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Abstract: Considering the case of a continual bundle of controlled dynamic processes, the authors
have studied the functional-geometric conditions of existence of non-stationary coefficients-operators
from the differential realization of this bundle in the class of non-autonomous bilinear second-order
differential equations in the separable Hilbert space. The problem under scrutiny belongs to the
type of non-stationary coefficient-operator inverse problems for the bilinear evolution equations
in the Hilbert space. The solution is constructed on the basis of usage of the functional Relay-Ritz
operator. Under this mathematical problem statement, the case has been studied in detail when the
operators to be modeled are burdened with the condition, which provides for entire continuity of the
integral representation equations of the model of realization. Proposed is the entropy interpretation
of the given problem of mathematical modeling of continual bundle dynamic processes in the context
of development of the qualitative theory of differential realization of nonlinear state equations of
complex infinite-dimensional behavioristic dynamical system.

Keywords: inverse problems of nonlinear evolution equations; bilinear differential non-autonomous
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1. Introduction

A large class of inverse problems of evolution equations is bound up with mathemati-
cal modeling of interconnected dynamical systems [1–3]; in particular, those possessing a
hyperbolic structure [4,5]. In this context, we propose an analytical grounding of solvabil-
ity of the problem of full, continuous bilinear differential non-autonomous second-order
realization for a continual bundle of controlled dynamic processes as a model of the behav-
ioristic system [1]. Noteworthy is the need to construct the qualitative theory of differential
realization (QTDR), which was understood long ago. The first (in 1940) pithy step in this
direction was undertaken by Kolmogorov [2] in connection with the development of the
theory of continuous one-parameter groups of motions.

Firstly, QTDR was elaborated as a direction of system-theoretic analysis of inverse
problems for the finite-dimensional dynamic systems [6–10]. Later QTDR was extended
up to more abstract statements in Banach infinite-dimensional spaces, whose complete
systems of elements [11] (p. 167) represented the basis, what was actively used in the
work [12–14]; there exists [11] (p. 514) the separable reflexive Banach spaces without the
property of approximation (when any compact operator is a uniform limit of the finite
rank operators), and, consequently, also without any basis. Furthermore, it was ascertained
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that serious analytical difficulties were encountered after the transition to the differential
realization systems with the order higher than one, when the account of hyperbolic models
was needed [15–17].

Within the framework of the given context, we consider the aspect of nonlinearity
of scrutinized (modeled) equations; in particular, existence of bilinear structures [18] of
non-autonomous equations of differential realization. This is the major object of attention
in the present paper. Furthermore, we additionally consider the entropy aspect [6] of
the theory.

2. QTDR-Terminology, Denotations and the Problem Statement

Let us define a definite terminology and introduce the denotations, which will be used fur-
ther. From now on (X, ||·||X), (Y, ||·||Y) , (Z, ||·||Z) are real separable Hilbert spaces (the pre-
Hilbert property is given by norms ||·||X, ||·||Y, ||·||X), U = X×X×Y×Z×Z×Z is the Carte-

sian product with the norm
∣∣∣∣∣∣·, ·, ·, ·, ·, ·∣∣∣∣∣∣U := (

∣∣∣∣·∣∣|2X+∣∣∣∣·∣∣|2X+∣∣∣∣·∣∣|2Y+∣∣∣∣·∣∣|2Z+∣∣∣∣·∣∣|2Z+∣∣∣∣·∣∣|2Z)1/2

(transforming (U, ||·||U) into Hilbert spaces [11] (p. 162)), L(Y, X) is the Banach space (with
the operator norm) of all the linear continuous operators acting from space Y into X (we will
introduce L(·, ·) for any two fixed Banach spaces similarly), L(X2, Z) are spaces of all the
continuous bilinear maps [11] (p. 646) from the Cartesian square X×X in Z.

Let us denote by T a segment of numerical axis R with the Lebesgue measure µ, by
℘µ—the σ -algebra of all µ -measurable subsets from T; next, we’ll need µ -relations on
T, so, we’ll introduce (for them) the symbols · = ·, · 6= ·, · ≥ ·, · ≤ · for the cases of
equality, inequality and orderings µ -almost everywhere in T; the record S· ⊆ · Q for
S, Q ∈ ℘µ means that µ(S\ Q) = 0. Moreover, assume that AC1(T, X) is a linear set of all
the functions ϕ : T → X, whose first derivative is an absolutely continuous function on
interval T (with respect to the Lebesgue measure µ). Next, let (B, ||·||B) be some Banach
space. By Lp(T, B), 1 ≤ p ≤ ∞ we will denote Lebesgue factor-spaces [19] (p. 52) of all the

classes of µ -equivalence maps f : T → B with norm (
∫
T
‖ f (τ)‖p

B µ(dτ))
1/p

< ∞ , when

1 ≤ p < ∞, and ess supT || f (t) ||B < ∞ for p = ∞. Staying within the given context, let us
introduce the following auxiliary denotations:

II := AC1(T, X)× L2(T, Y)× L2(T, Z)× L2(T, Z)× L2(T, Z),

L2 := L2(T, L(X, X))× L2(T, L(X, X))× L2(T, L(Y, X))×

×L2(T, L(Z, X))× L2(T, L(Z, X))× L2(T, L(Z, X));

obviously, space L2 (with the topology of product) is an isomorph L2(T, L(U, X)); further-
more, let us agree that any vector from L2 (in the context of the problem of realization) will
be called the (A1, A0, B0, B1, B2, B3)2 -model.

Henceforth we assume that bilinear maps Bi ∈ L(X2, Z), i = 1, 2, 3 are fixed, and that

N ⊂ { ( x, u,B1(x, x),B2(x, dx/dt),B3(dx/dt, dx/dt) ) ∈ II }, Card N ≤ exp ℵ0 , (1)

is the behavior of the scrutinized dynamic system with x -trajectories, programmed controls
u and bilinear relations Bi, i = 1, 2, 3 (exp ℵ0—continuum, ℵ0—aleph- zero); it is obvious
that—according to (1)—in the case of a behavioristic N -system, for any dynamic process
from N the following relationship is valid

B1(x, x), B2(x, dx/dt), B3(dx/dt, dx/dt) ∈ L2(T, Z).
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Consider the following QTDR-problem. In the case of a behavioristic N -system
(1) it is desirable to find both necessary and sufficient conditions of existence of the
(A1, A0, B0, B1, B2, B3)2 -model represented by the cortege

(A1, A0, B0, B1, B2, B3) ∈ L2,

for which it is possible to realize a bilinear differential realization (BDR) of the form

d2x/dt2 + A1dx/dt + A0x =
= B0u + B1B1(x, x) + B2B2(x, dx/dt) + B3B3(dx/dt, dx/dt) ,

(2)

∀ (x, u,B1(x, x),B2(x, dx/dt),B3(dx/dt, dx/dt)) ∈ N;

on account of Lemma 1 [12], in the construction of the x -solution, we follow [19] (p. 418),
i.e., the equality in (2) is considered as an identity in L1(T, X). This QTDR-statement will
later be burdened with the condition of entire continuity (see Definition 3) of an integral
form of the non-autonomous BDR-model (2).

3. Reduction of the BDR-Problem to the Problem of M2 -Continuity

At the end of this short paragraph we will show (in Lemma 1) how the mathematical
statement of the problem of the BDR-problem may be reformulated in terms of a special
division of the theory of extension of linear operators [20] (p. 38) in the functional Banach
spaces. We will speak about a “special division” because below we will give a strong
mathematical grounding to this operator extension.

Let us redenote (for the purpose of convenience) Hilbert spaces L2(T, U) with H2; it
is clear that, in accordance with the constructions introduced earlier, the norm in space H2
has the form:

‖(g, w, v, q, s, h)‖H :=

:= (
∫
T

(‖g(τ)‖2
X + ‖w(τ)‖2

X+‖v(τ)‖
2
Y + ‖q(τ)‖2

Z + ‖s(τ)‖2
Z + ‖h(τ)‖2

Z) µ(dτ))
1/2.

Let L(H2, X) be a space of all linear continuous operators (with the operator norm
||·||L(H,X)) acting from space H2 into space X. Now, for the fixed (somehow) ordered system
of operator-functions (D1, D2, D3, D4, D5, D6) ∈ L2, let us introduce into our consideration
the linear operator ξ ∈ L(H2, X), which has the following analytical representation

ξ (g, w, v, q, s, h) :=

:=
∫
T

(D1(τ)g(τ) + D2(τ)w(τ) + D3(τ)v(τ) + D4(τ)q(τ) + D5(τ)s(τ) + D6(τ)h(τ)) µ(dτ). (3)

Next, space (X, ||·||X) is locally convex, so (since the conjugate space for X separates the
points in X), the linear operator Γ : L2 → L(H2, X), which—according to Formula (3)—realizes
the coordination defined as

(D1, D2, D3, D4, D5, D6) 7→ Γ(D1, D2, D3, D4, D5, D6) = ξ ,

is the one-to-one coordination (Ker Γ = { 0 } ), what allows one to state—with respect to
the properties of operator Γ—ever more (see Proposition 1 below), under the assumption
that the linear manifold of operator-function L2 is allotted with the structure of the topology
induced by the norm

‖(D1, D2, D3, D4, D5, D6)‖L :=
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:= (
∫
T

(‖D1(τ)‖2
L(X,X) + ‖D2(τ)‖2

L(X,X) + ‖D3(τ)‖2
L(Y,X) + ‖D4(τ)‖2

L(Z,X)+‖D5(τ)‖2
L(Z,X) + ‖D6(τ)‖2

L(Z,X)) µ(dτ))
1/2.

Obviously, the pair (L2, ‖ · ‖L) forms the Banach space [20] (p. 81).
There exists another formulation of the fact that Ker Γ = {0} is rather important to

identify it in the capacity of a separate statement (proposition).

Proposition 1. Operator Γ is a linear homeomorphism.

Now, after the prepared constructions is conducted, we will introduce into considera-
tion one of the operator-theoretic constructions which is most important for us.

Definition 1. The linear map M : H2 → L1(T, X) is called theM2-operator, when

∃ (D1, D2, D3, D4, D5, D6) ∈ L2 : M(g, w, v, q, s, h) :=

:= D1g + D2w + D3v + D4q + D5s + D6h , ∀ (g, w, v, q, s, h) ∈ H2 .

Not in the last tern we take interest in the issue of how the class of all the M2-
operators is constructed. The general understanding of this issue is represented by the
following statement.

Proposition 2. The class of all M2 -operators belong (how eigen-one) to the Banach space
L(H2, L1(T, X)).

So, there is in-coincidence of the space of bounded operators L(H2, L1(T, X)) and the
class of all M2 -operators.

The theory of extension of linear operators in common Banach spaces has been now
developed more completely; so, we will restrict our consideration with reference to well-
known (classical) monographs [11,20]. The following definition gives a new functional-
analytic direction in this direction of development of the theory of operators:

Definition 2. Let subset V ⊂ H2 be fixed. Hence the given linear operator M# : Span V → L1(T, X)
will be called M2 -continuable when M# admits linear extension to some M2 -operator M, i.e.,

∃ (D1, D2, D3, D4, D5, D6) ∈ L2 : M(g, w, v, q, s, h) =

= D1g + D2w + D3v + D4q + D5s + D6h , ∀ (g, w, v, q, s, h) ∈ H2 , M
∣∣∣Span V = M# .

(Due to Proposition 2, M2 -continuity implies continuous extension of operator M#).

Each pithy mathematical theory has its short list of lemmas, which form the basement
of this theory. Within the frames of this context, the basement of the theory of the second-
order BDR-realization is formed by the following lemma, which is important for us:

Lemma 1. BDR-problem (1)–(2) is solvable if and only if operator

(g, w, v, q, s, h) 7→ M# (g, w, v, q, s, h) := d2w/dt2 ,

(g, w, v, q, s, h) ∈ Span { (dw/dt, w, v, q, s, h) : (w, v, q, s, h) ∈ N}
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is M2 -continuable.

Before proceeding to solving the issue of BDR-modeling within the frames of the
functional-analytical theory of M2 -continuity, let us note that Lemma 1 (in essence) states
side-by-side that, while spending more effort on the operational techniques, the same
qualitative systems-theoretic results bound up with reduction of the BDR-problem to
solving the problem of M2 -continuity may be applied to the bilinear non-autonomous
differential evolution equations of higher orders. So, from now on, we do not intend to go
deeper into this issue.

4. The Characteristic Indicator of M2 -Continuity

In the previous paragraph we have demonstrated how, when using the structure of
linearly functional M2 -operators, it is possible to reduce the BDR-problem to the analytical
solution of the problem of M2 -continuity. In this connection, in this section of the paper
we continue the study of M2 -operators. We intend to start from the development of the
necessary apparatus. In this connection, for the case when S ∈ ℘µ, let us consider operator
PS, L : L1(T, X)→ L1(T, X) [21] (p. 13) assigned by

t ∈ S ⇒ PS, L(y)(t) := y (t) ∈ X ,

t ∈ T\S ⇒ PS, L(y)(t) := 0 ∈ X .

Remark 1. Operator PS, L is in essence a linear projector PS, L
2 = PS, L , furthermore, space

L2(T, X) ⊂ L1(T, X) is invariant with respect to the actions of projector PS, L. Such an arrangement
makes the consideration of a similar linear operator PS, H : H2 → H2, which has been constructed
according to the functional rule (as a “model specimen”) described above, quite correct.

Below, in two theorems, we will consider (at the level of simple axiomatic schemes) the
two forms of the characteristic criterion of M2 -continuability and, simultaneously we will
briefly discuss their functional-analytical images (with analysis of their constructive character).

The following structural Theorem 1 and (see below) its algebraic Corollary 1, give
essentially universal functional-theoretic calculus on elements of σ -algebra ℘µ of all M2
-continuable operators; we speak “structural” because in Corollary 1 given is an algebraic
criterion of disposition of M2 -continuable operators in space L(H2, L1(T, X)).

Theorem 1. Let E ⊂ H2 be some linear manifold invariant with respect to the projectors
{PS, H : S ∈ ℘µ} and M∗ : E→ L1(T, X) be a linear continuous operator. Hence M∗ is M2
-continuable if and only if for all the subsets S ∈ ℘µ and for each y ∈ E we have

M∗ ◦ PS, H(y) = PS, L ◦M∗(y), (4)

what means that for all the subsets S ∈ ℘µthe following diagram is commutative:
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Corollary 1. The linear operator M : H2 → L1(T, X) is an M2 -operator if and only if M ∈
L(H2, L1(T, X)) and, furthermore, for any S ∈ ℘µ the following equality is valid

M ◦ PS, H = PS, L ◦M.

Unfortunately, if all the elements of σ -algebra ℘µ are taken into consideration, then
constructivity of the characteristic criterion of M2 -continuity does not follow from Theorem
1 and Corollary 1. Below we will try to avoid this shortcoming.

The idea lying at the base of the proposed construction is very simple. Let V ⊂ H2
and M# : Span V → L1(T, X) be some linear operator. In order to obtain a compact and
efficient (constructive) characteristic criterion of linear-continuous continuity of operator
M# up to some M2 -operator with the aid of Theorem 1, it is necessary (and this can easily
be understood) to solve the following analytical problems sequentially:

(a) Extend the linear hull of Span V up to some minimal involving the linear manifold
E ⊂ H2 invariant with respect to the family of projectors {PS, H : S ∈ ℘µ} ;

(b) Construct for the operator M# its linear extension M∗ on manifold E (see the previous
problem) and demonstrate the fact of continuity of operator M∗ : E→ L1(T, X) ;

(c) Verify the fact of satisfaction of condition (4) for the linear extension M∗.

The conditions of solvability of problems (b) and (c) will be demonstrated (and clari-
fied) below by Theorem 2. Meanwhile, the geometric solution of problem (a) is the matter
of analysis in the following lemma.

Lemma 2. Let V ⊂ H2 and E = Span {PS, H(y) : S ∈ ℘µ , y ∈ Span V}, hence
(i) E is the smallest linear set in H2, which contains Span V and is invariant with respect to the
family of projectors {PS, H : S ∈ ℘µ} ;
(ii) for any y ∈ E one can find a natural number k, such that for it and for the vector y it is possible
to find a family of sets {Si}i=1,...,k ⊂ ℘µ and a set vectors {yi}i=1,...,k ⊂ Span V, such that

Si ∩ Sj = ∅, i 6= j (i, j = 1, . . . , k)

y = ∑ i=1,...,kPSi ,H(yi).

Remark 2. When considering the geometric expansion of y = ∑ i=1,...,kPSi ,H(yi), it is possible
to assume that conjunction ∪i=1,...,kSi exhausts the total interval T, because if ∪i=1,...,kSi is an
eigen-subset in T, then, having denoted by Sk+1 the set T\ ∪i=1,...,k Si and having accepted that
yk+1 = 0, we obtain the expansion y = ∑ i=1,...,k+1PSi ,H(yi) , ∪i=1,...,k+1Si = T ; i.e., in the case
of representation of the vector y with the sum ∑ i=1...,kPSi ,H(yi), the finite set of subsets S1, . . . , Sk
forms a disjunctive decomposition of the time interval T.

The Lemma 2 together with Theorem 1 give an opportunity to obtain a rather compact
formulation of the characterization of conditions of M2 -continuity.

Theorem 2. Let V ⊂ H2 and M# : Span V → L1(T, X) be some linear operator. Hence M#

is characterized by M2 -continuity if and only if one can find a function t 7→ ϕ (t) · ≥ · 0 in
L2(T, R) such that on interval T for all y ∈ Span V we have the following µ -dependence∣∣∣∣∣∣M#(y)(t)

∣∣∣∣∣∣X · ≤ · ϕ(t) ∣∣∣∣∣∣y(t)∣∣∣∣∣∣U . (5)

Proof. (necessary). Obviously, if the linear operator

(g, w, v, q, s, h) 7→ M(g, w, v, q, s, h) := D1 g + D2 w + D3 v + D4 q + D5 s + D6 h
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is an M2 -operator, which continues M#, then for any vector function

y = (g, w, v, q, s, h) ∈ Span V

the following relations are satisfied on interval T:∣∣∣∣∣∣M#(y)(t)
∣∣∣∣∣∣X · = · ∣∣∣∣∣∣M(t)y(t)

∣∣∣∣∣∣X · ≤ · ϕ(t) ∣∣∣∣∣∣y(t)∣∣∣∣∣∣U ,

t 7→ ϕ(t) = 31/2(
∣∣∣∣∣∣D1(t)

∣∣∣|2L(X,X)

∣∣∣+∣∣∣∣∣∣D2(t)
∣∣∣|2L(X,X)+

∣∣∣∣∣∣D3(t)
∣∣∣|2L(Y,X)+

+
∣∣∣∣∣∣D4(t)

∣∣∣|2L(Z,X)+
∣∣∣∣∣∣D5(t)

∣∣∣|2L(Z,X)+
∣∣∣∣∣∣D6(t)

∣∣∣|2L(Z,X))
1/2 .

There is no doubt that the nonnegative function ϕ(·) belongs to class L2(T, R) (suf-
ficient). Let E ⊂ H be a linear manifold from the formulation of Lemma 2. Consider the
linear operator M∗ : E→ L1(T, X) , which acts in accordance with the representation

M∗(y) := ∑ i=1,...,kPSi , L ◦M#(yi) ,

where the vector functions y, yi ∈ E and the subsets Si ∈ ℘µ, i = 1, . . . , k are bound (due
to Lemma 2 and Remark 2) by the following constructions:

y = ∑ i=1,...,kPSi ,H(yi) , yi ∈ Span V ,

∪i=1,...,kSi = T, Si ∩ Sj = ∅, i 6= j ( i, j = 1, . . . , k) .

Finally, it remains to show that the linear operator M∗ is defined correctly, i.e., that its
value is bound up with any vector function y ∈ E is independent of the representation of
y = ∑ i=1,...,kPSi ,H(yi).

Let y ∈ E and y = ∑ i=1,...,kPSi ,H(yi) = ∑ j=1,...,rPSj ,H(yj), where {Si}i=1,...,k and{
Sj
}

j=1,...,r are some fixed disjunctive decompositions of interval T, and yi, yj ∈ Span V, 1 ≤
i ≤ k, 1 ≤ j ≤ r . Hence the family of subsets

{
Sij : Sij = Si ∩ Sj, 1 ≤ i ≤ k, 1 ≤ j ≤ r

}
also forms decomposition of interval T. Next, put yij := yi − yj. Since y(t) · = · yi(t) · =
· yj(t), t ∈ T, we have yij(t) · = · 0 on every subset Sij, and, so, due to condition (5),
we obtain ∣∣∣∣∣∣M#(yij)(t)

∣∣∣∣∣∣X · ≤ · ϕ(t) ∣∣∣∣∣∣yij(t)
∣∣∣∣∣∣U · = · 0, t ∈ Sij

and, therefore, M#(yij)(t)· = ·0, t ∈ Sij. Consequently, M#(yi)(t)· = ·M#(yj)(t), t ∈ Sij.
In this case, having introduced the denotations t 7→ z′(t) := ∑ i=1,...,kPSi ,L ◦M#(yi) and
t 7→ z′′(t) := ∑ j=1,...,rPSj ,L ◦M#(yj) , for the above functions we obtain a quite obvious
chain of equalities

z′(t) = M#(yi)(t) · = · M#(yj)(t) = z′′(t), t ∈ Sij .

Now, taking account of the fact that the system of subsets
{

Sij
}

1≤i≤k, 1≤j≤r forms a
disjunctive decomposition of interval T, we obtain a conclusion that the following depen-
dence (correspondence) takes place z′(t)· = ·z′′(t), t ∈ T and, consequently, the linear
operator M∗ has been defined correctly (as a desired extension of operator M#).

Obviously, in order to prove the fact of continuity of M∗ of the linear map it is sufficient
to verify whether relation (5) for the operator M∗ is valid. In this case, the fact of continuity
of operator M∗ follows from the Cauchy-Bunykovskii integral inequality.

Indeed, let, likewise above, y = ∑ i=1,...,kPSi ,H(yi) , yi ∈ Span V , where {Si}i=1,...,k be
the decomposition of interval T. Hence from the representation

M∗(y) = ∑ i=1,...,kPSi , L ◦M#(yi)
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it follows that
M∗(y)(t) = M#(yi)(t) , t ∈ Si .

So, due to (5), for the function yi we have∣∣∣∣∣∣M∗(y)(t)∣∣∣∣∣∣X =
∣∣∣∣∣∣M#(yi)(t)

∣∣∣∣∣∣X ≤ ϕ(t)
∣∣∣∣∣∣yi(t)

∣∣∣∣∣∣U ≤ ϕ(t)
∣∣∣∣∣∣y(t)∣∣∣∣∣∣

U

µ -almost everywhere in Si. Consequently, this statement is valid µ -almost everywhere on
interval T.

Next, in order to complete the proof, it remains only to confirm the existence of
property (4) for the operator M∗. So, let

y ∈ E, y = ∑ i=1,...,kPSi ,H(yi) , yi ∈ Span V ,

Si ∩ Sj = ∅, i 6= j, ∪i=1,...,kSi = T, i, j = 1, . . . , k, S ⊂ T

Hence PS,H(y) = ∑ i=1,...,kPS,H ◦ PSi ,H(yi) = ∑ i=1,...,kPS∩Si ,H(yi), whence, in accor-
dance with the definition of the construction of operator M∗ (introduced above), it is
possible to summarize:

M∗ ◦ PS,H(y) = ∑ i=1,...,kPS∩Si ,L ◦M#(yi) = ∑ i=1,...,kPS,L ◦ PSi ,L ◦M#(yi) =

= PS,L ◦∑ i=1,...,kPSi ,L ◦M#(yi) = PS,L ◦M∗(y) .

�

Remark 3. When estimating the perspective of development of the BDR-theory on the whole in the
geometric constructions of M2 -continuity, we have to note that the case, when the N -family (1) lies
in the uniformly convex Banach space [20] (p. 182), and, furthermore, Card N ≥ ℵ0 is analytically
more complex (considering the variant of modeling the bilinear structure of the differential model of
realization [18]). This qualitative theory contains (in the capacity of a special sub-problem) geometrical
constructions of closed decomposable dihedrons [19]. This aspect has not been sufficiently developed in
the aspect of analytical grounding of the issue of M -continuity. Furthermore, it is necessary to take
account of the fact that—under the geometrical BDR-statement—it is hardly ever productive to make
an initial assumption that any closed subspace of the scrutinized Banach space may be complemented,
because then this space is an isomorph to some Hilbert space (see Theorem 3 [11] (p. 203)), what finally
(NB!) does not extend the functional class of operator coefficients of the inverse problem, which has been
briefly discussed above in its QTDR-statement (2).

5. About M2 -Continuity: Existence of a Completely Continuous BDR-Model

It is known that, as far as Banach spaces are concerned, the uniform limit for the
sequence of finite rank operators is represented by a compact operator. In this paragraph,
in the capacity of extension of the mathematical statement of the problem of differential
realization (2) we will consider in detail the case, when the modeled operators are bur-
dened with an additional condition, which provides for obvious continuity of the integral
representation of equations of realization models. This is provoked by the fact that there
(in the spaces with the basis) any compact operator represents a uniform limit of the finite-
rank operators [11] (p. 514), what is especially important in the course of development of
numerical procedures bound up with approximation of the realization model.

On the other hand, we will also demonstrate below (in the absence of such analysis
in [6]) that, when executing an analytical relationship between the projective geometry
and the differential realization of modeled infinite-dimensional second-order dynamic pro-
cesses, the construction of projectivization of the nonlinear functional Relay-Ritz operator
and the functional-geometric analysis of conditions of its continuity may be suitably formu-
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lated in terms of the language of compact topological manifolds. Within the given context,
the analytical construction of the entropy from [6] (in comparison with the construction
proposed below) differs in the aspect that the entropy is computed via projectivization of
the Relay-Ritz operator. This allows one to efficiently use the property of compactness of
the image of projectivization discussed.

Let V ⊂ H2. In manifold Span V, the linear operator M# : Span V → L1(T, X) from
Theorem 2 has the corresponding nonlinear Relay-Ritz operator [6,12] constructed accord-
ing to the following rule:

Ψ(y)(t) :=


∣∣∣∣∣∣M#(y)(t)

∣∣∣∣∣∣X∣∣∣∣∣∣y(t)∣∣∣|−1
U , if y(t) 6= 0 ∈ U,

0 ∈ R , if y(t) = 0 ∈ U .

Next, in the geometry of the absorbing set we follow [20] (p. 42): set Q in the vector
space L is absorbing, when for any y ∈ L it is possible to find (indicate) a real number
r ∈ (0, ∞), such that ry ∈ Q; if L is a normalized space, then not only each bounded
neighborhood of zero but also its boundary with the zero are absorbing sets. Let us denote
by supp f (·) := { t ∈ T : f (t) 6= 0 } the carrier [11] (p. 137) of the real function f (·)
measurable on T. Such a geometric problem statement allows one to reveal an important
refinement of Theorem 2.

Lemma 3. Let V ⊂ H2, M# : Span V → L1(T, X) be a linear operator and Q be some absorbing
set in Span V. Hence M2 -continuity of operator M# is equivalent to the simultaneous satisfaction
of the two conditions:

supp
∣∣∣∣∣∣M#(y)(·)

∣∣∣∣∣∣X · ⊆ · supp
∣∣∣∣∣∣(y)(·)∣∣∣∣∣∣U , ∀y ∈ Q ,

∃ ϕ ∈ L2(T, R) : Ψ(y)(t) · ≤ · ϕ(t) , ∀y ∈ Q .

Let us also note another useful BDR-fact.

Lemma 4. Let (x, u,B1(x, x),B2(x, dx/dt),B3(dx/dt, dx/dt)) ∈ II. Hence

supp
∣∣∣∣∣∣d2x(·)/dt2

∣∣∣∣∣∣X · ⊆ ·
· ⊆ · supp ||( dx(·)/dt, x(·), u(·), B1(x(·), x(·)), B2(x(·), dx(·)/dt), B3(dx(·)/dt, dx(·)/dt) )||U .

The proof may be reduced to the compiling of Lemmas 1 and 3 [12].
If we introduce into our consideration the space (vector lattice [11] (p. 363)) of measur-

able functions L(T, R) and also ≤L—quasi-ordering f1 ≤L f2 ⇔ f1(t) · ≤ · f2(t) in it with
the least lower boundary supL for the subsets from L(T, R), then—on account of item (a) of
Theorem 17 [11] (p. 68) and Lemmas 1–4, for the BDR-problem (2)—we obtain the following
key analytical result:

Theorem 3. Let N be a family of processes (1), Q be some absorbing set in

Span { (dw/dt, w, v, q, s, h) : (w, v, q, s, h) ∈ N }

and
(g, w, v, q, s, h) 7→ M#(g, w, v, q, s, h) := d2w/dt2.
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Hence the BDR-problem

∃ (A1, A0, B0, B1, B2, B3) ∈ L2 :

d2x/dt2 + A1dx/dt + A0x = B0u + B1B1(x, x) + B2B2(x, dx/dt) + B3B3(dx/dt, dx/dt) ,

∀ (x, u, B1(x, x), B2(x, dx/dt), B3(dx/dt, dx/dt)) ∈ N

is solvable if and only if some one of the following two conditions is satisfied

∃ ϕ ∈ L2(T, R) : Ψ(g, w, v, q, s, h) ≤L ϕ , ∀ (g, w, v, q, s, h) ∈ Q ;

∃ supLΨ(Q) : supLΨ(Q) ∈ L2(T, R) .

Remark 4. According to item (b) of Theorem 17 [11] (p. 68), there exists a contable set

Q∗ ⊂ Q (1 < Card N < ℵ0 ⇒ Card Q = exp ℵ0)

such that if there lies a functional edge supLΨ(Q) in space L(T, R), then function ϕ := supLΨ(Q)
is realized by the following sup-construction:

t 7→ ϕ(t) = sup{ Ψ(g, w, v, q, s, h)(t) ∈ R : (g, w, v, q, s, h) ∈ Q∗} .

Remark 5. It follows from the structure of Equation (2) that BDR-solvability is realized for the
operator-functions (A1, A0, B0, B1, B2, B3) ∈ L2, with the accuracy up to the linear manifold

L0 = { (D1, D2, D3, D4, D5, D6) ∈ L2 : D1g + D2w− D3v− D4q− D5s− D6h = 0 ,

∀ (g, w, v, q, s, h) ∈ GN},

where GN is the Hamel basis (algebraic basis [11] (p. 74)) in

Span { (dw/dt, w, v, q, s, h) : (w, v, q, s, h) ∈ N }

furthermore, the case when L0 = { 0} ⊂ L2 characterizes uniqueness of the BDR-model (2).

In the remaining part of the paper, we intend to address the characteristics of bilin-
ear realizations, which redefine their properties in the aspect of modeling of a posteriori
differential equations of systems dynamics.

As far as a system represented by an arbitrary family of processes (1) is concerned,
the procedure of constructing equations of its differential realization (2) is rather complex
(even in case of a linear model). Meanwhile, the problem becomes quite obvious in one
important case (in the context of the problem of approximation [11] (p. 513)); when for
the purpose of its bilinear realization (2) its integral ξ -operator (3) is burdened with
some additional conditions, which approximate the BDR-problem to the assumption that
dim X < ∞ [6–10]. This type of constructing is formalized by the following construction of
the (A1, A0, B0, B1, B2, B3)2 -model.

Definition 3. The bilinear differential realization (2) will be called completely continuous if its
integral operator (3) is compact.

In the context of Definition 3, we have to note that compact operators (including
interval ones) possess a range of attractive analytical properties (see [11,20]) and are rather
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useful in numerous physics applications. Many problems of classical mathematical physics
may be simplified if these are formulated in terms of the language of integral equations. In
this connection, it is important to possess an efficient criterion of compactness of the given
operator or, better, some general statements about integer classes of such operators.

For the purpose of convenience, the subclass of (A1, A0, B0, B1, B2, B3)2 -models cor-
responding (due to construction (2)) completely to continuous quasi-linear differential
realizations will be denoted by Lcom

2 , and, when following Definition 1, a subclass from
L(H2, L1(T, X)) of all M2 -operators is “identified” with the Banach space (L2, ||·||L) of
all (A1, A0, B0, B1, B2, B3)2 -models; below we use standard denotations lr, 1 ≤ r ≤ ∞ of
Banach spaces for numerical sequences [11] (p. 147).

Proposition 3. The linear manifold Lcom
2 is closed in space L2 and represents a (homeomorph)

factor-space l1.

Proof. Having combined Proposition 1 and Theorem 3 [11] (p. 326), one can come to the
conclusion that Lcom

2 is closed in L2, furthermore (due to separability of spaces L(X, X),
L(Y, X), L(Z, X) and Theorem 1.5.18 [22] (p. 150)), the Banach space Lcom

2 is separable.
Now, let us consider the linear operator E : l1 → Lcom

2 , while assuming that

E : {ai} → ∑
i=1,2,...

aixi, {ai} ∈ l1 ,

where {x1, . . . , xn, . . .} ⊂ Lcom
2 is a countable and everywhere dense set in a unit ball SL

(with its center at zero) from Lcom
2 . Operator E is continuous; compilation of Theorem

5.1 [23] (p. 132), Theorem 3 [11] (p. 260) and the provision

( f (x1) , . . . , f (xn), . . .) ∈ l∞ , ∀ f ∈ Lcom
2

Next, let Sl be a unit ball (with its center at zero) in l1, and since {x1, . . . , xn, . . .} ⊂ E(Sl),
the image E(Sl) be dense in ball SL, whence it is possible to conclude that spaces Lcom

2 and
l1/Ker E are linearly homomorphous (Lemma 1 [11] (p. 451)). �

Definition 4. Let V, W, U be some Banach spaces, D ∈ L(V, W), J ∈ L(W, U), G := Ker J
and π : W →W/G be some factor-map. Let us speak that operator D is J -factor-compact, when
J∗ ◦ π ◦ D = J ◦ D, where J∗ : W/G → U “closes” the diagram
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and, furthermore, the composition GWVD /: →π   represents a compact operator. 
and, furthermore, the composition π ◦ D : V →W/G represents a compact operator.

Let J : L1(T, X)→ X be an operator, which realizes the Bochner integral construct [20];
from now on, [·] is a closure operation (according to the context, in spaces H2, L1(T, X)/Ker J,
or X).

Theorem 4. The following situation is valid for the solvable BDR -problem (1)–(2):

(A1, A0, B0, B1, B2, B3) ∈ Lcom
2 ⇔

⇔ operator (g, w, v, q, s, h) 7→ M#(g, w, v, q, s, h) := d2w/dt2,
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(g, w, v, q, h) ∈ Span {(dw/dt, w, v, q, s, h) : (w, v, q, s, h) ∈ N}

continuable up to the J -factor-compact M2 -operator M : H2 → L1(T, X) .

Proof. Let M be a J -factor-compact operator of realization (2). Hence operator (3) is equal to
ξ = J ◦M and, therefore, the sufficient conditions represent the fact of item (b) of Theorem
2 [11] (p. 325) and Theorem 1.41 [23] (p. 39). Let us confirm the necessary conditions.

Let in (2) (A1, A0, B0, B1, B2, B3) ∈ Lcom
2 . Let us take ball Sr of radius r (with the center at zero)

in H2, and let {Ew} be some open cover [π ◦ M(Sr)], where π : L1(T, X)→ L1(T, X)/Ker J
is a factor-map. The fact that covers {Ew} has a finite sub-cover {Ei}i=1,...,n defines, on the one
hand, the fact of homeomorphism of J∗ : L1(T, X)/Ker J → X (Theorem 1.41 [23] (p. 39)) and,
on the other hand, the fact that due to (3) [ξ(Sr)] is a compact subset in space X, that completes
the proof. �

In the process of constructing the differential realization for the family of dynamic
processes (1), one, as a rule (see Remark 5 above), has to do not with one system of equations
of realization (2), but with a total family of such systems, what provokes to put forward
the problems of constructing “optimal realizations” with respect to some formal criteria of
“minimization” (in the given case, we do not speak about realizations [4,9] with respect to
the criterion of “minimal dimension”). These problem statements assume several formal
mathematical interpretations [24], i.e., it is possible to proceed from the problem of “optimal
realization” in the structure of the Banach space ||ξ||L(E,X) with respect to the criterion
of norm ||·||L(H,X), or the space L2 with respect to the criterion of norm ||·||L. Below we’ll
reduce our consideration to the problem bound up with investigation of existence of the
realization with the minimal operator norm in space (L(H2, X),

∣∣∣∣∣∣·∣∣∣∣∣∣L(H,X)).

Definition 5. Let us call the differential realization (2) with M2 -operator M, for which ||J ◦M||L(H,X)

= min {
∣∣∣∣∣∣ξ∣∣∣∣∣∣L(H,X) : ξ is operator (3) of BDR-model (2)}, the realization optimal with respect to the

criterion of the operator norm ||·||L(H,X).

As known from numerous stories of elaborations of pithy analytical theories, a good
definition must be the provision of the theorem. This fact, considered with respect to
Definition 5, confirms the following statement.

Theorem 5. If BDR-model (2) exists, then there exists its M2 -operator M, for which this BDR-
model is “||·||L(H,X) -optimal” with the operator ||·||L(H,X) -norm∣∣∣∣∣∣J ◦M

∣∣∣∣∣∣L(H,X) =
∣∣∣∣∣∣ξ∣∣∣∣∣∣L(E,X), ξ = J ◦M∗ : E→ X, E ⊂ H2 ,

where E is a minimal linear manifold, which contains the linear hull

L := Span { (dw/dt, w, v, q, s, h) : (w, v, q, s, h) ∈ N }

and which is invariant with respect to projectors {PS, H : S ∈ ℘µ}, furthermore, operator M∗ ∈
L(E, X) has a narrowing M∗

∣∣L = d2w/dt2, (dw/dt, w, v, q, s, h) ∈ L and possesses property (4).

Proof. Note first of all that if there exists a realization (noted in the theorem) then con-
structions E and M∗ exist due to Lemma 2 and Theorems 1–3; furthermore, it is obvious
that [E] is a Hilbert space in itself. The proof of Theorem 5 will be conducted in the two
steps, respectively, for defining the estimate

∣∣∣∣∣∣J ◦M
∣∣∣∣∣∣L(H,X) ≤

∣∣∣∣∣∣ξ∣∣∣∣∣∣
L(E,X)

and the estimate∣∣∣∣∣∣J ◦M
∣∣∣∣∣∣L(H,X) ≥

∣∣∣∣∣∣ξ∣∣∣∣∣∣
L(E,X)

.
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Defining estimate
∣∣∣∣∣∣J ◦M

∣∣∣∣∣∣L(H,X) ≤
∣∣∣∣∣∣ξ∣∣∣∣∣∣

L(E,X)
. Consider operators J ◦M+ : [E]→ X

and ξ : H2 → X , the first one of which is a linear continuous (and unique) continua-
tion J ◦ M∗ on closure [E] with retaining the norms (Theorem 2 [11] (p. 245)), and the
second operator is constructed as a linear continuous representation ξ := J ◦ M+ ◦ Pr ,
where Pr is a projector in H2 with the kernel E⊥ (orthogonal complement of [E]; Theorem
5.16 [23] (p. 151)). Obviously, under such a statement, the following case will be realized:∣∣∣∣∣∣ξ∣∣∣∣∣∣L(H,X) =

∣∣∣∣∣∣J ◦M+ ◦ Pr
∣∣∣∣∣∣L(H,X) =

∣∣∣∣∣∣ξ∣∣∣∣∣∣L(E,X) .

When turning back to Proposition 1, let us consider the following operator

M+ : H2 → L1(T, X), M+ := Γ−1(ξ) = M+ ◦ Pr ∈ L2 ,

in the capacity of the “candidate for the role” of operator M, and, therefore, for the “ξ
-model” (3) of the differential realization (2), the estimate with respect to the criterion of the
operator norm ||·||L(H,X), is obviously not larger than ||ξ||L(E,X).

Defining the estimate
∣∣∣∣∣∣J ◦M

∣∣∣∣∣∣L(H,X) ≥
∣∣∣∣∣∣ξ∣∣∣∣∣∣

L(E,X)
. Since E is the minimal linear manifold

containing Span N and invariant with respect to the family of projectors
{

PSi,H : S ∈ ℘µ

}
,

the narrowing (on E) of any M2 -operator (in particular, also M+) corresponding to the
differential realization (2), coincides with M∗, consequently, in case of any realization, the
estimate of its “ξ -model” (3) with respect to the criterion of the operator norm ||·||L(H,X) is
not smaller than ||ξ||L(E,X). This proves the theorem. �

When applying some considerations bound up with modification of the operator Ψ,
and using the second characteristic condition from the statement of Theorem 3, it is possible
to obtain the result bound up with the “lower ||·||L -estimate” for ||·||L(H,X) -optimal M2

-operator (in particular, M+).
Let us proceed to the details. Note, first of all, since the following relations

Ψ (r (g, w, v, q, s, h)) = Ψ (g, w, v, q, s, h), (g, w, v, q, s, h) ∈ VN , 0 6= r ∈ R ,

VN := {(dw/dt, w, v, q, s, h) : (w, v, q, s, h) ∈ N} ,

hold, let us assume (applying the geometrical techniques [25,26] of projective representa-
tions) that

Φ(γ) := Ψ[γ] , γ ∈ PN (γ ⊂ Span VN) ,

where PN is a real projective space associated with Span VN ; i.e., PN is a set of orbits of the
multiplicative group R∗ = R\{0} acting upon Span VN\{0}. As far as the present interpre-
tation is concerned, the topological properties of space PN are important, Card N < ℵ0
(surely, first of all, its compactness), in particular, if dim Span VN = 3, then the 2-manifold
PN is constructed like a Möbius bund, to which a round is stuck along its boundary [25]
(p. 162). Note, in space PN , Card N ≤ ℵ0 it is possible to introduce a structure of the
CW-complex [25] (p. 140), which is important in case of consideration of the issue of
geometric realization PN [25] (p. 149); furthermore, it simultaneously aids to deepening
the theory of vector fields [26]. In the given context, according to Theorem 3 [27], Theorem
2.3 [25] (p. 47) and Theorem 3 [28] (p. 61), under the condition of bijectivity (mutual
reciprocity) of operator Φ, it is possible to compute the fundamental group [25] (p. 46) of
the topological space (Φ(PN), T ), where T is the topology of convergence with respect to
measure µ [11] (p. 58).

When using these remarks, one can easily formulate a “projective variant” of Theorem
3 (see Theorem 6), by replacing the construction of the absorbing set Q with a projective
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space PN , in this case, it is possible to take account of the entropy properties [6] of operator
Φ, while considering the functional of the following form:

Entrp (N) := (
∫
T

(supLΦ(PN)(τ))
2
µ (dτ))1/2 (6)

Without going into obvious details, we have to state that if N ⊂ N∗ and Entrp (N∗) 6=
0 then Entrp (N∗) ≥ Entrp (N) .

Theorem 6. The BDR-problem (1)–(2) is solvable if and only if Entrp(N) ≥ 0. Furthermore, if
the map

(g, w, v, q, s, h) 7→ M (g, w, v, q, s, h) := A1g + A0w + B0v + B1q + B2s + B3h

represents an M2 -operator of ||·||L(H,X) -optimal realization (2), then ||·||L -norm of operator M
has the lowest estimate

||(A1, A0, B0, B1, B2, B3)||L ≥ Entrp (N) .

Proof. According to Theorem 3, supLΦ(PN) ∈ L2(T, R) and if (A1, A0, B0, B1, B2, B3) ∈ L2
is an ordered set of the operator functions, which characterizes the ||·||L(H,X) -optimal M2
-operator of BDR-system (2), then, using the Cauchy−Bunyakovskii inequality, we obtain

d2w/dt2 = A1g + A0w + B0v + B1q + B2s + B3h , ∀ (g, w, v, q, s, h) ∈ VN ⇒

∣∣∣∣∣∣d2w/dt2
∣∣∣∣∣∣X =

∣∣∣∣∣∣A1

∣∣∣∣∣∣L(X,X)

∣∣∣∣∣∣g∣∣∣∣∣∣X+∣∣∣∣∣∣A0

∣∣∣∣∣∣L(X,X)

∣∣∣∣∣∣w∣∣∣∣∣∣X+∣∣∣∣∣∣B0

∣∣∣∣∣∣L(Y,X)

∣∣∣∣∣∣v∣∣∣∣∣∣Y+
+
∣∣∣∣∣∣B1

∣∣∣∣∣∣L(Z,X)

∣∣∣∣∣∣q∣∣∣∣∣∣Z+∣∣∣∣∣∣B2

∣∣∣∣∣∣L(Z,X)

∣∣∣∣∣∣s∣∣∣∣∣∣Z+∣∣∣∣∣∣B3

∣∣∣∣∣∣L(Z,X)

∣∣∣∣∣∣h∣∣∣∣∣∣Z , ∀ (g, w, v, q, s, h) ∈ VN ⇒

⇒ Φ (g, w, v, q, s, h)(t) ≤ (
∣∣∣∣∣∣A1(t)

∣∣∣|2L(X,X)+
∣∣∣∣∣∣A0(t)

∣∣∣|2L(X,X)+
∣∣∣∣∣∣B0(t)

∣∣∣|2L(Y,X)+

+
∣∣∣∣∣∣B1(t)

∣∣∣|2L(Z,X)+
∣∣∣∣∣∣B2(t)

∣∣∣|2L(Z,X)+
∣∣∣∣∣∣B3(t)

∣∣∣|2L(Z,X))
1/2 , ∀ (g, w, v, q, s, h) ∈ VN ⇒

⇒ (
∫
T

(supLΦ(PN)(τ))
2
µ (dτ) )1/2 ≤ ||(A1, A0, B0, B1, B2, B3)||L .

�

In conclusion, consider the two examples illustrating the potential of the aids of
computer algebra [29,30] in the bilinear differential modeling described above. Therefore,
we intend to partially reject an illusion that the authors have concentrated their efforts
exclusively on the ideological (theoretical) aspect the qualitative theory of M2 -continuity
(on account of Remark 3).

Example 1. Let T = [0, 10], Y := X := Z , A1 = 0 ∈ L(X, X) , B1 = B3 = 0 ∈ L(X2, X) ,
B2 =< ·, · >X e , where < ·, · >X is a scalar product in X, e ∈ X, ||e||X = 1 and

t 7→ x(t) = (t sin t)e , t 7→ u(t) = 0 ∈ L2(T, X).
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Hence

Entrp (N) = Entrp ( { (x, u,B1(x, x),B2(x, dx/dt),B3(dx/dt, dx/dt) ) }) = ∞

i.e., function

f := supLΦ(PN) =

∣∣∣∣∣∣∣∣d2x/dt2
∣∣∣∣∣∣∣∣X (

∣∣∣∣∣∣x∣∣∣|2X+∣∣∣∣∣∣B2(x, dx/dt)
∣∣∣|2X)−1/2

does not belong to class L2(T, R) (see Figure 1) and, consequently, according to Theorem 6, realiza-
tion (2) for the uncontrolled process N does not exist.
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f 2(t) = (2 cos t− t sin t)2(( t sin t)2 + (t sin t)2(sin t + t cos t)2)
−1

Example 2. Let us change the problem statement with respect to Example 1, while putting
t 7→ u(t) = (t sin2 t + 2−1t2 sin 2t + cos t)e. Hence Entrp(N) < ∞(see Figure 2), i.e.,

f := supLΦ(PN) =

∣∣∣∣∣∣∣∣d2x/d t2
∣∣∣∣∣∣∣∣X (

∣∣∣∣∣∣x∣∣∣|2X+∣∣∣∣∣∣B2(x, d x/d t)
∣∣∣|2X+∣∣∣∣∣∣u∣∣∣|2Y )

−1/2
∈L2(T, R)

and, consequently, realization (2) for the controlled process N exists; it may readily be ascertained
that d2x/dt2 + x = 2u− 2B2(x, dx/dt).
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f 2(t) = (2 cos t− t sin t)2 × (( t sin t)2+

+(t sin t)2(sin t + t cos t)2 + ( t sin2 t + 2−1t2 sin 2t + cos t)2
)−1

Examples 1 and 2 illustrate the obvious fact that if the dimension of the behavioris-
tic dynamic system under investigation (modeling) is “rather high” then the automated
symbolic analysis of solvability of the problem of its differential realization may be re-
alized only on the methodological ground of contemporary computer algebra (possibly
with elaboration of new specialized algorithms). Such direct “contact” of a nonlinear
infinite-dimensional theory of differential realization of complex physic phenomena and
the methods of computer algebra, is expected to be fruitful both for theoretical physics and
for mathematics.

6. Conclusions

As far as the history of natural science is concerned, the problem of “optimization of
the adequacy” of mathematical models, which describe the physical processes observed, has
always been the central problem (it is sufficient to indicate to Ptolemeus “Almagest” and to
Kepler’s laws). Within the frames of the given context, the principal goal of contemporary
theoretical natural science presumes an explanation of the given set of the observed physical
processes with the aid of some minimal set of postulated mathematical concepts and the
quantitative laws expressed via them. The present work has been fulfilled within the
framework of exactly this methodological approach, different to the mathematical problems
of the bilinear non-autonomous differential second-order realization of infinite-dimensional
nonlinear behavioral dynamic systems.

To this end, the present paper has developed a qualitative functional-geometric ap-
proach allowing one to see the problems of second-order differential realization bound up
with the exogenous behavior of an infinite-dimensional dynamic system (in the system-
theoretic problem statement) in a new light, when the modeled operators are burdened with
the condition, which provides obvious continuity of the integral representation of equations
of the realization model. Furthermore, we would like to understand what corrections have
to be introduced into the theory of non-linear functional Relay-Ritz operators [27] in order
to reconsider (see in a new light) the provisions of converse problems bound up with
bilinear non-autonomous second-order evolution equations and analyze them in greater
detail from the viewpoint of projective geometry, entropy analysis and qualitative theory
of differential realization.

It so happened that the application aspect of the BDR-problem has remained beyond
the frames of the present paper. The solvability of the problem of differential realization
itself internally presumes the process of a posteriori constructing models [31–34], while
including also the models for inverse problems of neurodynamics [35,36] on the basis
of processing information of contemporary multichannel neural implants [37]. So, it
is necessary to note, the material of the present paper may be considered as the basis
for the initial (and, possibly, necessary) stage in the study of realization/identification
of differential bilinear systems (of orders 2 and higher [7,15]) in the Hilbert space, as a
division of the theory of inverse problems of infinite-dimensional nonlinear analysis; in
particular, on the basis of development (see Examples 1 and 2 above) of computer algebra
methods and aids [29,30]. In this connection, in the case of finite-dimensional systems,
we can refer the reader to [38], wherein a constructive procedure of building up bilinear
differential realizations has been proposed, which allows us to show how one can model
Euler equations in the capacity of some empirical extrapolation of the realization of the
observed spatial rotation motions of a rigid body in the aspect of statement of the problem
of structural identification of differential equations bound up with dynamics of nonlinear
physical processes.

When considering the methodological aspect of the present paper in the context of the
entropy issue [6,39], it is worth noting that functional (6) may be interpreted as the entropy
characteristic for the behavioristic N -system to be modeled, when the ||·||L -estimate of
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the value of Entrp (N) for the (A0, A1, B0, B1, B2, B3)2 -model of the ||·||L(H,X) -optimal
differential realization of N -system stands out in the capacity of the measure of its “internal
disorder”. Therefore, in the case of nonlinear dynamic processes (1), which take place in
the scrutinized (BDR-modeled) N -system, entropy (6) either grows or remains constant,
when the trajectory bundle N remains unchanged. Due to Theorem 6, within the frames
of the given mathematical paradigm, the qualitative BDR-theory may conceptually be
constructed on the analytical basis of the following “ad hoc-postulate”: the behavioral N
-system (1) possesses BDR-representation (2) if and only if entropy Entrp (N) is finite.

Without any additional reasoning, which motivates the “ad hoc-postulate” in the
context of Remark 3, let us note that the issue bound up with understanding of when the
“ad hoc-postulate” makes the corresponding M2 -continuation in the problem statement
for the Hilbert space (continuously embedded into the Banach space), while forming an
everywhere dense space [21] (p. 175) (and, in this case, some identified operators shall
have an analytical representation in the class of strongly positive definite [21] (p. 176) self-
conjugated operators), is quite complex and, nevertheless, it is attractive from the system-
theoretic viewpoint. The issue of solvability of the problem of differential realization in the
class of hyperbolic models [21] (p. 456) is tightly tied up with abovementioned functional-
analytical aspect. It surely forms a special (separate) investigation. This direction is seen by
us as a quite perspective one, which is bound up with investigations of the QTDR-problems
of poly-linear non-autonomous differential evolution equations of higher orders. This is
bound up with the application of our ideas to the issues of modeling nonlinear equations
of neuro-morphous dynamics [35,36], while giving an excellent example of the interaction
between nonlinear functional analysis and mathematical physics. On the whole, the idea
of applying abstract methods of the theory of nonlinear differential realization of higher
orders (with or without delay) is really useful both as the integrating factor and as the
source of new results bound up with the theory of nonlinear mathematical modeling of
complex (interconnected) infinite-dimensional dynamic systems. It is possible to hope
that development of system-theoretic ideas of QTDR will (i) foster elevation of the level of
mathematical culture of physicists, and (ii) stimulate a deeper understanding of important
problems and perspectives of physics and a way to develop physics by mathematicians.
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