Fractional Scale Calculus: Hadamard vs. Liouville
Abstract
:1. Introduction
2. On the Linear Systems
- piecewise continuous,
- with bounded variation.
3. Shift-Invariant Systems: The Liouville Derivatives
- 1.
- The exponentials are the eigenfunctions of LTIS
- 2.
- If the region of convergence (ROC) of contains the imaginary axis, we can set , in such a way that the response of an LS to a sinusoid is also a sinusoid with the same frequency. In such a situation, the LT degenerates into the Fourier transform and we say that the system is stable.
4. On the Scale-Invariant Systems: Hadamard Derivatives
4.1. From the System to the Derivative
- 1.
- 2.
- 1.
- Power functions:We have
- 2.
- Logarithm:As above, we obtain
4.2. Properties of the Scale Derivatives
- LinearityIt is obvious from (26).
- Additivity and Commutativity of the ordersThis comes from (25).
- Neutral and inverse elementsLet Then,From (36), we conclude that there is always an inverse element—that is, for every there is always the order that we call anti-derivative.
- The generalized Leibniz ruleThis rule gives the FD of the product of two functions and assumes the format of other fractional derivatives [31]To prove this relation, we note first thatUsing the Bromwich inverse Mellin transform, we can write
4.3. Relation with Classic and Quantum Derivatives
4.4. Scale Conversion: Logarithmic Series
4.5. Hadamard Derivatives
4.6. Tempered Scale-Invariant Derivatives
- 1.
- Forward Grünwald–Letnikov
- 2.
- Forward regularized derivative
5. Scale-Invariant Systems
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cohen, L. The scale representation. IEEE Trans. Signal Process. 1993, 41, 3275–3292. [Google Scholar] [CrossRef]
- Nottale, L. The theory of scale relativity. Int. J. Mod. Phys. A 1992, 7, 4899–4936. [Google Scholar] [CrossRef]
- Nottale, L. Non-differentiable space-time and scale relativity. In Proceedings of the International Colloquium Geometrie au XXe Siecle, Paris, France, 24–29 September 2001. [Google Scholar]
- Nottale, L. The Theory of Scale Relativity: Non-Differentiable Geometry and Fractal Space-Time. In Computing Anticipatory Systems. CASYS’03—Sixth International Conference. American Institute of Physics Conference Proceedings; Dubois, D.M., Ed.; American Institute of Physics: College Park, MA, USA, 2004; Volume 718, pp. 68–75. [Google Scholar]
- Cresson, J. Scale relativity theory for one-dimensional non-differentiable manifolds. Chaos Solitons Fractals 2002, 14, 553–562. [Google Scholar] [CrossRef]
- Cresson, J. Scale calculus and the Schrödinger equation. J. Math. Phys. 2003, 44, 4907–4938. [Google Scholar] [CrossRef]
- Proekt, A.; Banavar, J.R.; Maritan, A.; Pfaff, D.W. Scale invariance in the dynamics of spontaneous behavior. Proc. Natl. Acad. Sci. USA 2012, 109, 10564–10569. [Google Scholar] [CrossRef]
- Khaluf, Y.; Ferrante, E.; Simoens, P.; Huepe, C. Scale invariance in natural and artificial collective systems: A review. J. R. Soc. Interface 2017, 14, 20170662. [Google Scholar] [CrossRef]
- Lamperti, J. Semi-stable stochastic processes. Trans. Am. Math. Soc. 1962, 104, 62–78. [Google Scholar] [CrossRef]
- Borgnat, P.; Amblard, P.O.; Flandrin, P. Scale invariances and Lamperti transformations for stochastic processes. J. Phys. A Math. Gen. 2005, 38, 2081. [Google Scholar] [CrossRef]
- Belbahri, K. Scale invariant operators and combinatorial expansions. Adv. Appl. Math. 2010, 45, 548–563. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Meyer, Y. Orthonormal wavelets. In Wavelets: Time-Frequency Methods and Phase Space Proceedings of the International Conference, Marseille, France, 14–18 December 1987; Springer: Berlin/Heidelberg, Germany, 1989; pp. 21–37. [Google Scholar]
- Mallat, S.G. Multiresolution Representations and Wavelets; University of Pennsylvania: Philadelphia, PA, USA, 1988. [Google Scholar]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef]
- Heil, C.E.; Walnut, D.F. Continuous and discrete wavelet transforms. SIAM Rev. 1989, 31, 628–666. [Google Scholar] [CrossRef]
- Edwards, T. Discrete Wavelet Transforms: Theory and Implementation; Stanford University: Stanford, CA, USA, 1991; pp. 28–35. [Google Scholar]
- Van Fleet, P.J. Discrete Wavelet Transformations: An Elementary Approach with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Poularikas, A.D. The Transforms and Applications Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hadamard, J. Essai sur L’étude des Fonctions, Données par leur Développement de Taylor; Gallica: Tokyo, Japan, 1892; pp. 101–186. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Garra, R.; Orsingher, E.; Polito, F. A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability. Mathematics 2018, 6, 4. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional dynamics with non-local scaling. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105947. [Google Scholar] [CrossRef]
- Liouville, J. Memóire sur quelques questions de Géométrie et de Méchanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. L’École Polytech. Paris 1832, 13, 1–69. [Google Scholar]
- Liouville, J. Memóire sur le calcul des différentielles à indices quelconques. J. L’École Polytech. Paris 1832, 13, 71–162. [Google Scholar]
- Dugowson, S. Les Différentielles Métaphysiques (Histoire et Philosophie de la Généralisation de L’ordre de Dérivation). Ph.D. Thesis, Université Paris Nord, Paris, France, 1994. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; Volume 198, p. 340. [Google Scholar]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen Auffassung der Integration und Differentiation (Jan. 14, 1847). In The Collected Works of Bernard Riemann Edited by Heinrich Weber with the Assistance of Richard Dedekind; Dover Publications: New York, NY, USA, 1953; pp. 353–366. [Google Scholar]
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How Many Fractional Derivatives Are There? Mathematics 2022, 10, 737. [Google Scholar] [CrossRef]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integrals. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Teodoro, G.S.; Machado, J.T.; De Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Klimek, M. Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4689–4697. [Google Scholar] [CrossRef]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transform. Spec. Funct. 2013, 24, 773–782. [Google Scholar] [CrossRef]
- Kamocki, R. Necessary and sufficient conditions for the existence of the Hadamard-type fractional derivative. Integral Transform. Spec. Funct. 2015, 26, 442–450. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Zheng, X. Logarithmic transformation between (variable-order) Caputo and Caputo–Hadamard fractional problems and applications. Appl. Math. Lett. 2021, 121, 107366. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L. Properties of Hadamard Fractional Integral and Its Application. Fractal Fract. 2022, 6, 670. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Valério, D. Fractional Signals and Systems; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Kailath, T. Linear Systems; Information and System Sciences Series; Prentice-Hall: Hoboken, NJ, USA, 1980. [Google Scholar]
- Bengochea, G.; Ortigueira, M.D. Fractional derivative of power type functions. Comput. Appl. Math. 2022, 41, 1–18. [Google Scholar]
- Ortigueira, M.D.; Machado, J.A.T. Fractional Derivatives: The Perspective of System Theory. Mathematics 2019, 7, 150. [Google Scholar] [CrossRef]
- Ortigueira, M.D. The complex order fractional derivatives and systems are non hermitian. In Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA’21), Online, 6–8 September 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 38–44. [Google Scholar]
- Herrmann, R. Fractional Calculus, 3rd ed.; World Scientific: Singapore, 2018. [Google Scholar]
- Rudolf, H. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Ortigueira, M.; Bengochea, G. A new look at the fractionalization of the logistic equation. Phys. A Stat. Mech. Its Appl. 2017, 467, 554–561. [Google Scholar] [CrossRef]
- Butzer, P.L.; Jansche, S. A direct approach to the Mellin transform. J. Fourier Anal. Appl. 1997, 3, 325–376. [Google Scholar] [CrossRef]
- Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 405–430. [Google Scholar] [CrossRef]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002; Volume 113. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Ortigueira, M.D. The fractional quantum derivative and its integral representations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 956–962. [Google Scholar] [CrossRef]
- Ortigueira, M.D. On the Fractional Linear Scale Invariant Systems. IEEE Trans. Signal Process. 2010, 58, 6406–6410. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Ma, L.; Li, C. On Hadamard fractional calculus. Fractals 2017, 25, 1750033. [Google Scholar] [CrossRef]
- Almeida, R. Caputo–Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim. 2017, 38, 1–19. [Google Scholar] [CrossRef]
- Ma, L.; Li, C. On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dyn. 2018, 13, 090905. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Bengochea, G.; Machado, J.A.T. Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron. Math. Methods Appl. Sci. 2021, 44, 9191–9209. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Magin, R.L. On the Equivalence between Integer-and Fractional Order-Models of Continuous-Time and Discrete-Time ARMA Systems. Fractal Fract. 2022, 6, 242. [Google Scholar] [CrossRef]
- Bengochea, G.; Ortigueira, M.; Verde-Star, L. Operational calculus for the solution of fractional differential equations with noncommensurate orders. Math. Methods Appl. Sci. 2021, 44, 8088–8096. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.T. Revisiting the 1D and 2D Laplace transforms. Mathematics 2020, 8, 1330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortigueira, M.D.; Bohannan, G.W. Fractional Scale Calculus: Hadamard vs. Liouville. Fractal Fract. 2023, 7, 296. https://doi.org/10.3390/fractalfract7040296
Ortigueira MD, Bohannan GW. Fractional Scale Calculus: Hadamard vs. Liouville. Fractal and Fractional. 2023; 7(4):296. https://doi.org/10.3390/fractalfract7040296
Chicago/Turabian StyleOrtigueira, Manuel D., and Gary W. Bohannan. 2023. "Fractional Scale Calculus: Hadamard vs. Liouville" Fractal and Fractional 7, no. 4: 296. https://doi.org/10.3390/fractalfract7040296
APA StyleOrtigueira, M. D., & Bohannan, G. W. (2023). Fractional Scale Calculus: Hadamard vs. Liouville. Fractal and Fractional, 7(4), 296. https://doi.org/10.3390/fractalfract7040296