
Citation: Giurgiu, R.; Dulf, E.-H.;

Kovács, L. Fractional-Order Control

of Fluid Composition Conductivity.

Fractal Fract. 2023, 7, 305. https://

doi.org/10.3390/fractalfract7040305

Academic Editors: Norbert Herencsar,

Esteban Tlelo-Cuautle, Dumitru

Baleanu and Shibendu Mahata

Received: 13 February 2023

Revised: 25 March 2023

Accepted: 29 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Fractional-Order Control of Fluid Composition Conductivity
Raluca Giurgiu 1 , Eva-H. Dulf 1,2,* and Levente Kovács 3

1 Department of Automation, Faculty of Automation and Computer Science, Technical University of
Cluj-Napoca, Memorandumului Str. 28, 400014 Cluj-Napoca, Romania

2 Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary
Medicine Cluj-Napoca, 3-5 Manastur Str., 400374 Cluj-Napoca, Romania

3 Physiological Controls Research Center, Óbuda University, H-1034 Budapest, Hungary
* Correspondence: eva.dulf@aut.utcluj.ro

Abstract: Dialysis refers to the procedure of removing waste products and excess fluids from the
blood stream. This is the main form of treatment for both acute and chronic renal failure. The
need for hemodialysis process optimization is increasing. More than 10% of adults are affected
by chronic kidney disease, and it is the nineth leading cause of deaths worldwide. Critically ill
patients are particularly at risk, and their mortality is significantly affected by the hemodialysis
procedures. This is the reason why the design and control of the hemodialysis process is studied by
many researchers. The present paper proposes a fractional-order control of the fluid composition
conductivity in this process. Fractional-order PI and PID controllers are designed with different
imposed performances in order to establish the best performing controller for this medical process.
The proposed fractional-order controllers are compared to the classical controller’s results in different
real-world scenarios, including process parameter changes, flow changes, and priming sequences. The
results are compared with a classical PID controller used in current clinical practice. The simulation
results show the robustness and advantages of the proposed fractional-order PID controller over
other controllers. These results could improve the clinical use of the hemodialysis process.
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1. Introduction

All over the world, there are patients dealing with chronic kidney disease and kidney
failure, which radically change their way of life. In recent years, end-stage renal disease
has become a more common disease [1]. Thus, hemodialysis comes to patients’ aid; this
procedure, which helps eliminate toxins and excess fluids from the bloodstream, has
become the main form of treatment for these diseases. The dialysis process acts as the
kidneys and performs a diffusion process to remove accumulated diffusion wastes; it also
acts as an ultrafiltration process that removes excess fluids from the body. The process of
dialysis is a life-prolonging treatment for patients with these diseases to allow them to live
their normal lives. However, it is quite a difficult and tiring process for patients when it
comes to maintaining their health in an optimal condition in between scheduled dialysis
days [2]. The need for hemodialysis devices is increasing due to the fact that more than
10% of adults in developed countries are affected by chronic kidney disease (the nineth
leading cause of deaths). Critically ill patients are particularly at risk, and their mortality is
significantly affected by the presence or absence of renal replacement therapy.

The design and control of the hemodialysis process has been studied by many re-
searchers, including both clinicians and engineers. A great review of this domain is
presented in [3]. Currently available papers discuss issues ranging from different monitor-
ing systems [4] to real-time detection techniques for the analysis of the key parameters of
hemodialysis machines, focusing on some key parameters, such as dialysate conductivity,
pH, temperature, static pulse pressure, flow, and pressure line in hemodialysis machines [5].
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Most of the research deals with the problem of peristaltic pump control of hemodialysis
machines, which are responsible for the fluid transfer [6]. The authors of [7] discuss a
biofeedback system using noninvasive repeated measures of ionic dialysance and plasma
water conductivity. Using patient measurement data, the dialysate sodium concentra-
tion is controlled by imposing a dialysate conductivity reference value. Through clinical
validation, the authors prove that the proposed automatic control offers a safer opera-
tion for patients than a prescription built on an empirical or intuitive basis. The authors
of [8] present a biofeedback system that influences the relative blood volume reduction by
changing the ultrafiltration rate and the dialysate conductivity.

The review paper [9] examines how bio-engineering has a strong potential for defining
common clinical team purposes and improving the dialysis process. The importance of a
proper control system design to exclude any risk of the dialysis process is demonstrated
in [10]. The necessity to individualize dialysis fluid composition to alleviate not only inter-
dialytic symptoms but also the development of longer-term complications is demonstrated
in [11]. The authors conclude that such individualization is possible only through proper
equipment using automatic control.

The review [12] provides an overview of available online hemodialysis technologies,
their current applications in clinical setting, and the potential for future developments in
improving the care of patients with chronic kidney disease. In order to provide an efficient
quality monitoring system for the hemodialysis process and to correlate with clinical
outcomes, several approaches have been developed. For example, the authors of [13]
present the application of urea estimation in hemodialyzed patients using artificial neural
networks. The possibilities of combining system dynamics models with other health system
methods, such as process-centric discrete event models, network science, and agent-based
modeling, are presented in [14]. The authors prove that multi-scale, multi-level models can
link physiological models, clinical practice, and health policy. Chapter [15] discusses factors
that affect the hemodialysis process. The authors conclude that there are a lot of patient-
and prescription-specific factors that affect the process, and understanding a patient’s
physiological characteristics, personal preferences, and social circumstances, coupled with
the prescription of a dialysis process, will lead to the most efficient treatment for the patient.
In [16], the authors analyzed how remote patient monitoring can contribute to improving
patient-centered outcomes and prognosis in patients with end-stage renal disease on
automated dialysis. The authors consider in their analysis the effectiveness and convenience
for patients, the total amount of healthcare resource consumption, and consultation time
during regular monthly visits. Their conclusions are that process automation can improve
patient-centered outcomes in patients, while reducing treatment burden for both patients
and medical staff. The final conclusion of the KDIGO (Kidney Disease: Improving Global
Outcomes) Conference in 2018 is that many factors, such as availability of resources, reasons
for starting dialysis, timing of dialysis initiation, patient education and preparedness,
dialysis modality and access, as well as varied “country-specific” factors, significantly
affect patient experiences and outcomes [17]. The need to move away from a “one-size-fits-
all” approach to dialysis and provide more individualized care that incorporates patient
goals and preferences, while still maintaining best practices for quality and safety, is
becoming more and more acute, and the solution could be the use of process modeling and
automated solutions.

A usual dialysis treatment lasts around four hours and is necessary three times per
week. The most time-consuming activities are the overhead activities. For example, at
start-up, the fluid composition control, including the concentrate control, has a very large
transient period. The importance of time reduction for such activities is discussed in [18].
The author further presents the main parameter variations in the process, such as a drop
of about 65% in urea concentration, the halving of serum potassium, a 25% increase in
bicarbonate, and the removal of at least 2 or 3 L of water. The impact of such high variations
on the body’s physiology cannot be neglected. This is the reason why efforts are being
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made to improve the process. In [19], a fuzzy control logic is proposed for the dialysis
process. Unfortunately, no simulation or experimental results are presented.

Fractional calculus represents the generalization of integration and differentiation
to an arbitrary real or a complex order. This branch of calculus has gained considerable
popularity and importance nowadays mainly due to its demonstrated applications in
numerous fields of science and engineering. Previous studies have discussed applications
ranging from bifurcations for a fractional-order bidirectional associative memory neural
network [20], or the use of a fractional-order 4D neural network incorporating two different
time delays [21], to fractional-order genetic regulatory networks incorporating distributed
delays and discrete delays [22]. In control engineering, Oustaloup first introduced the no-
tion of fractional order, developed the “Commande Robuste d’Ordre Non Entier (CRONE)”
controller [23], and highlighted the advantages of this calculus. The generalization of the
classical, most commonly used PID controllers is facilitated by Podlubny, who introduced
the so-called fractional-order PIλDµ controllers [24]. Since then, many researchers have
focused on the design problem of fractional-order controllers, especially to enhance the
robustness and performance of these control systems and to apply these advantages in
different applications [25–29], including those in medical field [30].

This paper highlights the benefits offered by fractional control in the medical field,
which can provide a solution to improving automatic control in the hemodialysis process.
To the best of our knowledge, no such control solution has been proposed in the literature.
The proposed control is based on optimizing the conductivity of the dialysis fluid, which is
composed of two concentrates and is an important parameter, along with pH, temperature,
and flow rate. Fractional-order PI and PID controllers are designed with different imposed
performances used in clinical practice in order to establish the best performing controller
for this medical process. The proposed fractional-order controllers are compared with the
classical controller’s results in different scenarios, including process parameter changes,
flow changes, and priming sequences. These results could improve the clinical use of the
hemodialysis process.

This paper is structured in four sections. After this short introductory part, Section II
presents the used process model. Section III describes the design of the fractional-order
controllers. The results are discussed in Section IV. Finally, this work ends with some
concluding remarks.

2. Materials and Methods

A schematic diagram of fluid preparation in a dialysis machine is presented in Figure 1.
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Figure 1. Simplified schematic diagram of fluid preparation.

Concentrate A is a mixture of electrolytes to match a patient’s blood content. It has very
good conductivity, and its solubility in water does not depend on temperature. Concentrate
B includes bicarbonate and acts as a pH buffer. Its solubility is temperature dependent,
which implies modeling complications. The two concentrates cannot be added at the same
point in the fluid path due to the risk of bicarbonate precipitation. Both concentrates A and
B are available as a solution or as a dry product to which the machine adds water. The
corresponding pumps are reciprocating pumps powered by stepper motors. They imply a
constant volumetric flow rate for each rotation. Thus, a disturbance is added to the output. A
mixing chamber is added, which is separated into two small chambers by a divider. After the
last mixing chamber, a conductivity measuring cell is used to measure the feedback signal.
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Assuming a homogeneous mixture and using the mass conservation laws, the process
model can be obtained as follows [31]:

H f (s) =

 Q4KA
(V1V2V3V4)(

s + Q
V1

)(
s + Q

V2

)(
s + Q

V3

)(
s + Q

V4

) e−sτA ,
Q2KB
V3V4(

s + Q
V3

)(
s + Q

V4

) e−sτB

[PuA
PuB

]
(1)

where Q is the main fluid flow; V1,2,3,4 are the volumes of each sub-chamber; KA and KB
are the steady state gains of A- and B-concentrate, respectively; τA and τB are the delay
time from the point of injection to the point of measurement; and PuA and PuB are the
volumetric flow of the concentrates. For the present research, the numerical values are as
follows: Q = 500 [mL/min]; V1 = 0.0399 [L]; V2 = 0.0295 [L]; V3 = 0.0384 [L]; V4 = 0.0216 [L];
KA = 0.8431; KB = 0.1328; τA = 4.51 [s]; and τB = 2.04 [s].

The continuous transfer function of a fractional-order PID controller has the following
general form [24]:

HC(s) = KP

(
1 +

Ki

sλ
+ Kdsµ

)
(2)

where 0 < λ < 1 and 0 < µ < 1 are the fractional orders of integration and differentiation,
respectively; KP is the proportional gain; and Ki and Kd are the integral and derivative gains,
respectively. Such controllers have two more degrees of freedom (the fractional orders
of integration λ and of differentiation µ) in comparison with a classical PID controller.
This flexibility comes with important advantages, such as better closed-loop performance,
disturbance rejection capabilities, improved control of time delay systems, and increased
robustness. The fractional-order derivative/integral can be described by the definitions
listed below [29].

The Riemann–Liouville definition:

D−α
c f (t) =

1
Γ(α)

t∫
c

(t− τ)α−1 f (τ)dτ, t > c, α ∈ R+

where Γ(α)=
∫ ∞

0 tn−1e−tdt is the Euler’s Gamma function, which is a generalization of a
fractional derivative, and n ∈ R+ is an extension of the fractional integral.

The Caputo definition:

cDα
f (t) =

1
Γ(m− α)

t∫
c

f (m)(τ)

(t− τ)α−m+1 dτ, m− 1 < α < m, m ∈ N

The Grünwald–Letnikov definition of the fractional-order derivative:

GLDα
f (t)= ∑m

k=0
f (k)(0+)tk−α

Γ(m + 1− α)
+

1
Γ(m + 1− α)

∫ t

0
(t− τ)m−α f (m+1)(τ)dτ, m > α− 1

The fractional integration and differentiation in frequency domain are expressed by
the Euler equations:

sµ = (jω)µ = ωµ
(

cos
µπ

2
+ j sin

µπ

2

)
; (3)

s−λ = (jω)−λ = ω−λ

(
cos

λπ

2
− j sin

λπ

2

)
(4)

The imaginary and real parts of the controller are defined as follows:

Im = Kp

(
Kdωµ sin

µπ

2
− Kiω

−λ sin
λπ

2

)
(5)
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Re = Kp

(
1 + Kiω

−λ cos
λπ

2
+ Kdωµ cos

µπ

2

)
(6)

In frequency domain, the magnitude, phase, and phase derivative of the fractional-
order PI controller can be expressed as

|HC
(

jωgc
)
| =

√
Im2 + Re2 , ∠HC

(
jωcg

)
= a tan

(
Im
Re

)
, φ =

d∠Hc
(

jωcg
)

dω

or expressed with all the terms of the following equations:

|HC(jω)| =

√(
Kp +

Kp

Ti
ω−λ cos

λπ

2

)2
+

(
Kp

Ti
ω−λ sin

λπ

2

)2
(7)

∠HC(jω) = a tan

 Kp
Ti

ω−λ sin λπ
2

Kp +
Kp
Ti

ω−λ cos λπ
2

 (8)

d∠Hc(jω)

dω
=

λTiω
λ−1 sin λπ

2

T2
i ω2λ sin2 λπ

2 +
(

Tiωλ cos λπ
2 + 1

)2 (9)

The same equations for the fractional-order PID controller are as follows:

|HC(jω)| = Kp

√
Kdωµ

(
sin

µπ

2
+ cos

µπ

2

)
+

(
ω−λKi cos

λπ

2
+ 1
)2
−
(

ω−λKi sin
λπ

2

)2
(10)

∠HC(jω) = a tan
Kdωµ sin µπ

2 − Kiω
−λ sin λπ

2

1 + Kiω−λ cos λπ
2 + Kdω−µ cos µπ

2

(11)

d∠Hc(jω)

dω
=

ωλ−1
(

Kiλ sin πλ
2 + KdKiλωµ sin π(λ+µ)

2 + KdKiµωµ sin π(λ+µ)
2 + Kdµωλ+µ sin πµ

2

)
ω2λ + K2

i + K2
dω2(λ+µ) + 2Kiωλ cos πλ

2 + 2Kdω2λ+µ cos πµ
2 + 2KdKiω

λ+µ cos π(λ+µ)
2

(12)

After imposing the phase margin (PM), the gain crossover frequency (ωcg), and the
iso-damping property as the performance measures for the open-loop system, the equations
for establishing the controller parameters become the following:

|HC(jω−π)| =
√

Im2 + Re2 =
GM∣∣∣H f (jω−π)

∣∣∣ , (13)

∠HC
(

jωcg
)
= a tan

(
Im
Re

)
= PM−∠H f

(
jωcg

)
(14)

d∠Hc
(

jωgc
)
·Hc
(

jωgc
)

dω
= 0 (15)

where ωcg is the gain crossover frequency; ω−π is the phase crossover frequency; GM is
the gain margin; and H f stands for the process model. When replacing Equations (13)–(15)
with the magnitude, phase, and phase derivative equations of the fractional-order PI (7)–(9)
and PID controllers (10)–(12), it results in a nonlinear equation system from which the
controller parameters can be obtained. In the present work, the Multi-objective Genetic
Algorithm (MOGA) is used to solve this nonlinear system, as detailed in [32].

In order to compare the advantages introduced by the fractional-order controllers, a
classical, integer-order controller is designed, replacing the fractional-order integrator and
differentiator with 1.
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3. Results

As the first experiment, a classical PI controller is designed for the concentrate A,
omitting the derivative terms in Equations (5)–(8) and using the integration order of one
(integer-order PI controller). The imposed performances—inspired by the range of values
reported in the literature for clinical practice [9,13–15,17–19]—and the resulting fractional-
order PI controller parameters are presented in Table 1.

Table 1. The imposed performances and the resulting integer-order PI controller parameters.

Controller PM
[◦]

ωgc
[rad/s] Kp Ki

HR1 45 0.05 0.1 1.75
HR2 65 0.06 1.012 16.86
HR3 62 0.03 0.12 3.23

The resulting Bode diagrams are plotted in Figures 2–4, highlighting the fulfillment of
the imposed performances.
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The second experiment involved the design of a fractional-order PI (FO-PI) controller,
using the same performance measures as in the integer-order case and, as an additional
performance measure, the iso-damping property in Equation (9). The resulting FO-PI
controller parameters are presented in Table 2.

Table 2. The imposed performances and the resulting FO-PI controller parameters.

Controller PM
[◦]

ωgc
[rad/s] Kp Ki λ

HG1 45 0.05 0.08 10.68 0.89
HG2 65 0.06 0.79 13.52 0.93
HG3 62 0.03 0.02 15.48 0.91

Using the Matlab FOMCON Toolbox [33], the corresponding Bode plots are generated
and shown in Figures 6–8. For the fractional-order controller, the Oustaloup Recursive
Approximation method is used [34], within a frequency band [0.01, 10] rad/s and with an
order N = 10.
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The corresponding step responses are plotted in Figure 9. It can be seen that all
performances are the same for the cases of the integer-order PI and FO-PI, which have been
imposed with the same performances, with the exception of the additional performance,
the iso-damping frequency.

The third experiment is the design of the FO-PID controller using Equations (4)–(8).
The imposed performance measures are the same as in the previous experiments. The
resulting controller parameters are highlighted in Table 3.

The obtained Bode diagrams are presented in Figures 10–12. The step responses of the
closed-loop system with the FO-PID controller are presented in Figure 13.
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Table 3. The imposed performances and the resulting FO-PID controller parameters.

Controller PM
[◦]

ωgc
[rad/s] Kp Ki λ Kd µ

HG1 45 0.05 0.08 0.1 0.89 0.6 0.55
HG2 65 0.06 0.79 0.075 0.93 0.09 0.9
HG3 62 0.03 0.1 0.05 0.95 0.1 0.58
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The robustness analysis of the resulting controllers is the last step in this research.
The process parameters are modified with +/−2% changes, which can occur in practice
due to patient particularities and operation changes. With each designed controller, the
Bode diagrams and step responses are simulated to establish performance variations.
The resulting phase margins, gain crossover frequencies, settling time, and overshoot are
established. The obtained results, in comparison with the initial values, for the nominal
parameters are shown in Tables 4 and 5.

Table 4. Performance results for +2% parameter changes in the process.

Controller

Results with Nominal Parameters Performance Changes with +2% Parameter Changes

PM
[◦]

ωgc[
rad

s

] ts
[s] σ [%] PM

[◦]
ωgc[
rad

s

] ts
[s] σ [%]

PI

62 0.03 136 4.5

1.8 0.0540 1 4.03

FO-PI 0 0.0103 0.5 0.70

FO-PID 0.1 0.0045 0 0.57

The step responses of the closed-loop system for all three types of controllers—integer-
order PI, FO-PI, and FO-PID—are presented in Figures 14 and 15. It can be noticed that the
most robust controller is the FO-PID. For example, the overshoot for the classical integer-
order controller changes by 4.03% in the case of +2% plant parameter changes, but the
FO-PID has only 0.57% overshoot changes, followed by the FO-PI with 0.7% overshoot
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changes. The same good robustness can be ascertained in the case of −2% parameter
changes in the process.

Table 5. Performance results for −2% parameter changes in the process.

Controller

Results with Nominal Parameters Performance Changes with −2% Parameter Changes

PM
[◦]

ωgc[
rad

s

] ts
[s] σ [%] PM

[◦]
ωgc[
rad

s

] ts
[s] σ [%]

PI

62 0.03 136 4.5

2.8 0.0640 6 2.80

FO-PI 0 0.0103 2 1.88

FO-PID 0.1 0.0045 1 0.70
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The performance changes in the frequency responses are plotted in Figures 16 and 17.
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As the first clinical use scenario, we also simulated the case when noisy output is used
as the feedback. A white noise is applied on the measured output, with 0.1 power spectral
density. The step responses of the closed-loop system for the integer-order controller and
the fractional-order PI and PID controllers are presented in Figure 18. It can be noticed the
good noise rejection of the two fractional-order controllers.
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As the second clinical use scenario, we simulated the cases when main flow changes
are necessary in the treatment. Figure 19 presents such a case, when the main flow is
changed from 2.5 unity to 9.5 unity. The blue curve represents the output using the
classical integer-order controller, while the red and yellow curves are the outputs using the
fractional-order PI and PID controllers. The adaptation of the fractional-order controllers is
way superior to the integer-order controller.
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Another issue related to clinical robustness testing is the priming sequences. When
a treatment begins, the dialysis equipment is empty. The pick-up tubes must be filled
with the proper concentrate. The priming consists of running the pumps until a proper
conductivity is achieved. Figure 20 presents such a simulated scenario, highlighting once
again the advantages of the fractional-order controllers, which show a smaller priming
time in comparison to the integer-order PI controller.
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4. Conclusions

The conductivity control based on the mathematical model of concentrates in a
hemodialysis machine is discussed in the present research. This work aimed to improve
the control system to help optimize dialysate performances for people with chronic kid-
ney disease. Three types of controllers were implemented: a classical integer-order PI
controller, which is used in current clinical practice; a fractional-order PI controller; and a
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fractional-order PID controller. The additional degrees of freedom were used for robustness
issues. This robustness was tested by +/−2% process parameter changes, noise rejection,
input changes, and priming sequences. The obtained results prove the superiority of the
fractional-order controllers. Using such controllers in clinical practice could improve the
efficiency of the hemodialysis process.

Future works include an extension of the fractional-order controller design for the
entire hemodialysis process and practical implementation.
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