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Abstract: In this article, the numerical adaptive predictor corrector (Apc-ABM) method is presented
to solve generalized Caputo fractional initial value problems. The Apc-ABM method was utilized to
establish approximate series solutions. The presented technique is considered to be an extension to
the original Adams–Bashforth–Moulton approach. Numerical simulations and figures are presented
and discussed, in order to show the efficiency of the proposed method. In the future, we anticipate
that the provided generalized Caputo fractional derivative and the suggested method will be utilized
to create and simulate a wide variety of generalized Caputo-type fractional models. We have included
examples to demonstrate the accuracy of the present method.
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1. Introduction

The application of fractional calculus to represent a range of different physical sci-
entific fields, such as diffusion, control, and viscoelasticity, has contributed to the field
of applied mathematics, which has risen in popularity over the last several decades. In
many branches of engineering and the study of physics, see [1–5], fractional differential
equations are commonplace. Many methods have been tried and tested in an effort to
investigate and resolve fractional differential equations [6–12]. Together with advances in
symbolic programming and new computing algorithms, the past few decades have seen the
discovery of a plethora of novel methods for solving nonlinear partial differential equations.
In addition, classic software such as Mathematica, MATLAB, and Maple have received
several updates and remain potent resources. However, there has been progress in the
mathematical foundations of solution techniques, and new methods have been developed
to solve a wide range of problems that are built on top of nonlinear partial differential
equations [13–16]. The primary techniques in the literature include providing a pseudo-
operational collocation scheme to deal with the solution of the variable-order time–space
fractional KdV–Burgers–Kuramoto equation [17]. Several methodologies have been used to
tackle challenges in management, economics, and biology, including physics and engineer-
ing [18–24]. The use of fractional integrals allows for the definition of a class of fractional
derivatives. Some examples of this class are Riemann–Liouville, Hadamard, and Caputo.

The Riemann–Liouville fractional integral of order α > 0 is given by the following:

Iα
a+ f (t) =

1
Γ(α)

t∫
a

(t− s)α−1 f (s)ds, t > a. (1)
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Using the definition of the fractional integral in (1), the Caputo fractional derivative,
Caputo fractional derivative, and the Riemann–Liouville fractional derivative with α > 0
are given by the following:

RDα
a+ f (t) = Dm Im−α

a+ f (t) = 1
Γ(m−α)

dm

dtm

∫ t
a (t− s)m−α−1 f (s)ds, t > a,

CDα
a+ f (t) = Im−α

a+ Dm f (t) = 1
Γ(m−α)

∫ t
a (t− s)m−α−1 f (m)(s)ds, t > a,

(2)

where m− 1 < α ≤ m and m ∈ N. See [25].
The strength of this study is this method, which can be applied to a wide range of

equations and dynamical systems. The main result of this research are some examples
we created and simulated, the Bernoulli equation and fractional new chaos system of
generalized Caputo-type fractional models. We included examples to show how accurate
the presented method is. The following is the structure of this article: Section 2 consists of
definitions of generalized fractional derivatives; in Section 3, we explain the steps of the
algorithm of the Apc-ABM method; in Section 4, we implement the Apc-ABM method for
solving initial value problems numerically, using the suggested extended Caputo fractional
derivative; finally, the conclusions of this article are presented.

2. Basic Definitions

In this section, we briefly review the fractional operators, generalized operator deriva-
tives used throughout our analysis.

Definition 1. If f is a continuous function, then the generalized fractional integral denoted by
I α,ρ

a+ f (t), α > 0, and ρ > 0, is given by the following:

Iα,ρ
a+ f (t) =

ρ1−α

Γ(α)

t∫
a

sρ−1(tρ − sρ)α−1 f (s)ds, α > 0, t > a. (3)

For m− 1 < α ≤ m where m ∈ N, see [26].

Definition 2. If f is a continuous function, then the generalized Riemann–Liouville fractional
derivative denoted by Dα,ρ

a+ f (t), of order α > 0 is given by the following:

RDα,ρ
a+ f (t) =

ρα−m+1

Γ(m− α)

(
t1−ρ d

dt

)m t∫
a

sρ−1(tρ − sρ)m−α−1 f (s)ds, t > a ≥ 0. (4)

Definition 3. If f is a continuous function, then the generalized Caputo fractional derivative
denoted by CDα,ρ

a+ f (t), of order α > 0 is given by the following:

CDα,ρ
a+ f (t) =

(
RDα,ρ

a+

[
f (x)−

m−1

∑
n=0

f (n)(a)
n!

(x− a)n

])
(t), t > a ≥ 0, (5)

where m = dαe and ρ > 0. In case of 0 < α ≤ 1, see [27].

cDα,ρ
a+ f (t) =

ρα

Γ(1− α)

t∫
a

(tρ − sρ)−α f ′(s)ds, 0< α ≤ 1, t >a ≥ 0. (6)

Definition 4. The new generalized Caputo fractional derivative operator, Dα,ρ
a+ , α > 0 is given by

the following:
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(
Dα,ρ

a+ f
)
(t) =

ρα−m+1

Γ(m− α)

t∫
a

sρ−1(tρ − sρ)m−α−1
(

s1−ρ d
ds

)m
f (s)ds, t > a, (7)

where ρ > 0, a ≥ 0, and m− 1 < α < m.

3. Algorithm of the Apc-ABM Method

In this section, we present an algorithm of the Apc-ABM technique, which we refer to
as the adaptive Apc-ABM method, in order to efficiently provide numerical solutions for
initial value problems with the generalized Caputo fractional derivative, as follows:{

Dα,ρ
a+y(t) = f (t, y(t)), t ∈ [0, T],

y(k)(a) = yk
0, k = 0, 1, · · · , dαe, (8)

where Dα,ρ
a+ is the proposed generalized Caputo fractional derivative operator given in

Equation (7). Then, for m− 1 < α ≤ m, a ≥ 0, ρ > 0 and y ∈ Cm([a, T]), the initial value
problem (7) is equivalent; we obtain the following:

y(t) = u(t) +
ρ1−α

Γ(α)

t∫
a

sρ−1(tρ − sρ)α−1 f (s, y(s))ds, (9)

where

u(t) =
m−1

∑
n=0

1
ρnn!

(tρ − aρ)n
[(

x1−ρ d
dx

)n
y(x)

]∣∣∣∣∣
x=a

(10)

On the assumption that the function f has a unique solution in some interval [a, T], we
divide the interval into N unequal subintervals {[tk, tk+1], k = 0, 1, · · ·N − 1} using mesh
points, as follows: {

t0 = a,

tk+1 =
(

tρ
k + h

)1/ρ
, k = 0, 1, · · · , N − 1,

(11)

where h = Tρ−aρ

N . Now, to numerically solve the initial value problem, we will build
approximations yk, k = 0, 1, · · · , N. If we have previously assessed the approximations
y
(
tj
)

and yj ≈ y
(
tj
)
(j = 1, 2, · · · , k), we wish to use the integral equation to generate the

approximation yk+1 ≈ y(tk+1).

y(tk+1) = u(tk+1) +
ρ1−α

Γ(α)

tk+1∫
a

sρ−1
(

tρ
k+1 − sρ

)α−1
f (s, y(s))ds. (12)

Making the following substitution:

z = Sρ, (13)

We obtain the following:

y(tk+1) = u(tk+1) +
ρ−α

Γ(α)

tρ
k+1∫

aρ

(
tρ
k+1 − z

)α−1
f
(

z1/ρ, y
(

z1/ρ
))

dz. (14)

That is, we obtain the following:

y(tk+1) = u(tk+1) +
ρ−α

Γ(α) ∑k
j=0

∫ tρ
j+1

tρ
j

(
tρ
k+1 − z

)α−1
f
(

z1/ρ, y
(

z1/ρ
))

dz. (15)
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Next, using the trapezoidal quadrature procedure with respect to the weight function(
tρ
k+1 − .

)α−1
to approximate the integrals in the right-hand side of Equation (15), we

derive the following corrector formula for y(tk+1), k = 0, 1, · · · , N − 1:

y(tk+1) ≈ u(tk+1) +
ρ−αhα

Γ(α + 2)

k

∑
j=0

aj,k+1 f
(
tj, y

(
tj
))

+
ρ−αhα

Γ(α + 2)
f (tk+1, y(tk+1)), (16)

where

aj,k+1 =

{
kα+1 − (k− α)(k + 1)α if j = 0,
(k− j + 2)α+1 + (k− j)α+1 − 2(k− j + 1)α+1 if 1 ≤ j < k.

(17)

The final stage of our technique is to replace the amount y(tk+1) on the right side of
Formula (14) with the predictor value yP(tk+1) produced by using the one-step Adams–
Bashforth method to the integral Equation (14). In this situation, substituting the func-
tion f

(
z1/ρ, y

(
z1/ρ

)
at each integral in Equation (16) with the amount f

(
tj, y

(
tj
))

yields
the following:

yP(tk+1)≈ u(tk+1) +
ρ−α

Γ(α)

k

∑
j=0

tρ
j+1∫

tρ
j

(
tρ
k+1 − z

)α−1
f
(
tj, y

(
tj
))

dz

= u(tk+1) +
ρ−αhα

Γ(α + 1)

k

∑
j=0

[
(k + 1− j)α − (k− j)α] f

(
tj, y

(
tj
))

.

(18)

Therefore, the formula fully describes the Apc-ABM for assessing the approximation
yk+1 ≈ y(tk+1), as follows:

yk+1 ≈ u(tk+1) +
ρ−αhα

Γ(α + 2)

k

∑
j=0

aj,k+1 f
(
tj, yj

)
+

ρ−αhα

Γ(α + 2)
f
(

tk+1, yp
k+1

)
, (19)

where yj ≈ y
(
tj
)
, j = 0, 1, · · · k, and the predicted value yP

k+1 ≈ yP(tk+1) can be determined
as described in Equation (18) with the weights aj,k+1 being defined according to (35). The
proposed adaptive Apc-ABM method uses non-uniform grid points:{

tj+1 =
(

tρ
j + h

)ρ
: j = 0, 1, · · · , N − 1

}
with t0 = a and h = Tρ−aρ

N , where N is a natural
number. For this research, we should mention that we cannot apply the Apc-ABM approach
to solve initial value problems that are defined with the generalized Caputo fractional
derivative, if we use a uniform grid as stated in [28].

4. Applications

In this section, we explore the usefulness of the Apc-ABM method for solving initial
value problems numerically with the suggested extended Caputo fractional derivative. As
such, we resorted to numerical simulations to examine solutions to apply our test issues.

Problem 1. Let us consider the fractional Bernoulli equation of the following form:

Dα,ρ
0 y(t) = 2y(t)− 4y2(t), t > 0, 0 < α ≤ 1, (20)

This is associated with the condition y(0) = 1, where Dα,ρ
0 is the generalized Caputo

fractional derivative, presented in Equation (7) of parameters α and ρ. The solution of the
Bernoulli Equation (20), with α = 1 and ρ = 1, is as follows:
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y(t) =
−1

e−2t − 1
, (21)

under y(0) = 0, where Dα,ρ
0 is defined by Equation (7) with parameters α and ρ. When

α = 1 and ρ = 1, the Bernoulli Equation (20) has an exact solution according to the proposed
Apc-ABM method, for some T > 0. We show these results in the following tables.

In Table 1, we provide numerical results from our Apc-ABM method to the fractional
Bernoulli Equation (20) when α = 1 and ρ = 1 at t = 6, t = 8, and t = 10. Table 2 displays
numerical results; our technique yielded numerical answers that precisely matched the
solutions well (y Exact). The accuracy improved as the step size h was reduced. We provided
numerical results from our the Apc-ABM method to the fractional Bernoulli Equation (20)
at t = 6, t = 8, and t = 10, correspondingly for a variety of values of α and ρ. The numerical
stability of the Apc-ABM method may be seen in the convergence of the findings shown
in Tables 3 and 4.

Table 1. Numerical simulations to solve Equation (20) when α = 1 and ρ = 1.

h t = 6 t = 8 t = 10

1/20 0.5000007458 0.5000000179 0.5000000001
1/40 0.5000010853 0.5000000179 0.5000000002
1/80 0.5000012953 0.5000000225 0.5000000003
1/160 0.5000014116 0.5000000252 0.5000000004
1/320 0.5000014728 0.5000000266 0.5000000004
1/640 0.5000015041 0.5000000273 0.5000000004

1/1280 0.5000015200 0.5000000277 0.5000000005
y Exact 0.5000015360 0.5000000281 0.5000000005

Table 2. Numerical simulations to solve Equation (20) when t = 6.

h α = 1, ρ = 0.9 α = 1, ρ = 0.8 α = 1, ρ = 0.7

1/20 0.500000002050 0.500000024787 0.500000264437
1/40 0.500000004467 0.500000044735 0.500000328657
1/80 0.500000006389 0.500000058854 0.500000365178
1/160 0.500000007587 0.500000067188 0.500000384626
1/320 0.500000008255 0.500000071708 0.500000394658
1/640 0.500000008607 0.500000074060 0.500000399752

1/1280 0.500000008788 0.500000075259 0.500000264437

Table 3. Numerical simulations to solve Equation (20) when t = 8.

h α = 1, ρ = 0.9 α = 1, ρ = 0.8 α = 1, ρ = 0.7

1/20 0.500000000004 0.500000000118 0.500000002731
1/40 0.500000000011 0.500000000256 0.500000003624
1/80 0.500000000018 0.500000000366 0.500000004156
1/160 0.500000000023 0.500000000435 0.500000004447
1/320 0.500000000026 0.500000000473 0.500000004599
1/640 0.500000000028 0.500000000494 0.500000004676

1/1280 0.500000000028 0.500000000504 0.500000002731

In Figures 1 and 2, we sketch the solutions of Equation (20) with T = 2.5 that were
obtained by the proposed method. We present approximate series solutions to Equation (20)
with T = 2.5 from our the Apc-ABM method for various values of α and ρ. In Figure 2,
for fixed α, in particular, for all three values of ρ, the solution y(t) converged to the same
limit. In Figure 3, we plot the numerical solutions of Equation (20) when N = 300 with
a different value of α. Figure 4 presents comparison between the exact solution and the
obtained numerical solution of Equation (20).
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Problem 2. Let us consider the following fractional new chaos system:
Dα,ρ

0 x(t) = ax(t)− dyx(t),
Dα,ρ

0 y(t) = −bx(t)− x(t)z(t),
Dα,ρ

0 z(t) = x(t)y(t)z(t)− cz(t) + 4
(22)

It is subject to the conditions x(0) = 1, y(0) = 1, and z(0) = 1, where a, b, c ∈ R, t > 0,
and Dα,ρ

0 is the generalized Caputo fractional derivative operator, with the values for the
parameters of the previous model being a = 1, b = 2, c = 1, and d = 1.

We used Equation (19) for the approximations xk+1, yk+1, and zk+1, and for N ∈ N
and T > 0.

xk+1 ≈ x0 + a ρ−αhα

Γ(α+2)

k
∑

j=0
aj,k+1

(
yj − xj

)
+ a ρ−αhα

Γ(α+2)

(
yP

k+1 − xP
k+1

)
,

yk+1 ≈ y0 +
ρ−αhα

Γ(α+2)

k
∑

j=0
aj,k+1

(
(c− a)xj − xjzj + cyj

)
+ ρ−αhα

Γ(α+2)

(
(c− a)xP

k+1 − xP
k+1zP

k+1 + cyP
k+1

)
,

zk+1 ≈ z0 +
ρ−αhα

Γ(α+2)

k
∑

j=0
aj,k+1

(
xjyj − bzj

)
+ ρ−αhα

Γ(α+2)

(
xP

k+1yP
k+1 − bzP

k+1

)
,

(23)

where h = Tρ

N and

xP
k+1 ≈ x0 + a ρ−αhα

Γ(α+1)

k
∑

j=0

[
(k + 1− j)α − (k− j)α](yj − xj

)
,

yP
k+1 ≈ y0 +

ρ−αhα

Γ(α+1)

k
∑

j=0

[
(k + 1− j)α − (k− j)α]((c− a)xj − xjzj + cyj

)
,

zP
k+1 ≈ z0 +

ρ−αhα

Γ(α+1)

k
∑

j=0

[
(k + 1− j)α − (k− j)α](xjyj − bzj

)
.

(24)

In Table 4 below, we provide numerical results to the fractional Bernoulli Equation (21)
when α = 1, ρ = 1, (a, b, c, d) = (1, 2, 1, 1), and (x0, y0, z0) = (1, 1, 1), using the Apc-ABM
method and the RK4 method at t = 2 and t = 4. Table 5 presents numerical results. Note
that the obtained numerical solutions in this problem are very close to those found by the
RK4 technique when the step size h is made sufficiently small.

Table 4. The solutions of Problem 2 when α = 1, ρ = 1 and t = 0.1.

h. x y z

1/160 0.5008215 0.8421048 0.5712066
1/320 0.5008442 0.8426022 0.5710918
1/640 0.5008554 0.8428494 0.5710347

1/1280 0.5008610 0.8429727 0.5710062
1/2560 0.5008639 0.8430342 0.5709920
1/5120 0.5008653 0.8430649 0.5709849

1/10240 0.5008660 0.8430803 0.5709813
1/20480 0.5008663 0.8430880 0.5709795
1/40960 0.5008665 0.8430918 0.5709786
1/81920 0.5008666 0.8430957 0.5709778

R K4 0.5008666 0.8430937 0.5709782

In Figures 5–7, we plot numerical solutions to Equation (20) when (a, b, c, d) = (2.5, 9, 4, 1)
and (x0, y0, z0) = (1, 1, 1). In these figures, we display the Equation (21) attractors ob-
tained using the Apc-ABM method when T = 40 and N = 1000 for some values of
the parameters α and ρ. It can be observed from Figures 5–7, that Equation (21), where
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(a, b, c, d) = (2.5, 9, 4, 1), may show the same kind of chaotic attractor as its integer order
when (α, ρ) = (0.95, 0.7), (α, ρ) = (0.95, 0.8), and (α, ρ) = (0.95, 0.9).
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Table 5. The solutions of the Bernoulli Equation (22) when α = 1 ρ = 1 and t = 0.5.

h. x y z

1/160 0.5350965 0.4761896 0.7847857
1/320 0.5351654 0.4772751 0.7844803
1/640 0.5351998 0.4778157 0.7843281

1/1280 0.5352170 0.4780855 0.7842521
1/2560 0.5352256 0.4782202 0.7842141
1/5120 0.5352299 0.4782876 0.7841952

1/10240 0.5352320 0.4783212 0.7841857
1/20480 0.5352331 0.4783381 0.7841809
1/40960 0.5352336 0.4783465 0.7841786
1/81920 0.5352339 0.4783507 0.7841774

R K4 0.5352342 0.4783549 0.7841762
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Aperiodic long-term behavior, excessive sensitivity to starting conditions (SIC) on
minute perturbations, and irregular responses due to nonlinearity are only a few examples
of the complex nonlinear behaviors that emerge from a deterministic system to form
the interesting phenomenon known as chaos; see [29,30]. Plasma oscillators [31], power
transformers [32], coronary arteries of blood vessels [33], cancer, and tumor cells [34],
among other real-world systems, can all experience chaos. For secure communications,
chaos is tremendously helpful because of synchronization [35]. However, there are times
when disorder needs to be controlled or suppressed, since it is unwelcome [36].

5. Discussion and Conclusions

This study successfully implemented the Apc-ABM method for numerically simulat-
ing systems of fractional differential equations, including the generalized Caputo fractional
derivative. When the step size h decreased, the numerical simulations demonstrated that
the provided technique yields numerical results that are extremely close to the accurate
solutions in the integer case, or the approximate ones obtained by the RK4 method. In the
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case of fractions, the proposed analytical results demonstrate that the proposed procedure
carries out its operations in a manner that is satisfactory in terms of its numerical stability.
Using the suggested approach, we were able to effectively generate accurate approximation
solutions and illustrate the dynamical behaviors of the systems under discussion. This
research was carried out in the hope that it will be a useful resource for future applica-
tions and explorations of generalized Caputo fractional problems, and to investigate new
methods such as those in [37–41].
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