CrossRef] [PubMed]
- Akkari, H.; Bhourib, I.; Dubois, P.; Bedoui, M.H. On the Relations Between 2D and 3D Fractal Dimensions: Theoretical Approach and Clinical Application in Bone Imaging. Math. Model. Nat. Phenom. 2008, 3, 48–75. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Mingli, C.; Tang, Y.; Zhang, Z. Nanoindentation and porosity fractal dimension of calcium carbonate whisker reinforced cement paste after elevated temperatures (up to 900 °C). Fractals 2021, 29, 2140001-13. [Google Scholar] [CrossRef]
- Manukovskaya, D.V.; Sidorov, N.V.; Starodub, O.R.; Palatnikov, M.N. Fractal Analysis of Photoinduced Light Scattering Pictures in Stoichiometric Lithium Niobate Single Crystals. Ferroelectrics 2014, 473, 100–109. [Google Scholar] [CrossRef]
- State, R.; Volceanov, A.; Volceanov, E.; Stoleriu, S. Alumina composites obtained by unconventional heat treatment. Rev. Romana Mater/Rom. J. Mater. 2011, 48, 514–521. [Google Scholar]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe Ian, T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 2015020220150202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghizdavet, Z.D.; Ștefan, B.M.; Nastac, D.; Vasile, O.; Bratu, M. Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix. Constr. Build. Mater. 2016, 124, 755–763. [Google Scholar] [CrossRef]
- StatSoft EUROPE. Available online: https://www.statistica.com/en/ (accessed on 13 March 2023).
- University of Auckland, New Zeeland. Available online: https://www.cs.auckland.ac.nz/courss/compsci373s1c/PatricesLectures/Image%20Filtering.pdf (accessed on 19 February 2023).
- ImageJ. Image Processing and Analysis in Java. Available online: https://imagej.nih.gov/ij/docs/menus/process.html (accessed on 19 February 2023).
- OpenSource Computer Vision. Available online: https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html (accessed on 20 February 2023).
- O’Donnell, R.G. An Investigation of the Fragmentation Behaviour of Impacted Ceramics. J. Mater. Sci. Lett. 1991, 10, 685–688. [Google Scholar] [CrossRef]
- Sherman, D.; Brandon, D.G. The Ballistic Failure Mechanisms and Sequence in Semi-Infinite Supported Alumina Tiles. J. Mater. Res. 1997, 12, 1335–1343. [Google Scholar] [CrossRef]
- Yoshida, H.; Ikuhara, Y.; Sakuma, T. High-temperature creep resistance in rare-earth-doped, fine-grained Al2O3. J. Mater. Res. 1998, 13, 2597–2601. [Google Scholar] [CrossRef]
- Verma, K.; Singh, B.K.; Thoke, A.S. An Enhancement in Adaptive Median Filter for Edge Preservation. Procedia Comput. Sci. 2015, 48, 29–36. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Compositional Codes | |||
---|---|---|---|
Sample | Alumina type | Rare-earth oxide | Level (ppm) |
A1La5 | A1 (Al2O3 from sulphate, 1.2 μm average grain size) | La2O3 | 500 |
A1La10 | 1000 | ||
A2La5 | A2 (Al2O3–very fine powder, 325 mesh) | La2O3 | 500 |
A2La10 | 1000 | ||
A2Y5 | Y2O3 | 500 | |
A2Y10 | 1000 | ||
A2Nd5 | Nd2O3 | 500 | |
A2Nd10 | 1000 | ||
A3La5 | A3 (Al2O3 ACS, 2.1 μm average grain size) | La2O3 | 500 |
A3La10 | 1000 | ||
A3Y5 | Y2O3 | 500 | |
A3Y10 | 1000 | ||
A3Nd5 | Nd2O3 | 500 | |
A3Nd10 | 1000 |
1500 °C | 1815 °C | Cold Plasma | |||||||
---|---|---|---|---|---|---|---|---|---|
Mix | Item | ρ (g/cm3) | A (%) | Item | ρ (g/cm3) | A (%) | Item | ρ (g/cm3) | A (%) |
A1La10 | 1 | 2.31 | 20.17 | 15 | 3.54 | 1.57 | 29 | 1.549 | 38.71 |
A1La5 | 2 | 2.56 | 15.51 | 16 | 3.53 | 0.07 | 30 | 1.600 | 36.61 |
A2La10 | 3 | 2.60 | 14.82 | 17 | 2.62 | 11.69 | 31 | 2.462 | 14.97 |
A2La5 | 4 | 2.64 | 13.44 | 18 | 3.35 | 3.44 | 32 | 2.355 | 16.77 |
A2Nd10 | 5 | 2.59 | 14.41 | 19 | 3.07 | 4.24 | 33 | 2.193 | 20.05 |
A2Nd5 | 6 | 2.58 | 15.04 | 20 | 3.40 | 1.23 | 34 | 1.929 | 26.19 |
A2Y10 | 7 | 2.62 | 14.02 | 21 | 3.46 | 0.75 | 35 | 2.588 | 13.28 |
A2Y5 | 8 | 2.62 | 13.93 | 22 | 3.25 | 2.56 | 36 | 2.295 | 17.82 |
A3La10 | 9 | 3.48 | 3.11 | 23 | 3.45 | 2.33 | 37 | 2.279 | 18.46 |
A3La5 | 10 | 3.46 | 3.57 | 24 | 2.71 | 10.35 | 38 | 2.104 | 21.31 |
A3Nd10 | 11 | 3.57 | 2.12 | 25 | 2.36 | 15.55 | 39 | 2.049 | 22.47 |
A3Nd5 | 12 | 3.43 | 4.16 | 26 | 2.77 | 9.46 | 40 | 2.630 | 12.61 |
A3Y10 | 13 | 3.53 | 3.41 | 27 | 3.60 | 0.12 | 41 | 2.075 | 21.81 |
A3Y5 | 14 | 3.55 | 2.81 | 28 | 2.85 | 8.23 | 42 | 2.284 | 5.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghizdavet, Z.D.; Volceanov, A.; Volceanov, E. Multivariate Analysis on a Complex, Rare-Earth Doped Alumina Database with Fractal Dimension as a Microstructural Quantifier. Fractal Fract. 2023, 7, 286. https://doi.org/10.3390/fractalfract7040286
Ghizdavet ZD, Volceanov A, Volceanov E. Multivariate Analysis on a Complex, Rare-Earth Doped Alumina Database with Fractal Dimension as a Microstructural Quantifier. Fractal and Fractional. 2023; 7(4):286. https://doi.org/10.3390/fractalfract7040286
Chicago/Turabian StyleGhizdavet, Zeno Dorian, Adrian Volceanov, and Enikő Volceanov. 2023. "Multivariate Analysis on a Complex, Rare-Earth Doped Alumina Database with Fractal Dimension as a Microstructural Quantifier" Fractal and Fractional 7, no. 4: 286. https://doi.org/10.3390/fractalfract7040286
APA StyleGhizdavet, Z. D., Volceanov, A., & Volceanov, E. (2023). Multivariate Analysis on a Complex, Rare-Earth Doped Alumina Database with Fractal Dimension as a Microstructural Quantifier. Fractal and Fractional, 7(4), 286. https://doi.org/10.3390/fractalfract7040286