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Abstract: This paper studies a fractional differential equation combined with a Liouville–Caputo
fractional differential operator, namely, LCDβ,γ

η Q(t) = λϑ(t, Q(t)), t ∈ [c, d], β, γ ∈ (0, 1], η ∈ [0, 1],
where Q(c) = qc is a bounded and non-negative initial value. The function ϑ : [c, d]×R → R is
Lipschitz continuous in the second variable, λ > 0 is a constant and the operator LCDβ,γ

η is a convex
combination of the left and the right Liouville–Caputo fractional derivatives. We study the well-
posedness using the fixed-point theorem, estimate the growth bounds of the solution and examine
the asymptotic behaviours of the solutions. Our findings are illustrated with some analytical and
numerical examples. Furthermore, we investigate the effect of noise on the growth behaviour of the
solution to the combined Liouville–Caputo fractional differential equation.

Keywords: well-posedness; growth estimate; asymptotic behaviours; combined Liouville–Caputo
fractional derivative; numerical simulations; stochastic models; second moment bound

1. Introduction

Fractional-order derivatives are known to give more accurate and realistic mathemati-
cal models when compared to the classical-order models. The Liouville–Caputo fractional
derivative is unarguably a useful operator that mostly models nonlocal behaviours by
fractional DEs [1]. The Liouville–Caputo fractional derivative and others alike have found
applications in different science and engineering fields and have been used to model many
real-life problems. For example, they are used in the mathematical modelling of a human
brain tissue (HBT) constitutive model in the framework of anisotropic hyperelasticity [2];
modelling the growth of many economical processes, specifically memory effect on the eco-
nomic growth model, that is, in the application of economic growth models with memory
effect [3] in physics and the environment; studying the chaotic behaviour(s) of dynamical
systems; and developing the fractional-order models of neurons [4] and porous media,
among others. See also [5,6] for other fractional models. It is worthy of note that all of
the above fractional differential equations and more studied in the literature make use of
one-sided (left- or right-sided) fractional derivative operators.

The new operator is a convex combination of left and right Liouville–Caputo fractional
operators. There is little that one can find in the literature regarding this combined fractional
derivative operators. Importantly, this new combined fractional operator is more general
than other fractional derivatives [7]. The new operators were studied and defined by
Malinowska and Torres [7] as follows:

LCDβ,γ
η = η LC

c D
β
t + (1− η) LC

t D
γ
d , β, γ ∈ (0, 1]& η ∈ [0, 1], (1)

where
LCDβ,γ

0 Q(t) = LC
t D

γ
d Q(t),

and
LCDβ,γ

1 Q(t) = LC
c D

β
t Q(t).

Fractal Fract. 2023, 7, 366. https://doi.org/10.3390/fractalfract7050366 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7050366
https://doi.org/10.3390/fractalfract7050366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-5163-229X
https://orcid.org/0000-0002-6668-1107
https://orcid.org/0000-0001-9658-5864
https://orcid.org/0000-0003-1813-6646
https://doi.org/10.3390/fractalfract7050366
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7050366?type=check_update&version=2


Fractal Fract. 2023, 7, 366 2 of 15

Another advantage of this new fractional derivative LCDβ,γ
η is that it can describe varia-

tional problems in a broad perspective [7]. By drawing inspirations from the diamond-
alpha derivative on a time scale, which is a linear combination of the delta and nabla
derivatives [8–10], the model (1) was birthed. Malinowska and Torres [8] showed that the
approximation of exact derivatives by the diamond-alpha derivative was better that those
of the delta and nabla derivatives.

Therefore, this research considered a special operator by studying the combined
Liouville–Caputo fractional differential equation as follows:

LCDβ,γ
η Q(t) = λϑ(t, Q(t)), β, γ ∈ (0, 1]& η ∈ [0, 1], (2)

where Q(c) = qc is the initial condition, ϑ : [c, d]×R→ R is Lipschitz in the second vari-
able, λ > 0 and LCDβ,γ

η is known as the combined Liouville–Caputo fractional derivative

operator. The operator LCDβ,γ
η is a convex combination of left and right Liouville–Caputo

fractional derivatives. Thus, our contribution and aim in this research paper was to examine
the qualitative properties, the well-posedness, estimates of the growth bounds, and the
asymptotic behaviour of the solution to a class of combined fractional differential equations.

The organization of the paper is as follows. Section 2 contains the preliminary con-
cepts and definitions needed in the article; Section 3 contains the main results—existence,
uniqueness, upper growth estimate, asymptotic behaviour of solution to the combined
L–C fractional differential equation. Numerical and analytical illustration of our results are
given in Section 4. In Section 5, we consider the stochastic (non-deterministic) case of our
equation. Summary of the paper is given in Section 6.

2. Preliminary Concepts

Here, we give some definitions and basic materials. Readers can refer to [5] for further
materials on fractional calculus.

Definition 1 ([7]). For β, γ ∈ (0, 1) and 0 ≤ η ≤ 1, the combined Liouville–Caputo fractional
derivative operator LCDβ,γ

η is a convex combination of left and right Liouville–Caputo fractional
derivatives, defined by

LCDβ,γ
η = η LC

c D
β
t + (1− η) LC

t D
γ
d .

Definition 2 ([11]). Let 0 < c < d and f : [c, d] → R be an integrable function. The left-sided
Katugampola fractional integral of order β > 0 and parameter σ > 0 is given by

Iβ,σ
c+ u(t) =

σ1−β

Γ(β)

∫ t

c
sσ−1(tσ − sσ)σ−1u(s)ds,

provided the integral converges.

For σ = 1, we define the fractional integral as follows.

Definition 3 ([11]). Let u : [c, d]→ R be an integrable function where c, d > 0 with c < d. Then,

cIβ
t u(t) =

1
Γ(β)

∫ t

c
(t− s)β−1u(s)ds, (3)

is the left-sided Riemann–Liouville fractional integral of u of order 0 < β < 1, provided the
integral converges.

Definition 4 ([5]). Let u : [c, d]→ R, then

cDβ
t u(t) =

1
Γ(1− β)

d
dt

∫ t

c
(t− s)−βu(s)ds,
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is the Riemann–Liouville fractional derivative of u of order 0 < β < 1 provided the integral converges.

Definition 5 ([11]). Let c, d > 0 with c < d, σ > 0, β ∈ R+ and m ∈ N satisfying m− 1 <
β < m. Let u : [c, d]→ R be a Cm-function. Then,

CDβ,σ
c+ u(t) = Iβ,σ

c+

(
t1−σ d

dt

)m

u(t) =
σ1−m+β

Γ(m− β)

∫ t

c
sσ−1(tσ − sσ)β−1

(
t1−σ d

ds

)m

u(s)ds

is the left-sided Caputo–Katugampola fractional derivative of u of order β and parameter σ.

For σ = 1 and m = 1, we define the Liouville–Caputo fractional derivative as follows.

Definition 6. Given c, d > 0 with c < d, β ∈ R+ so that 0 < β < 1, and a C1-function
u : [c, d]→ R. The left-sided Liouville–Caputo fractional derivative of order β is given by

LC
c D

β
t u(t) =

1
Γ(1− β)

∫ t

c
(t− s)−βu′(s)ds,

provided that the integral converges. Similarly, the right-sided Liouville–Caputo fractional derivative
of order γ is given by

LC
t D

γ
d u(t) =

1
Γ(1− β)

∫ d

t
(s− t)−γu′(s)ds,

provided that the integral converges.

Lemma 1 ([12]). The Liouville–Caputo derivative is connected to the Riemann–Liouville deriva-
tives by

LC
c D

β
t u(t) = cDβ

t u(t)−
m−1

∑
k=0

(t− c)k−β

Γ(k− β + 1)
u(k)(c), m− 1 < β ≤ m.

In particular, when m = 1, one obtains

LC
c D

β
t u(t) = cDβ

t u(t)− (t− c)−β

Γ(1− β)
u(c).

Suppose the function u : [c, d]→ R is defined as u(t) = ta. Then,

cDβ
t u(t) =

Γ(a + 1)
Γ(a− β + 1)

ta−β.

Theorem 1 ([11]). Suppose u ∈ Cm[c, d], then for m− 1 < β ≤ m, 0 < σ ≤ 1

Iβ,σ
c+

CDβ,σ
c+ u(t) = u(t)−

m−1

∑
k=0

σ−k

k!
(tσ − cσ)ku(k)(c).

Note that if u ∈ C1[c, d] and σ = 1, then

Iβ
c+

LCDβ
c+u(t) = u(t)− u(c).

Thus,

Corollary 1. Suppose u ∈ C1[c, d], 0 < β ≤ 1 and σ = 1, we have

cIβ
t

LC
c D

β
t u(t) = u(t)− u(c). (4)

The next result is a formula for the generalized fractional integration by parts:
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Theorem 2 ([11]). Suppose u ∈ C[c, d] and v ∈ Cm[c, d]. Then, for m− 1 < β ≤ m, 0 < σ ≤ 1,

∫ d

c
u(t)CDβ,σ

c+ v(t)dt =
∫ d

c
tσ−1v(t)Dβ,σ

d− (t
1−σ)u(t)dt

+

[ m−1

∑
j=0

(
− t1−σ d

dt

)j

Im−β,σ
d− (t1−βu(t))v(m−j−1)(t)

]t=d

t=c
.

Particularly for m = 1 and σ = 1, we have

∫ d

c
u(t)LCDβ

c+v(t)dt =
∫ d

c
v(t)Dβ

d−u(t)dt.

Therefore,

Corollary 2. Suppose u ∈ C[c, d] and v ∈ C1[c, d], then for 0 < γ ≤ 1 and σ = 1,

∫ d

c
u(t) LC

t D
γ
d v(t)dt =

∫ d

c
v(t) cDγ

t u(t)dt. (5)

Formulation of the Solution

Here, we apply the properties or relationship between the fractional integral and
fractional differential operators in Equation (4) to make sense of the solution to problem (2).

Lemma 2. Let η ∈ (0, 1]. Then, the solution to fractional differential Equation (2) is defined as

Q(t) = qc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1Q(s)ds +

λ

ηΓ(β)

∫ t

c
(t− s)β−1ϑ(s, Q(s))ds.

Proof. The application of the integral operator cIβ
t to Equation (2) on both sides gives

cIβ
t

[
LCDβ,γ

η Q(t)
]
= λ cIβ

t [ϑ(t, Q(t))].

That is,

cIβ
t

[
η LC

c D
β
t Q(t) + (1− η) LC

t D
γ
d Q(t)

]
= λ cIβ

t [ϑ(t, Q(t))].

By the linearity of the operator cIβ
t , we have

η cIβ
t

LC
c D

β
t Q(t) + (1− η) cIβ

t
LC
t D

γ
d Q(t) = λ cIβ

t [ϑ(t, Q(t))].

From Equation (4) in Corollary 1 and Equation (3), we get

η[Q(t)− qc] +
1− η

Γ(β)

∫ t

c
(t− s)β−1 LC

s D
γ
d Q(s)ds =

λ

Γ(β)

∫ t

c
(t− s)β−1ϑ(s, Q(s))ds.

By Equation (5) in Corollary 2, we obtain

η[Q(t)− qc] +
1− η

Γ(β)

∫ t

c
Q(s) cDγ

s [(t− s)β−1]ds =
λ

Γ(β)

∫ t

c
(t− s)β−1ϑ(s, Q(s))ds. (6)

The derivative cDγ
s
(
(t− s)β−1) is evaluated as,

cDγ
s
(
(t− s)β−1) = − Γ(β− 1 + 1)

Γ(β− 1− γ + 1)
(t− s)β−γ−1 = − Γ(β)

Γ(β− γ)
(t− s)β−γ−1.
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From Equation (6), one gets

η[Q(t)− qc]−
1− η

Γ(β− γ)

∫ t

c
(t− s)β−γ−1Q(s)ds =

λ

Γ(β)

∫ t

c
(t− s)β−1ϑ(s, Q(s))ds.

Thus, for η ∈ (0, 1], one obtains

Q(t) = qc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1Q(s)ds +

λ

ηΓ(β)

∫ t

c
(t− s)β−1ϑ(s, Q(s))ds.

The following sup-norm on Q defined by

‖Q‖ := sup
c≤t≤d

|Q(t)|,

is useful in the next section.

3. Main Results

The following global Lipschitz condition on the function ϑ(., Q) with respect to the
second variable is important for establishing our main result.

Condition 1. Suppose 0 < Lipϑ < ∞, t ∈ [c, d] and ∀ Q, R ∈ R, we assume

|ϑ(t, Q)− ϑ(t, R)| ≤ Lipϑ|Q− R|. (7)

For convenience, we shall set ϑ(t, 0) = 0 in our computations.

3.1. Well-Posedness

Here, we apply the Banach’s fixed-point theorem to prove the existence and uniqueness
of the solution to our problem (2). We begin by defining the operator

AQ(t) = qc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1Q(s)ds +

λ

ηΓ(β)

∫ t

c
(t− s)β−1ϑ(s, Q(s))ds, (8)

and show that A has a unique fixed point which gives the solution to problem (2).

Lemma 3. Suppose Q is a solution to problem (2) and Condition 1 holds. Then, for 0 < γ < β < 1
and η ∈ (0, 1], we have

‖AQ‖ ≤ qc + c1‖Q‖, (9)

with positive constant

c1 :=
[

1− η

ηΓ(β− γ + 1)
(d− c)β−γ +

λLipϑ

ηΓ(β + 1)
(d− c)β

]
< ∞.

Proof. Taking the absolute value of Equation (8) leads to

|AQ(t)| ≤ qc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1|Q(s)|ds +

λ

ηΓ(β)

∫ t

c
(t− s)β−1|ϑ(s, Q(s))|ds.
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Applying Equation (7) of Condition 1, we have

|AQ(t)| ≤ qc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1|Q(s)|ds +

λLipϑ

ηΓ(β)

∫ t

c
(t− s)β−1|Q(s)|ds

≤ qc +
1− η

ηΓ(β− γ)
‖Q‖

∫ t

c
(t− s)β−γ−1ds +

λLipϑ

ηΓ(β)
‖Q‖

∫ t

c
(t− s)β−1ds

= qc +
1− η

ηΓ(β− γ)
‖Q‖ (t− c)β−γ

β− γ
+

λLipϑ

ηΓ(β)
‖Q‖ (t− c)β

β

= qc +

[
1− η

ηΓ(β− γ + 1)
(t− c)β−γ +

λLipϑ

ηΓ(β + 1)
(t− c)β

]
‖Q‖.

Next, we take the supremum over t ∈ [c, d] to get

‖AQ‖ ≤ qc +

[
1− η

ηΓ(β− γ + 1)
(d− c)β−γ +

λLipϑ

ηΓ(β + 1)
(d− c)β

]
‖Q‖,

and the result is obtained.

Lemma 4. Let Condition 1 hold. Suppose Q1 and Q2 are two solutions of (2); for 0 < γ < β < 1
and η ∈ (0, 1], we have

‖AQ1 −AQ2‖ ≤ c1‖Q1 −Q2‖. (10)

Proof. Proceeding with similar steps as in the proof of Lemma 3, we arrive at the
desired result.

Theorem 3. Suppose Condition 1 holds, 0 < γ < β < 1 and η ∈ (0, 1]. There exists a constant
0 < c1 < 1 such that Equation (2) possesses a unique solution.

Proof. Applying the Banach fixed point theorem gives Q(t) = AQ(t). It follows from
Equation (9) in Lemma 3 that

‖Q‖ = ‖AQ‖ ≤ qc + c1‖Q‖.

This gives ‖Q‖
[
1− c1

]
≤ qc and therefore, ‖Q‖ < ∞ whenever c1 < 1.

Next, suppose for a contradiction that Q1 6= Q2 are solutions of Equation (2). Then,
from Equation (10) of Lemma 4, we have

‖Q1 −Q2‖ = ‖AQ1 −AQ2‖ ≤ c1‖Q1 −Q2‖.

Therefore, ‖Q1 − Q2‖
[
1− c1

]
≤ 0. However, 1− c1 > 0, therefore ‖Q1 − Q2‖ < 0. This

is a contradiction, hence ‖Q1 − Q2‖ = 0. By the contraction principle, the existence and
uniqueness result follows.

3.2. Upper Growth Bound

Agarwal et al. [13] presented the following retarded Gronwall type inequality:

u(t) ≤ f (t) +
n

∑
i=1

∫ ri(t)

ri(t0)
hi(t, s)wi(u(s))ds, t0 ≤ t < t1. (11)

Theorem 4 (Theorem 2.1 of [13]). Assume the hypotheses of (Theorem 2.1 of [13]) hold and u(t)
is a non-negative continuous function on [t0, t1) satisfying (11). Then,

u(t) ≤ X−1
n

[
Xn(qn(t)) +

∫ rn(t)

rn(t0)
max

t0≤τ≤t
hn(τ, s)ds

]
, t0 ≤ t ≤ T1,
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where qn(t) is determined recursively by

q1(t) := f (t0) +
∫ t

t0

| f ′(s)|ds,

qi+1 := X−1
i

[
Xi(qi(t)) +

∫ ri(t)

ri(t0)
max

t0≤τ≤t
hi(τ, s)ds

]
, i = 1, ..., n− 1,

and Xi(τ, τi) :=
∫ τ

τi

dω

wi(ω)
.

Remark 1. For the case n = 2, if

u(t) ≤ f (t) +
∫ r1(t)

r1(t0)
h1(t, s)w1(u(s))ds +

∫ r2(t)

r2(t0)
h2(t, s)w2(u(s))ds,

then

u(t) ≤ X−1
2

[
X2(q2(t)) +

∫ r2(t)

r2(t0)
max

t0≤τ≤t
h2(τ, s)ds

]
,

with q2(t) = X−1
1

[
X1(r1(t)) +

∫ r1(t)

r1(t0)
max

t0≤τ≤t
h1(τ, s)ds

]
.

Here, we take wi(u(s)) = u(s), ri(t0) = t0 = c, and ri(t) = t for i = 1, 2.

Consequently, we present the upper growth bound estimate for the solution.

Theorem 5. Assume Condition 1 holds. Then, ∀ t ∈ [c, d], 0 < c < d, and c2, c3 > 0, we have

|Q(t)| ≤ qc

exp
(
c2(c− t)β−γ + c3(c− t)β

) ,

with c2 = 1−η
ηΓ(β−γ+1) , c3 =

λLipϑ
ηΓ(β+1) , for η ∈ (0, 1], 0 < γ < β < 1.

Proof. We already obtained from Lemma 3 that

|Q(t)| ≤ qc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1|Q(s)|ds +

λLipϑ

ηΓ(β)

∫ t

c
(t− s)β−1|Q(s)|ds.

Let g(t) := |Q(t)|, t ∈ [c, d]; it follows that

g(t) ≤ qc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1g(s)ds +

λLipϑ

ηΓ(β)

∫ t

c
(t− s)β−1g(s)ds. (12)

Applying Theorem 4 to (12), we take wi(ω) = ω for i = 1, 2 and it follows that

X2(τ, τ2) =
∫ τ

τ2

dω

ω
= ln

(
τ

τ2

)
.

If one takes τ2 = 1 for convenience, then X2(τ) = ln τ with the inverse X−1
2 (τ) = eτ .

Similarly, X1(τ) = ln τ has the inverse X−1
1 (τ) = eτ . Moreover, f (t) = qc and f ′(t) = 0,

hence q1(t) = qc. Now, we define the non-negative functions h1, h2 : [c, d]× [c, d] → R+

as follows:

h1(ζ, s) :=
1− η

ηΓ(β− γ)
(ζ − s)β−γ−1,
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and

h2(ζ, s) :=
λLipϑ

ηΓ(β)
(ζ − s)β−1.

Let c ≤ s < ζ; since β− γ− 1 < 0, then h1 is decreasing and continuous, thus

max
c≤τ≤t

h1(ζ, s) =
1− η

ηΓ(β− γ)
(c− s)β−γ−1,

and it follows that

q2(t) = exp
[

ln(qc) +
1− η

ηΓ(β− γ)

∫ t

c
(c− s)β−γ−1ds

]
= exp

[
ln(qc)−

1− η

ηΓ(β− γ)

(c− t)β−γ

β− γ

]
= exp

[
ln(qc)−

1− η

ηΓ(β− γ + 1)
(c− t)β−γ

]
.

In addition, for c ≤ s < ζ, and for all β < 1, h2 is decreasing and continuous, and

max
c≤ζ≤t

h2(ζ, s) =
λLipϑ

ηΓ(β)
(c− s)β−1.

Thus,

g(t) ≤ exp
[

ln(q2(t)) +
λLipϑ

ηΓ(β)

∫ t

c
(c− s)β−1ds

]
= exp

[
ln(qc)−

1− η

ηΓ(β− γ + 1)
(c− t)β−γ −

λLipϑ

ηΓ(β)

(c− t)β

β

]
= qc exp

[
− 1− η

ηΓ(β− γ + 1)
(c− t)β−γ −

λLipϑ

ηΓ(β + 1)
(c− t)β

]
,

and this completes the proof.

3.3. Asymptotic Behaviours

Here, we show that the solution exhibits some asymptotic properties. By the growth
bound in Theorem 5, we have

|Q(t)| ≤ qc exp
[
− 1

η

(
1− η

Γ(β− γ + 1)
(c− t)β−γ +

λLipϑ

Γ(β + 1)
(c− t)β

)]
.

Now, taking the limit as η → 0, we obtain

lim
η→0
|Q(t)| = 0.

Next, taking limit as t→ c+, we get

lim
t→c+

|Q(t)| ≤ qc.

4. Examples

The example below illustrates Theorem 3 as follows: For β = 9
10 , γ = 1

10 , η = 1
2 ,

and the nonlinear Lipschitz continuous function ϑ : [0.01, 0.05] × R → R defined by
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ϑ(t, Q(t)) = sin(Q(t)) having a Lipschitz constant Lipϑ = 1, the Combined Liouville–
Caputo fractional differential equation LCD

9
10 , 1

10
1
2

Q(t) = λ sin(Q(t)), 0.01 < t ≤ 0.05,

Q(0.01) = qc,

has a unique solution provided by

c1 :=
(1− 1

2 )
1
2 η( 9

10 −
1

10 + 1)
(0.04)0.8 +

λ
1
2 η( 9

10 + 1)
(0.04)0.9 < 1,

if and only if c1 = 0.081756 + 0.0551892λ
0.480883 < 1. That is, for all λ such that 0 < λ < 8.00099.

Numerical Comparisons

We present numerical simulations and different plots of the upper growth bound func-

tions qc exp
[
− 1

η

(
1−η

Γ(β−γ+1) (c− t)β−γ +
λLipϑ

η(β+1) (c− t)β

)]
and compare their behaviours for

various values of parameters β, γ, η and λ over different time intervals. See Figures 1–6 below.
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Figure 1. Behaviour of the upper growth bound for different η and λ values: (a) 0.01 ≤ t ≤ 10,
β = 0.2, γ = 0.1, λ = 1; (b) 0.01 ≤ t ≤ 10.
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Figure 2. Behaviour of the upper growth bound for different η and λ values: (a) 0.01 ≤ t ≤ 104,
β = 0.2, γ = 0.1, λ = 1; (b) 0.01 ≤ t ≤ 104.
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Figure 3. Behaviour of the upper growth bound for different η and λ values: (a) 0.01 ≤ t ≤ 1010,
β = 0.2, γ = 0.1, λ = 1; (b) 0.01 ≤ t ≤ 1010.
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Figure 4. Behaviour of the upper growth bound for different η, β and γ values: (a) 0.01 ≤ t ≤
10, λ = 1; (b) 0.01 ≤ t ≤ 10, λ = 1.
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Figure 5. Behaviour of the upper growth bound for different initial points t = c: (a) c ≤ t ≤ 15, λ = 1;
(b) c ≤ t ≤ 15, λ = 1.
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Figure 6. Behaviour of the upper growth bound for different initial points t = c: (a) c ≤ t ≤ 1010, λ =

1; (b) c ≤ t ≤ 1010, λ = 1.

5. Stochastic Combined Fractional Differential Equation

In this section, we study the effect of an external force (a noise term) on the growth
behaviour of Equation (2). Thus, we perturb the combined L–C fractional differential
equation with a multiplicative noise term ẇ(t) known as the generalized derivative of a
Wiener process w(t) (a Gaussian white noise process) and consider the following stochastic
combined L–C fractional differential equation:

LCDβ,γ
η Φ(t) = λϑ(t, Φ(t))ẇ(t), β, γ ∈ (0, 1]& η ∈ [0, 1], (13)

where Φ(c) = ρc is the initial condition, ϑ : [c, d] × R → R is Lipschitz in the second
variable, LCDβ,γ

η is known as the combined Liouville–Caputo fractional derivative operator,
ẇ(t) is the noise term and λ > 0 denotes the level of the noise term. For recent work on
stochastic fractional differential equations, see [14,15] and their references.

Following the formulation of solution in Lemma 2, the solution of Equation (13) is
given by

Φ(t) = ρc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1Φ(s)ds +

λ

ηΓ(β)

∫ t

c
(t− s)β−1ϑ(s, Φ(s))dw(s). (14)

5.1. Well-Posedness of the Solution to Equation (13)

We define the norm of the solution (14) above by

‖Φ‖2
2 := sup

c≤t≤d
E|Φ(t)|2

and define the operator as follows:

LΦ(t) = ρc +
1− η

ηΓ(β− γ)

∫ t

c
(t− s)β−γ−1Φ(s)ds +

λ

ηΓ(β)

∫ t

c
(t− s)β−1ϑ(s, Φ(s))dw(s). (15)

We show that the fixed point of the operator L gives the solution to Equation (13).

Lemma 5. Suppose Φ is a solution to problem (13) and Condition 1 holds. Then, for 0 < γ < β <
1 and η ∈ (0, 1], we have

‖LΦ‖2
2 ≤ 3ρ2

c + c4‖Φ‖2
2,

with positive constant

c4 :=
[

3(1− η)2

η2Γ2(β− γ)[2(β− γ)− 1]
(d− c)2(β−γ) +

3λ2Lip2
ϑ

η2Γ2(β)[2β− 1]
(d− c)2β−1

]
< ∞.
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Proof. Take the second moment of Equation (15) to get

E|LΦ(t)|2 ≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)
E
 ∫ t

c
(t− s)β−γ−1Φ(s)ds

2

+
3λ2

η2Γ2(β)
E
 ∫ t

c
(t− s)β−1ϑ(s, Φ(s))dw(s)

2

.

Applying Holder’s inequality on the first integral and Itô isometry on the second integral,
we obtain

E|LΦ(t)|2 ≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)
E
[( ∫ t

c
(t− s)2(β−γ−1)ds

) 1
2
( ∫ t

c
|Φ(s)|2ds

) 1
2
]2

+
3λ2

η2Γ2(β)

∫ t

c
(t− s)2(β−1)E|ϑ(s, Φ(s))|2ds.

Next, we apply Equation (7) of Lipschitz Condition 1 to arrive at

E|LΦ(t)|2 ≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)

∫ t

c
(t− s)2(β−γ−1)ds

∫ t

c
E|Φ(s)|2ds

+
3λ2Lipϑ

η2Γ2(β)

∫ t

c
(t− s)2(β−1)E|Φ(s)|2ds

≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)

∫ t

c
(t− s)2(β−γ−1)ds‖Φ‖2

2

∫ t

c
1ds

+
3λ2Lipϑ

η2Γ2(β)
‖Φ‖2

2

∫ t

c
(t− s)2(β−1)ds

= 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)

(t− c)2(β−γ)−1

2(β− γ)− 1
‖Φ‖2

2(t− c) +
3λ2Lipϑ

η2Γ2(β)
‖Φ‖2

2
(t− c)2β−1

2β− 1

= 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)

(t− c)2(β−γ)

2(β− γ)
‖Φ‖2

2 +
3λ2Lipϑ

η2Γ2(β)
‖Φ‖2

2
(t− c)2β−1

2β− 1
.

For 0 < γ < β < 1 such that β > 1
2 and β− γ > 1

2 , we take the supremum over t ∈ [c, d] to
arrive at

‖LΦ‖2
2 ≤ 3ρ2

c +

[
3(1− η)2

η2Γ2(β− γ)

(d− c)2(β−γ)

2(β− γ)
+

3λ2Lipϑ

η2Γ2(β)

(d− c)2β−1

2β− 1

]
‖Φ‖2

2,

and the result follows.

Similarly, we obtain the following result:

Lemma 6. Let Condition 1 hold. Suppose Φ and Θ are two solutions of (13); for 0 < γ < β < 1
and η ∈ (0, 1], we have

‖LΦ−LΘ‖2
2 ≤ c4‖Φ−Θ‖2

2.

Applying Lemmas 5 and 6, we obtain the following existence and uniqueness result:

Theorem 6. Suppose Condition 1 holds, 0 < γ < β < 1 and η ∈ (0, 1]. There exists a constant
0 < c4 < 1 such that Equation (13) possesses a unique solution.

5.2. Growth Moment Bound

Here, we state and prove the second moment growth estimate for the solution to
Equation (13):
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Theorem 7. Assume Condition 1 holds. Then, ∀ t ∈ [c, d], 0 < c < d and c5, c6 > 0, we have

E|Φ(t)|2 ≤ 3ρ2
c

exp
(
c5(c− t)2(β−γ)−1 + c6(c− t)2β−1

) ,

with c5 = 3(1−η)2

η2Γ2(β−γ)
(

2(β−γ)−1
) , c6 =

3λ2Lip2
ϑ

η2Γ2(β)(2β−1) , for η ∈ (0, 1], 0 < γ < β < 1.

Proof. Following the proof of Lemma 5, we obtain that

E|Φ(t)|2 ≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)
E
 ∫ t

c
(t− s)β−γ−1Φ(s)ds

2

+
3λ2

η2Γ2(β)
E
 ∫ t

c
(t− s)β−1ϑ(s, Φ(s))dw(s)

2

.

According to Holder’s inequality and Itô isometry on the first and second integrals, respec-
tively, together with Equation (7) of Condition 1, one arrives at

E|Φ(t)|2 ≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)
E
[( ∫ t

c
(t− s)2(β−γ−1)|Φ(s)|2ds

)1/2( ∫ t

c
1ds
)1/2]2

+
3λ2Lip2

ϑ

η2Γ2(β)

∫ t

c
(t− s)2(β−1)E|Φ(s)|2ds

= 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)
(t− c)

∫ t

c
(t− s)2(β−γ−1)E|Φ(s)|2ds

+
3λ2Lip2

ϑ

η2Γ2(β)

∫ t

c
(t− s)2(β−1)E|Φ(s)|2ds

≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)
(d− c)

∫ t

c
(t− s)2(β−γ−1)E|Φ(s)|2ds

+
3λ2Lip2

ϑ

η2Γ2(β)

∫ t

c
(t− s)2(β−1)E|Φ(s)|2ds.

The last line follows since t ∈ [c, d]. Let g(t) := E|Φ(t)|2, t ∈ [c, d]; it follows that

g(t) ≤ 3ρ2
c +

3(1− η)2

η2Γ2(β− γ)
(d− c)

∫ t

c
(t− s)2(β−γ−1)g(s)ds +

3λ2Lip2
ϑ

η2Γ2(β)

∫ t

c
(t− s)2(β−1)g(s)ds. (16)

Next, we apply the retarded Gronwall-type inequality of Theorem 4 on Equation (16)
and follow the proof of Theorem 5. Consequently, the non-negative functions h1, h2 :
[c, d]× [c, d]→ R+ are defined as follows:

h1(ζ, s) :=
3(1− η)2(d− c)

η2Γ2(β− γ)
(ζ − s)2(β−γ−1),

and

h2(ζ, s) :=
3λ2Lip2

ϑ

η2Γ2(β)
(ζ − s)2(β−1).

For c ≤ s < ζ and β− γ− 1 < 0, it follows that h1 is continuous and decreasing and one
obtains

max
c≤τ≤t

h1(ζ, s) =
3(1− η)2(d− c)

η2Γ2(β− γ)
(c− s)2(β−γ−1).
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This gives (for β− γ > 1
2 ),

q2(t) = exp
[

ln(3ρ2
c ) +

3(1− η)2(d− c)
η2Γ2(β− γ)

∫ t

c
(c− s)2(β−γ−1)ds

]
= exp

[
ln(3ρ2

c )−
3(1− η)2(d− c)

η2Γ2(β− γ)

(c− t)2(β−γ)−1

2(β− γ)− 1

]
.

Similarly, for h2, we have that, given c ≤ s < ζ and β < 1, h2 is decreasing, continuous and

max
c≤ζ≤t

h2(ζ, s) =
3λ2Lip2

ϑ

η2Γ2(β)
(c− s)2(β−1).

Then, it follows that (for β > 1
2 and β− γ > 1

2 )

g(t) ≤ exp
[

ln(q2(t)) +
3λ2Lip2

ϑ

η2Γ2(β)

∫ t

c
(c− s)2(β−1)ds

]
= exp

[
ln(3ρ2

c )−
3(1− η)2(d− c)

η2Γ2(β− γ)

(c− t)2(β−γ)−1

2(β− γ)− 1
−

3λ2Lip2
ϑ

η2Γ2(β)

(c− t)2β−1

2β− 1

]
= 3ρ2

c exp
[
− 3(1− η)2(d− c)

η2Γ2(β− γ)

(c− t)2(β−γ)−1

2(β− γ)− 1
−

3λ2Lip2
ϑ

η2Γ2(β)

(c− t)2β−1

2β− 1

]
,

and this proves the result.

Remark 2. The mild solution in Equation (14) also satisfies the same asymptotic properties of
Section 3.3. Since

E|Φ(t)|2 ≤ 3ρ2
c exp

[
− 3

η2

(
(1− η)2(d− c)

Γ2(β− γ)

(c− t)2(β−γ)−1

2(β− γ)− 1
+

λ2Lip2
ϑ

Γ2(β)

(c− t)2β−1

2β− 1

)]
,

then, taking limits as η → 0 and t → c+, we obtain the following: lim
η→0

E|Φ(t)|2 = 0 and

lim
t→c+

E|Φ(t)|2 ≤ 3ρ2
c .

6. Conclusions

The combined Liouville–Caputo fractional derivative operator plays a major role in
describing a more general class of variational problems. We used this new operator to
investigate the behaviour of the solution to a class of combined Liouville–Caputo frac-
tional differential equations. The existence and uniqueness of the solution was established
through Banach’s fixed-point theorem. The solution’s growth bound and asymptotic
behaviours were also established. Moreover, in Figures 1–6, we presented a numerical sim-
ulation of the behaviour of the combined Liouville–Caputo fractional differential equations
via the upper growth bound, with respect to different initial points t = c, different values
β and γ of the fractional orders, different convex combination parameters η, as well as
different values of λ. In general, the solution function Q of problem (2) decayed to zero;
however, the speed of decay was determined by the values of the parameters η, β, γ and
λ. We further investigated the effects of a noise term on the growth of the solution to the
combined fractional differential equation and observed that the presence or introduction
of the noise term does not affect the growth behaviour of the solution to the combined
fractional differential equation. For future work, we will study the dependence of the
solution(s) on the initial condition and will also estimate the lower bounds, etc.
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