
Citation: Liu, Y.; Zhang, C.; Li, M.

Quasi-Synchronization and

Dissipativity Analysis for

Fractional-Order Neural Networks

with Time Delay. Fractal Fract. 2023, 7,

364. https://doi.org/10.3390/

fractalfract7050364

Academic Editor: Gani Stamov

Received: 5 April 2023

Revised: 26 April 2023

Accepted: 27 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Quasi-Synchronization and Dissipativity Analysis for
Fractional-Order Neural Networks with Time Delay
Yu Liu 1 , Chao Zhang 1 and Meixuan Li 2,*

1 College of Electrical Engineering and Automation, Shandong University of Science and Technology,
Qingdao 266590, China; curentliuyu@163.com (Y.L.); skdzhangchao@sdust.edu.cn (C.Z.)

2 College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China

* Correspondence: llmx9512@sdust.edu.cn

Abstract: The objective of this research is to examine the global dissipativity and quasi-synchronization
of fractional-order neural networks (FNNs). A global dissipativity criterion is established through
the creation of an appropriate Lyapunov function, together with some fractional-order inequality
techniques. Additionally, the issue of quasi-synchronization for drive-response FNNs is investigated
using linear state feedback control. The study reveals the synchronization error converges to a
bounded region by choosing an appropriate control parameter. Finally, the effectiveness of the
obtained works are validated through three numerical examples.
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1. Introduction

Neural networks possess quick computing speeds, robust associative capabilities,
adaptability, tolerance to faults, and self-organizing skills. They have found extensive use
in many areas [1], with a vast potential for research. A multitude of scholars have explored
this field, proposing many neural network models [2,3]. In recent decades, fractional
calculus operators have been widely applied in neural networks due to their features of
memory and non-locality. Fractional neural networks have achieved many excellent results,
such as those in [4,5].

The swift advancement in fractional derivative theory has led to the creation of nu-
merous fractional-order models utilizing fractional-order differential equations [6–11].
Compared to the traditional inter-order cases, fractional-order models exhibit consistent
heredity and memory across various processes. In [10], using fractional calculus could ac-
curately characterize the dynamical characteristics of pyramidal neurons, as recent studies
have shown. As a result, the use of fractional derivatives has garnered increasing attention
in recent years. Additionally, experiments have shown that the capacitor used in elec-
tronic circuits exhibits fractional-order characteristics. The corresponding voltage–current
relation can be acquired as i(s) = C dςV(s)

dsς , CDς
s V(s) [9,12], leading to the establish-

ment of fractional neural networks (FNNs). Here, ς represents the order of the capacitors.
In comparison to traditional inter-order neural networks, FNNs are more advantageous
and meaningful in emulating the behavior of neurons in the brain. In practical appli-
cations, time delays are an inescapable aspect of communication channels, which may
result in oscillation or chaos. For example, if time delays are selected as bifurcation pa-
rameters, the issues related to the stability of a system at the Hopf bifurcation point in
complex-valued FNNs have been addressed applying Laplace transforms and the theory
of differential equations with non-integer orders [13]. As a result, it is imperative to study
the dynamics of FNNs with delays in a comprehensive manner. Numerous impressive
outcomes, such as global stabilization [14], stability [15], and synchronization [16], have
been extensively documented.
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Dynamical analyses of neural networks are an important precondition for designing
and practically applying them. Particularly, dissipativity is an extension of Lyapunov
stability. It provides a framework for analyzing the energy flow and dissipation in a system,
which is crucial for understanding the system’s behavior over time. Dissipativity has been
successfully applied in various fields to describe system performance, such as control theory,
robotics, and power systems, among others. Moreover, it has been shown that dissipativity
can be employed to investigate the synchronization and anti-synchronization of delayed
FNNs, which is important for control systems [17–19]. Moreover, achieving synchronization
in FNNs is a critical yet difficult task. Synchronization refers to the phenomenon where two
systems exhibit identical manifestation, which can be achieved through external excitation
or coupling. However, complete synchronization, when there are parameter mismatches,
may not be achieved. Put differently, a non-zero synchronization error can always exist.
Then, quasi-synchronization is often considered more practical and feasible than achieving
complete synchronization. Since then, a significant amount of research has been dedicated
to the subject of quasi-synchronization.

The two most critical challenges for quasi-synchronization, as indicated in [20,21], are
designing a straightforward yet powerful controller and estimating the error of synchro-
nization. To achieve quasi-synchronization, it is essential to consider the practical stability
issue and obtain the error bound, which are also significant challenges. Nevertheless,
conventional analysis and control methods, which are appropriate for systems with integer
order, cannot be directly implemented on FNNs. The reason why the previous control
methods and techniques are not directly applicable to FNNs is that FNNs are modeled
by a set of differential equations with fractional order, this non-integer order introduces
extra complexity to the system dynamics, which makes it difficult to utilize traditional
analysis and control techniques. Time delay is also considered. Hence, deriving criteria for
quasi-synchronization and dissipativity with time delay and fractional-order differential
equations is a pressing issue. To achieve this goal, two core problems must be solved:
(1) how to deal with quasi-synchronization and dissipativity and (2) how to maintain the
synchronization error within a narrow range through control.

To address the previous discussion and motivations, this investigation focuses on the
quasi-synchronization and dissipativity of delayed FNNs. The primary contributions can
be outlined as follows:

(1) The fractional-order Lyapunov method is applied in the investigation of the quasi-
synchronization and dissipativity issues of delayed FNNs, which provides a new
approach for analyzing these types of networks.

(2) By employing fractional-order inequalities and a suitable Lyapunov function, a uni-
versal dissipativity criterion is derived. Additionally, the application of linear feedback
control is employed to establish sufficient conditions for achieving quasi-synchronization
in FNNs, which further contributes to the understanding of the synchronization be-
havior of these networks.

(3) By selecting suitable control parameters, it is possible to regulate the synchronization
error bound within a relatively small range. This outcome has practical implications
for designing controllers for FNNs. Furthermore, this study’s results demonstrate
that this research can alleviate the overly cautious nature of previous work, indicating
the potential of this approach to advance the field of network analysis.

In Table 1, the notation used in this paper is described.

Table 1. Notation and descriptions.

Notation Description

|| · ||2 The 2-norm

diag(ν1, ν2, . . . , νn) A diagonal matrix

A > 0 (or A < 0) A is positive definite (or negative definite)
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2. Preliminaries and Problem Formulation

This section delineates the different definitions and lemmas that will be utilized later
in the paper. The Caputo fractional derivative is the derivative of choice in this study.

Definition 1 ([22]). The Caputo fractional derivative of function ψ(t) is presented as follows:

t0 Dς
t ψ(t) =

1
Γ(1− ς)

∫ t

t0

(t− τ)−ςψ′(τ)dτ,

where t ≥ t0, 0 < ς < 1, Gamma function Γ(ς) =
∫ +∞

0 σ−ttς−1dt, and ψ(t) is a function.

Lemma 1 ([23]). Let differentiable functions φ(t) ∈ Rn be

1
2 t0

Dς
t φT(t)Pφ(t) ≤ φT(t)Pt0 Dς

t φ(t) ∀ς ∈ (0, 1],

where P ∈ Rn×n > 0.

Lemma 2 ([24]). For given vectors φ, ϕ ∈ Rn and a constant γ > 0, it yields

2φT ϕ ≤ γφTφ + γ−1 ϕT ϕ.

Take the following delayed FNNs into account:

0Dς
t φ(t) = −Cφ(t) + Qη(φ(t)) + Rξ(φ(t− τ)) + I(t), (1)

where φ(t) = [φ1(t), φ2(t), . . . , φn(t)]T , C = diag(c1, c2, . . . , cn), Q = (Qιν)n×n,
R = (Rιν)n×n, η(φ(t)) = [η1(φ1(t)), η2(φ2(t)), . . . , ηn(φn(t))]T , ξ(φ(t− τ)) = [ξ1(φ1(t−
τ)), ξ2(φ2(t − τ)), . . . , ξn(φn(t − τ))]T , I(t) = [I1(t), I2(t), . . . , In(t)]T , ϑφ(s) = [ϑφ1(s),
ϑφ2(s), . . . , ϑφn(s)]T .

Definition 2 ([25]). A system is considered to be dissipative, as defined by system (1), if a compact
set S ⊂ Rn exists such that for all φ0 ∈ Rn, there exists a T > 0 such that when t ≥ t0 + T,
φ(t, t0, φ0) ⊂ S. If this condition is met, then S is commonly referred to as a globally attractive set.

Assumption 1 ([11]). Assume that ην(·) and ξν(·) satisfy

|ην(α)− ην(δ)| ≤ Lν|α− δ|,

|ξν(α)− ξν(δ)| ≤ Mν|α− δ|,

where Lν, Mν > 0, respectively. α, δ ∈ R and ν = 1, . . . , n.

3. Global Dissipativity of Delayed FNNs

The primary focus of this section is on the global dissipativity of FNNs (1). The
estimation of the globally attractive set is carried out in detail using an appropriate Lya-
punov function.

Theorem 1. Under Assumption 1, if

2c− 2σ(Q)Lmax − γ1σ(R)Mmax − γ2 − γ−1
1 σ(R)Mmax > 0,

then system (1) is a dissipative system and S =
{

φ(t) : ||φ(t)||2 ≤
√

N
λ−υ

}
, where λ = 2c−

2σ(Q)Lmax − γ1σ(R)Mmax − γ2, υ = γ−1
1 σ(R)Mmax, N = γ−1

2 ||I∗||22, c = min1≤ι≤n{cι},
σ(Q) = ||Q||2, σ(R) = ||R||2, I∗ = (sup |I1(t)|, sup |I2(t)|, . . . , sup |In(t)|)T ,
Lmax = max1≤j≤n{Lν}, Mmax = max1≤j≤n{Mν}.
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Proof. Choose a Lyapunov candidate function as

V(t) = φT(t)φ(t).

Based on Lemma 1–Lemma 2 and Assumption 1, it has

0Dς
t V(t) ≤ 2φT(t)0Dς

t φ(t)

= 2φT(t)
[
− Cφ(t) + Qη(φ(t)) + Rξ(φ(t− τ)) + I(t)

]
= −2φT(t)Cφ(t) + 2φT(t)Qη(φ(t)) + 2φT(t)Rξ(φ(t− τ)) + 2φT(t)I(t)

≤ −2c||φ(t)||22 + 2||φ(t)||2||Q||2||η(φ(t))||2 + 2||φ(t)||2||R||2||ξ(φ(t− τ))||2
+ 2||φ(t)||2||I(t)||2
≤ −2c||φ(t)||22 + 2||Q||2Lmax||φ(t)||22 + ||R||2Mmax(γ1||φ(t)||22 + γ−1

1 ||φ(t− τ)||22)
+ (γ2||φ(t)||22 + γ−1

2 ||I(t)||
2
2)

= (−2c + 2σ(Q)Lmax + γ1σ(R)Mmax + γ2)||φ(t)||22
+ γ−1

1 σ(R)Mmax||φ(t− τ)||22 + γ−1
2 ||I

∗||22
= −(2c− 2σ(Q)Lmax − γ1σ(R)Mmax − γ2)V(φ(t))

+ γ−1
1 σ(R)MmaxV(φ(t− τ)) + γ−1

2 ||I
∗||22.

Let λ = 2c − 2σ(Q)Lmax − γ1σ(R)Mmax − γ2, υ = γ−1
1 σ(R)Mmax, N = γ−1

2 ||I∗||22;
then, we obtain

0Dς
t V(t) ≤ −λV(φ(t)) + υV(φ(t− τ)) + N

≤ −λV(φ(t)) + υ sup
t−τ≤s≤t

V(φ(s)) + N.

In addition, λ− υ > 0. Then, based on the fractional Halanay inequality [26], one has

V(φ(t)) ≤ N
λ− υ

, t→ +∞,

i.e.,

||φ(t)||2 ≤
√

N
λ− υ

, t→ +∞.

Then, system (1) is a dissipative system.

4. Quasi-Synchronization of Delayed FNNs

For system (1), let I(t) = 0 and consider the response system as

0Dς
t ϕ(t) = −C

′
ϕ(t) + Q

′
η(ϕ(t)) + R

′
ξ(ϕ(t− τ)) + u(t), (2)

where ϕ(t) = [ϕ1(t), ϕ2(t), . . . , ϕn(t)]T , C
′

= diag(c
′
1, c

′
2, . . . , c

′
n), Q

′
= (Q

′
ιν)n×n,

R
′
= (R

′
ιν)n×n, η(φ(t)) = [η1(φ1(t)), η2(φ2(t)), . . . , ηn(φn(t))]T , ξ(φ(t− τ)) = [ξ1(φ1(t−

τ)), ξ2(φ2(t − τ)), . . . , ξn(φn(t − τ))]T , u(t) = [u1(t), u2(t), . . . , un(t)]T , ϑϕ(s) = [ϑϕ1(s),
ϑϕ2(s), . . . , ϑϕn(s)]T .

Assume σ(t) = ϕ(t)− φ(t) and

u(t) = −Fσ(t), (3)

where F = diag( f1, f2, . . . , fn).
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Then, one has the error system:

0Dς
t σ(t) = −(C′ + F)σ(t) + Q

′
[η(ϕ(t))− η(φ(t))] + R

′
[ξ(ϕ(t− τ))− ξ(φ(t− τ))]

+ (C
′ − C)φ(t) + (Q

′ −Q)η(φ(t)) + (R
′ − R)η(φ(t− τ))

= −(C′ + F)σ(t) + Q
′
ϕ(σ(t)) + R

′
ϕ(σ(t− τ)) + z(t), (4)

where ϕ(σ(t)) = η(ϕ(t)) − η(φ(t)), ϕ(σ(t − τ)) = ξ(ϕ(t − τ)) − ξ(φ(t − τ)),
z(t) = (C

′ − C)x(t) + (Q
′ − Q)η(φ(t)) + (R

′ − R)η(φ(t − τ)). The initial condition is
σ(s) = φ(s),−τ ≤ s ≤ 0, where φ(s) = (φ1(s), . . . , φn(s))T , φι(s) = ϑϕi(s) − ϑφi(s),
s ∈ [−τ, 0] and ι = 1, 2, . . . , n.

Set ∆C = (C − C
′
), ∆Q̃ = Q

′ − Q, ∆R̃ = R
′ − R,

Lmax = max1≤j≤n{Lj}, Mmax = max1≤j≤n{Mj}. Then, we have

||z(t)||2 = ||(C− C
′
)x(t) + ∆Q̃(t)η(φ(t)) + ∆R̃(t)ξ(φ(t− τ))

≤ ||∆C||2||φ(t)||2 + ||∆Q̃||2||η(φ(t))||2 + ||∆R̃||2||ξ(φ(t− τ))||2
≤ ||∆C||2||φ(t)||2 + ||∆Q̃||2Lmax||φ(t)||2 + ||∆R̃||2Mmax||φ(t− τ)||2

where ∆C = diag(∆c1, ∆c2, . . . , ∆cn) and ∆ci = ci − c
′
i, i = 1, 2, . . . , n.

It is widely recognized that the boundedness of trajectories is a fundamental charac-
teristic of chaotic systems, which is due to the inherent dissipativity of such systems. Thus,
assume a constant z > 0 such that ||φ(t)||2 ≤ z for all t ≥ −τ. That is, for a constant z∗,
it yields

||z(t)||2 ≤ (||∆C||2 + ||∆Q̃||2Lmax + ||∆R̃||2Mmax)z = z∗. (5)

Next, the quasi-synchronization criterion is presented.

Theorem 2. Under Assumption 1, if

2(c
′
+ f )− 2σ(Q

′
)Lmax − γ1σ(R

′
)Mmax − γ2 − γ−1

1 σ(R
′
)Mmax > 0,

then the error system (4) will converge to the region D =
{

σ(t) : ||σ(t)||2 ≤
√

Z
λ−υ

}
, where

λ = 2(c
′
+ f )− 2σ(Q

′
)Lmax− γ1σ(R

′
)Mmax− γ2, υ = γ−1

1 σ(R
′
)Mmax, Z = γ−1

2 (z∗)2, c
′
=

min1≤i≤n{c
′
i}, f = min1≤i≤n{ fi}, σ(Q

′
) = ||Q′ ||2, σ(R

′
) = ||R′ ||2, Lmax = max1≤j≤n{Lν},

Mmax = max1≤j≤n{Mν}.

Proof. Take the Lyapunov function

V(t) = σT(t)σ(t). (6)
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From Lemma 1–Lemma 2 and Assumption 1, one has

0Dς
t V(t) ≤ 2σT(t)0Dς

t σ(t)

= 2σT(t)
[
− (C

′
+ F)σ(t) + Q

′
ϕ(σ(t)) + R

′
ϕ(σ(t− τ)) + Z(t)

]
= −2σT(t)(C

′
+ F)σ(t) + 2σT(t)Q

′
ϕ(σ(t)) + 2σT(t)R

′
ϕ(σ(t− τ)) + 2σT(t)Z(t)

≤ −2(c
′
+ f )||σ(t)||22 + 2||Q′ ||2Lmax||σ(t)||22

+ 2||σ(t)||2||R
′ ||2Mmax||σ(t− τ)||2 + 2||σ(t)||2||z(t)||2

≤ −2(c
′
+ f )||σ(t)||22 + 2||Q′ ||2Lmax||σ(t)||22

+ ||R′ ||2Mmax(γ1||σ(t)||22 + γ−1
1 ||σ(t− τ)||22) + (γ2||σ(t)||22 + γ−1

2 ||σ(t− τ)||22)

≤
[
− 2(c

′
+ f ) + 2σ(Q

′
)Lmax + γ1σ(R

′
)Mmax

]
||σ(t)||22

+ γ−1
1 σ(R

′
)Mmax||σ(t− τ)||22 + γ−1

2 (z∗)2

= −
[
2(c

′
+ f )− 2σ(Q

′
)Lmax − γ1σ(R

′
)Mmax

]
V(σ(t))

+ γ−1
1 σ(R

′
)MmaxV(σ(t− τ)) + γ−1

2 (z∗)2.

Let λ = 2(c
′
+ f )− 2σ(Q

′
)Lmax − γ1σ(R

′
)Mmax − γ2, υ = γ−1

1 σ(R
′
)Mmax, Z = γ−1

2 (z∗)2;
then, one has

0Dς
t V(t) ≤ −λV(σ(t)) + υV(σ(t− τ)) + Z

≤ −λV(σ(t)) + υ sup
t−τ≤s≤t

V(σ(s)) + Z.

In addition, λ− υ > 0. Similarly, it yields

||σ(t)||2 ≤
√

Z
λ− υ

, t→ +∞,

i.e.,

D =

{
σ(t) : ||σ(t)||2 ≤

√
Z

λ− υ

}
, t→ +∞.

This completes the proof.

If there are no parameter mismatches, we have

0Dς
t ϕ(t) = −Cϕ(t) + Qη(ϕ(t)) + Rξ(ϕ(t− τ)) + u(t), (7)

where ϕ(t) = [ϕ1(t), ϕ2(t), . . . , ϕn(t)]T , C = diag(c1, c2, . . . , cn), Q = (Qιν)n×n,
R = (Rιν)n×n, η(φ(t)) = [η1(φ1(t)), η2(φ2(t)), . . . , ηn(φn(t))]T , ξ(φ(t− τ)) = [ξ1(φ1(t−
τ)), ξ2(φ2(t − τ)), . . . , ξn(φn(t − τ))]T , u(t) = [u1(t), u2(t), . . . , un(t)]T ,
ϑϕ(s) = [ϑϕ1(s), ϑϕ2(s), . . . , ϑϕn(s)]T .

Thus, one has

0Dς
t σ(t) = −(C + F)σ(t) + Q[η(ϕ(t))− η(φ(t))] + R[ξ(ϕ(t− τ))− ξ(φ(t− τ))]

= −(C + F)σ(t) + Qϕ(σ(t)) + Rϕ(σ(t− τ)) (8)

where ϕ(σ(t)) = η(ϕ(t))− η(φ(t)), ϕ(σ(t− τ)) = ξ(ϕ(t− τ))− ξ(φ(t− τ)). Next, the
synchronization criterion is presented.

Corollary 1. Under Assumption 1, if

2(c + f )− 2σ(Q)Lmax − γ1σ(R)Mmax − γ−1
1 σ(R)Mmax > 0,
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then D = {σ(t) : ||σ(t)||2 = 0}, where λ = 2(c + f ) − 2σ(Q)Lmax − γ1σ(R)Mmax,
υ = γ−1

1 σ(R)Mmax, c = min1≤i≤n{ci}, f = min1≤i≤n{ fi}, σ(Q) = ||Q||2, σ(R) =
||R||2, Lmax = max1≤j≤n{Lν}, Mmax = max1≤j≤n{Mν}. Thus, the systems (1)–(7) can
achieve synchronization.

As the FNN model (1) is a novel proposal, we first utilize the maximum absolute value
to establish a criterion, which allows us to compare our method with previous approaches and
demonstrate its superiority. The criterion is stated as follows.

Theorem 3. Under Assumption 1, if

min
1≤i≤n

[
2(c

′
ι + fι)−

n

∑
ν=1

(Q
′
ινLν + Q

′
νιLι)− γ1

n

∑
ν=1

R
′
ιν Mν − γ2

]
− γ−1

1 max
1≤i≤n

( n

∑
ν=1

R
′
νι Mι

)
> 0,

then D =
{

σ(t) : ||σ(t)||2 ≤
√

Z
λ−υ

}
, where λ = min1≤i≤n

[
2(c

′
ι + fι) − ∑n

ν=1(Q
′
ινLν +

Q
′
νιLι)− γ1 ∑n

ν=1 R
′
ιν Mν − γ2

]
, Z = γ−1

2 (z∗)2, υ = γ−1
1 max1≤i≤n(∑n

ν=1 R
′
νι Mι).

Proof. Set the Lyapunov function as

V(t) =
n

∑
ι=1

e2
i (t).

The proof of Theorem 3 can be demonstrated similarly to that of Theorem 2, and hence it is
omitted here.

Remark 1. In Theorem 3, algebraic conditions were obtained based on the maximum absolute value
method, which is similar to [27–35]. However, it should be noted that such algebraic conditions
are not desirable when dealing with high-dimensional FNNs. Compared to the proposed criteria
in [27–35], the verification process involved in Theorem 2 is less time consuming. As a result,
the computational burden is not increased in Theorem 2.

Remark 2. Based on Theorem 2, quasi-synchronization can be achieved in the drive-response
systems if

f >
1
2

[
2σ(Q

′
)Lmax + γ1σ(R

′
)Mmax + γ2 + γ−1

1 σ(R
′
)Mmax

]
− c

′
.

On the other hand, Theorem 3 provides a different condition for achieving quasi-synchronization:

f >
1
2

[
max

1≤i≤n

( n

∑
ν=1

(Q
′
ινLν + Q

′
νιLι) + γ1

n

∑
ν=1

R
′
ιν Mν

)
+ γ2 + γ−1

1 max
1≤i≤n

( n

∑
ν=1

R
′
νι Mι

)]
− c

′
,

where c
′
= min1≤i≤n c

′
i and f = min1≤i≤n fi. It should be noted that Theorem 2 has the potential

to enhance the results obtained in Theorem 3 to a certain degree. The advantages of Theorem 2 are
discussed in Section 5.

5. Numerical Examples

Example 1. Take system (1), with n = 2, ς = 0.95, ην(φν) = ξν(φν) = tanh(φν), ν = 1, 2,
τ = 1. Take c1 = 2.5, c2 = 2.5, I1(t) = 0.5sin(t), I2(t) = −0.4cos(t), and

Q =

[
0.25 0.3
0.2 −0.1

]
, R =

[
0.4 0.1
−0.2 0.2

]
.

Through simple calculation, it can be obtained that Lmax = 1, Mmax = 1, σ(Q) = 0.3953,
and σ(R) = 0.4472. By taking γ1 = 1 and γ2 = 1, we obtain N = γ−1

2 ||I∗||22 = 0.41,
λ = 2c− 2σ(Q)Lmax− γ1σ(R)Mmax − γ2 = 2.7622, υ = γ−1

1 σ(R)Mmax = 0.4472, and
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λ− υ = 2.315 > 0. This indicates that Theorem 1 is satisfied, and one has ||φ||2 ≤
√

N
λ−υ = 0.4208.

Therefore, the set S = φ : ||φ||2 ≤ 0.4208 is called globally attractive. The simulation results with
four randomly chosen initial values are presented in Figures 1 and 2. It can be observed that the
FNNs exhibit dissipative behavior.
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Figure 1. The trajectories of φ1 and φ2.
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Figure 2. Phase portraits.

Example 2. Take system (1) with n = 2, ς = 0.98, ην(φν) = ξν(φν) = tanh(φν), ν = 1, 2,
τ = 0.92. Take c1 = 4, c2 = 2, I1(t) = 0 = I2(t), ϑφ(s) = (−0.9, 0.6)T , s ∈ [−0.92, 0], and

Q =

[
2.1 −2.1
−0.55 2.6

]
, R =

[
−3.9 −2.7
−1.6 −3.7

]
.

Assuming this system (2) with n = 2, ς = 0.98, ην(φν) = ξν(φν) = tanh(φν), ν = 1, 2,
through simple calculation, it can be obtained that Lmax = 1, Mmax = 1, τ = 0.92. Take c

′
1 = 3.2,

c
′
2 = 2.2, I1(t) = 0 = I2(t), ϑϕ(s) = (−2.8, 2.4)T , s ∈ [−0.92, 0], u(t) = (u1(t), u2(t))T , and

Q =

[
3 −1
−1 2

]
, R =

[
−2 −1
−1 −4

]
.

From Figure 3, we can obtain that ||φ(t)||2 ≤ 1.25, then z∗ = (||∆C||2 + ||∆Q̃||2Lmax +
||∆R̃||2Mmax)z = 6.2112. In Figure 4, the synchronization error ||σ(t)||2 is given without
controller (3).
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Figure 3. Evolution of ||φ(t)||2 of system (1).
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Figure 4. ||σ(t)||2 without controller.

By setting f1 = 20, f2 = 20, γ1 = 1, γ2 = 19, σ(Q) = 3.8229, σ(R) = 5.9919,
σ(Q

′
) = 3.6108, and σ(R

′
) = 4.4142, we obtain λ = 2(c

′
+ f )− 2σ(Q

′
)Lmax− γ1σ(R

′
)Mmax

−γ2 = 13.7624, υ = γ−1
1 σ(R

′
)Mmax = 4.4142, and λ− υ = 9.35 > 0. Hence, based on Theorem

2, the quasi-synchronization can be realized for systems (1) and (2) with ||σ(t)||2 ≤
√

Z
λ−υ =

0.4660, which is confirmed by Figure 5.
To demonstrate the superiority of Theorem 2 over Theorem 3, a comparison is presented below.
Table 2 shows that when γ1 = 1 and γ2 = 19, the systems (1) and (2) achieve quasi-

synchronization if

f >
1
2

[
2σ(Q

′
)Lmax + γ1σ(R

′
)Mmax + γ2 + γ−1

1 σ(R
′
)Mmax

]
− c

′
= 15.325,

based on Theorem 2. However, according to Theorem 3, one needs to ensure that

f >
1
2

[
max

1≤i≤n

( n

∑
ν=1

(Q
′
ινLν + Q

′
νιLι) + γ1

n

∑
ν=1

R
′
ιν Mν

)
+ γ2 + γ−1

1 max
1≤i≤n

( n

∑
ν=1

R
′
νι Mι

)]
− c

′

= 16.3.
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Table 2. Comparison of Theorem 2 and Theorem 3 for Example 2 with γ1 = 1 and γ2 = 19.

Method Requirement for f

Theorem 2 f > 15.325

Theorem 3 f > 16.3

Example 3. Take system (1) with n = 3, ς = 0.85, ην(φν) = ξν(φν) = tanh(φν), τ = 0.8. Set
c1 = 2, c2 = 2, c3 = 2, ϑφ(s) = (0.8,−0.6, 0.8)T , s ∈ [−1, 0], and

Q =

2.1 0 0
0 5.7 0
0 0 1.2

, R =

−3.9 0 0
0 −3.7 0
0 0 13

.

Assuming that the response system (2) has identical parameters and initial conditions
ϑϕ(s) = (1.2,−1.5, 1.7)T , s ∈ [−1, 0], the systems (1) and (2) are asynchronous, as shown
in Figure 6.
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Figure 6. Time response trajectories of σ(t).
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Take f1 = f2 = f3 = 15, γ1 = 1, σ(Q) = 5.7, and σ(R) = 13. Then, we obtain λ = 2(c +
f ) − 2σ(Q)Lmax − γ1σ(R)Mmax = 15.3, υ = γ−1

1 σ(R)Mmax = 13, and λ− υ = 2.3 > 0.
Therefore, according to Corollary 1, the systems (1) and (2) achieve synchronization with the
controller (3), which is verified by Figure 7.
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Figure 7. Time response trajectories of σ(t) under controller (3).

6. Conclusions

The global dissipation and quasi-synchronization characteristics of FNNs are studied.
To obtain sufficient criteria for quasi-synchronization and dissipativity, suitable Lyapunov
functions are constructed. To extend some existing results and achieve more relaxed criteria,
the 2-norm of the matrix is used. Numerical examples demonstrate the achievability of the
proposed conclusions. The introduction of a memristor will cause state switching in the
system. We aim to investigate the quasi-synchronization of memristor-based FNNs in the
future, which remain open problems and require further investigation.
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