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Abstract: In this paper, we study direct and inverse problems for a nonlinear time fractional diffusion
equation. We prove that the direct problem has a unique weak solution and the solution depends
continuously on the coefficient. Then we show that the inverse problem has a quasi-solution. The
direct problem is solved by the method of lines using an operator approach. A quasi-Newton
optimization method is used for the numerical solution to the inverse problem. The Tikhonov
regularization is used to overcome the ill-posedness of the inverse problem. Numerical examples
with noise-free and noisy data illustrate the applicability and accuracy of the proposed method to
some extent.
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1. Introduction

In recent years, different approaches have been provided for the modeling of diffusion
in fractal geometry [1–10]. Those approaches are mainly based on fractional differential
equations. In this article we also adopted a similar approach. For the sake of complete-
ness, we give a brief background. One-dimensional mass transport due to diffusion is
formulated by

∂u
∂t

= − ∂

∂x
(Ju), (1)

where Ju is the diffusive mass flux. For Fickian diffusion, Ju is defined by the following
equation:

Ju = −D(m) ∂u
∂x

, (2)

where D(m) is the diffusion coefficient. Defining the new non-dimensional variables X = x
x0

,
τ = t

t0
, U = u

u0
, where x0, t0 and u0 are the characteristic scales, the Equations (1) and (2)

can be given in the non-dimensional form as follows:

1
t0

∂U
∂τ

=
1
x2

0

∂

∂X

(
D(m) ∂U

∂X

)
. (3)

If x0 = t0, then the Equations (1) and (2) preserve their original form. However, many
experiments with fractal objects show that this correlation does not hold. In this case, it
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is proved that the-mean square displacement of a random walker < x2 >∼ t
2

2+θ , where
θ is the index of the anomalous diffusion. Thus, in our case we have the correlation

< x2
0 >∼ t

2
2+θ
0 and it is clear that there are many expressions for the mass flux that

correspond to that correlation. For example, the diffusion coefficient may be defined as
D(m)(x) = D f x−θ , where the constant D f is the effective diffusion coefficient. Therefore,
we obtain the following diffusion equation:

∂u
∂t

=
∂

∂x

(
D f x−θ ∂u

∂x

)
. (4)

As another example, the mass flux may be taken proportional to the fractional derivative of
concentration with respect to spatial coordinate of the order θ + 1. In this case, the obtained
mass flux is doubtful since the order of the corresponding diffusion equation is greater
than 2. For this reason, the following expression for the mass flux is considered:

Ju = D f ∂
1−β
t
(
∂

γ
x u
)
, β > 0, γ < 1, (5)

where β and γ are the order of the temporal and spatial fractional derivatives, respectively.
In the expression (5), ∂

β
t and ∂

γ
x are spatial and temporal Caputo fractional derivatives and

are defined as the following:

∂
γ
x u(x, t) =

∂γu(x, t)
∂xγ

=
1

Γ(1− γ)

∫ x

0
(x− ξ)−γ ∂u(ξ, t)

∂ξ
dξ,

∂
β
t u(x, t) =

∂βu(x, t)
∂tβ

=
1

Γ(1− β)

∫ t

0
(t− ξ)−β ∂u(x, ξ)

∂ξ
dξ,

where Γ(·) is the Gamma function. We also note that there is another frequently used frac-
tional derivative, so called the Riemann-Liouville fractional derivative, which is defined by

R∂
β
t u(x, t) =

1
Γ(1− β)

∂

∂t

∫ t

0
(t− ξ)−βu(x, ξ)dξ.

These two fractional derivatives agree when the initial condition is zero. Kilbas et al. [11]
and Podlubny [12] can be referred for further properties of the Caputo and Riemann-
Liouville fractional derivatives. Since the initial condition is zero in our problem, any result
found in the literature for one of these holds for the other one. Substituting the temporal
and spatial fractional Caputo derivatives in the expression (5), we obtain:

∂u
∂t

=
∂

∂x

(
D f ∂

1−β
t

∂γu
∂xγ

)
, (6)

where γ and β are coupled in such a way that < x2
0 >∼ t

2
2+θ
0 is satisfied. It can also be

shown that the correlation t0 = x
1+γ

β

0 holds. We can then conclude that θ + 2 = 1+γ
β .

By applying the fractional integral operator to both sides of (6), we obtain the following
useful form:

∂βu
∂tβ

=
∂

∂x

(
D f

∂γu
∂xγ

)
. (7)

The Equation (7) can be found in the literature on the diffusion phenomena in the chaotic
migration of the particles and anomalous contaminant diffusion from a fracture into a
porous rock matrix with an alteration zone bordering the fracture, see [13–17] and some of
the references cited therein for further reading. In addition, in [7,18], the case where γ = 1
is considered under the assumption the porous medium has a comb-like structure of fractal
geometry. We refer the readers to [15] for more details about the Equation (7).
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When a porous medium equation is considered, the pressure is taken to be a monotone
function of the concentration u. In this case, by using the corresponding Darcy’s Law and
the continuity equation, the following nonlinear equation is obtained:

ut +∇ · (d(u)∇u) = 0. (8)

The Equation (8) is also known as the Richards’ equation in hydrology [19].
For the convenience of the reader, we present the main steps of the derivation of the

governing equation by following [20]. If the fluid particles are trapped in some region for
several periods of time s1, · · · , sn, the continuity equation becomes

ut = −
n

∑
i=1

wi∇ · q(x, t− si), (9)

where wi are some weights. If we consider the case with wi = w(si)∆si and ∆si = si − si−1
for some weight density w = w(s), and calculate the limit of ut as n→ ∞, the Equality (9)
becomes

ut = −
∫ t

0
w(t− s)∇ · q(x, s) ds. (10)

The Equation (10) accounts for the fluid particles that can be trapped for any period of time.
The function w(s) represents the amount of flux of the particles that waits for the time s.
Using the choice for w used in [20] , we conclude the following:

ut = −
1

Γ(β)

∂

∂t

∫ t

0
(t− s)β−1∇ · q(x, s) ds = −R∂

1−β
t ∇ · q. (11)

If we apply the Riemann-Liouville fractional operator I1−β
t to both sides of (11) and take

into account the composition formula for the functions with vanishing initial conditions,
we obtain

∂β

∂tβ
u = ∇ · (d(u)∇u). (12)

The Equation (12) is also called the generalized Richards equation [21] and can be found
in many papers. In [21], the Equation (12) is solved numerically and the solution to the
data on horizontal water transport is fitted. The numerical solution is also studied by
some authors, see [22–25]. In [26], magnetic resonance imaging was employed to study
water ingress in fine zeolite powders compacted by high pressure. The measured moisture
profiles indicate sub-diffusive behavior with a spatio-temporal scaling variable η = x

tγ/2 .
In [26], the Equation (12) is used to analyze the data, and an expression that yields the
moisture dependence of the generalized diffusivity is derived and applied to their measured
profiles. In [27], the authors use a time-fractional diffusion equation for the modeling of the
probability density function of displacements. In [28], a method of approximating equations
with the Erdelyi-Kober fractional operator which arise in mathematical descriptions of
anomalous diffusion has been introduced. A theorem is proven on the exact form of the
approximating series. The authors also provide an illustration obtained by the fractional
porous-medium equation that is used to model moisture diffusion in building materials.

The authors in [29] look for self-similar solutions for the Equation (12). The resulting
similarity equations are of nonlinear integro-differential type. They approximate these
equations by an expansion of the integral operator and look for solutions in a power
function form. Several applications of the Equation (12) are presented in [30]. In addition
to what is already mentioned above, there has been a growing interest in inverse problems
with fractional derivatives. These problems are physically and practically very important.
Interested readers can be referred to [31–43] for a deeper understanding of the topic.

In [30], the authors proposed a generalization of Richards’ equation to estimate super-
diffusion and sub-diffusion by means of the power-law ruler. Resulting solutions to the
fractional Richards’ equation display anomalous non-Boltzmann scaling as a result of
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fractal medium of heterogeneous media. In [28], a fractional porous-medium equation
to model moisture diffusion in building materials is considered. To achieve this goal,
the author improved a method of approximating equations by means of Erdélyi-Kober
fractional operator which is observed in equations describing anomalous diffusion. In [26],
a time-fractional diffusion equation model of anomalous diffusion is adopted to analyze
the data of moisture profiles. The authors consider a nonlinear diffusion equation with a
time-fractional derivative which is a generalization of the porous medium equation and
they find self-similar solutions to that problem in [29].

In this paper, we study an inverse coefficient problem for the nonlinear time-fractional
diffusion Equation (12). The difference of our study from the studies in the references [31–43]
is that the unknown of the inverse problem is non-linear, i.e., it depends on the solution
u. This is a relatively new topic and there are only a few works, see [44–46]. In [44],
the unknown coefficient depends on the gradient of the solution and belongs to a set of
admissible coefficients. The authors prove that the direct problem has a unique solution
and set up the continuous dependence of the solution of the corresponding direct problem
on the unknown coefficient. Then, the existence of a quasi-solution of the inverse problem
is shown in the appropriate class of admissible coefficients.

In [44], the numerical solutions of the direct and the inverse problems have been
introduced and in [45] an application of the governing equation in the materials sciences
has been mentioned. An inverse problem for the nonlinear time-fractional diffusion (12)
is studied in [46]. In this paper, the authors prove that the direct problem has a unique
solution. The existence of a quasi-solution is also proved. However, neither the uniqueness
of the solution is proved nor the direct and the inverse problems are solved numerically.
Therefore, our study can be considered as the continuation of the series of work in [46] and
the works mentioned above on fractional inverse problems.

It is also worth mentioning that some inverse problems are studied for the case β = 1
in (12). For example, in [47], the determination of the unknown coefficient d(u) from
over-specified data measured at the boundary has been studied. The inverse problem is
reformulated as an auxiliary inverse problem and it is shown that this auxiliary problem
has at least one solution in a specified admissible class. Finally, the auxiliary problem
is approximated by an associated identification problem and some numerical results are
presented. In [48], an operator approach is improved by an input-output mapping and it is
shown that the mapping is isotonic. This result is used to derive a uniqueness result for the
inverse problem.

This paper is organized as follows: In Section 2 we formulate the direct and the inverse
problems. Existence and uniqueness for the direct and the inverse problems are discussed
in Section 3. The numerical solutions of the direct and the inverse problems are studied
in Section 4 and Section 5, respectively. The conclusion and the potential directions of
improvement on the problem are presented in Section 6.

2. Formulation of the Direct and the Inverse Problems

In this section we formulate the direct and the inverse problems. First, we consider
the following problem:

∂βu
∂tβ = ∇ · (d(u)∇u) + f (x, y, t), (x, y, t) ∈ ΓT ,
u(x, y, t) = 0, (x, y, t) ∈ Γ3T ∪ Γ4T ,
−d(u)uy(x, y, t) = g1(x, t), (x, y, t) ∈ Γ1T ,
−d(u)ux(x, y, t) = g2(y, t), (x, y, t) ∈ Γ2T ,
u(x, y, 0) = 0, (x, y) ∈ Ω̄,

(13)

where β is the order of the Caputo fractional time derivative, Ω := (0, 1)× (0, 1), ΓT :=
Ω × (0, T), ΓiT := Γi × (0, T), for i = 1, 2, 3, 4 and T > 0 is the end time. We assume
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that Ω is a bounded simply connected domain with a piece-wise smooth boundary ∂Ω =
Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 with Γi ∩ Γj = ∅, i 6= j. We define Γi, i = 1, 2, 3, 4 as follows:

Γ1 := (0, 1)× {1}, Γ2 := {1} × (0, 1),

Γ3 := (0, 1)× {0}, Γ4 := {0} × (0, 1).

The direct problem consists of determining the function u(x, y, t) from the problem (13)
for the given inputs β, d(u), f (x, y, t), g1(x, t) and g2(y, t). We solve the direct problem (13)
in Section 4 by converting the equation in (13) into a fractional system using the method
of lines. Next, we define the class of admissible coefficients and the weak solution of the
problem (13). We note that, throughout the paper, ‖ · ‖ and

〈
,
〉

denote the usual L2(Ω)
norm and inner product, respectively, ‖ · ‖X denotes the norm in a Hilbert space X. C(I)
denotes the set of continuous functions defined on I.

Definition 1. Let I := [0, ∞). A set D satisfying the following conditions is called the class of
admissible coefficients for the problem (13):

d ∈ C(I), c0 ≤ d(s) ≤ c1, ∀ s ∈ I, (14)(
d(u1)∇u1 − d(u2)∇u2

)
· ∇(u1 − u2) ≥ c2||∇(u1 − u2)||2, ∀ u1, u2 ∈ H1

0(Ω), (15)

where c0, c1, c2 are positive constants.

Definition 2. A weak solution for the problem (13) is a function u ∈ Sβ(ΓT) := L2(0, T; H1
0(Ω)

)
∩

Wβ
2
(
0, T; L2(Ω)

)
such that the integral identity

∫
Ω

∂βu
∂tβ

v dx dy +
∫
Ω

d(u)∇u · ∇v dx dy

=
∫
Ω

f v dx dy +
∫

Γ3

g1 v dx +
∫

Γ4

g2 v dy,
(16)

holds for almost every t ∈ [0, T] and for each v ∈ Sβ(ΓT), where

Wβ
2 (0, T) :=

{
u ∈ L2[0, T] :

∂βu
∂tβ
∈ L2[0, T] and u(0) = 0

}
is the fractional Sobolev space of order β. We note that Sβ(ΓT) is a Banach space with the norm:

‖u‖Sβ(ΓT)
=

(
‖u‖2

Wβ
2 (0,T;L2(Ω))

+ ‖u‖2
L2(0,T;H1

0 (Ω))

) 1
2

.

We consider u(x, y, t) as a mapping from t ∈ (0, T) to L2(Ω) and write as u(t) = u(·, ·, t).

A weak solution of the problem (13) can also be defined as a solution of the following
abstract operator equation

Lu + Au = F, (17)

where Lu :=
〈

L̂u, v
〉
, L̂u := ∂βu

∂tβ , L̂ : D(L̂) ⊂ V → V∗ with the domain D(L̂) =
{

u ∈ V :

∂βu
∂tβ ∈ V∗

}
, V := L2(0, T; H1

0(Ω)
)
, the nonlinear operator A : V → V∗ is defined by

〈
Au, v

〉
:=
∫
Ω

∂βu
∂tβ

v dx dy +
∫
Ω

d(u)∇u · ∇v dx dy, (18)
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and F on V is defined by

〈
F, v
〉

:=
∫
Ω

f v dx dy +
∫

Γ3

g1 v dx +
∫

Γ4

g2 v dy. (19)

The inverse problem here consists of determining the pair of functions {u(x, y, t), d(u)}
from the problem (13) by means of the additional data u(x, y, t) = ĝ1(x, t), (x, y, t) ∈ Γ1T
and u(x, y, t) = ĝ2(y, t), (x, y, t) ∈ Γ2T . We solve the inverse problem by minimizing
the cost functional defined by (22). For the consistency of the additional data with the
data of (13) on Γ1T , it is assumed that −d(ĝ1(x, t))(ĝ1)y(x, y, t) = g1(x, t) on Γ1T and
−d(ĝ2(x, t))(ĝ2)y(x, y, t) = g1(x, t) on Γ2T .

We denote the solution of the direct problem (13) for a given function d ∈ D by
u(x, y, t; d). If the function u(x, y, t; d) also satisfies the additional data above, it is called a
strict solution of the inverse problem. Now, we reformulate the inverse problem. For this
purpose, we define the input-output map Φ : L2(ΓT)→ L2(Γ3T)× L2(Γ4T) as

Φ(d) := u(x, y, t; d)|Γ3T×Γ4T :=
(

u(x, y, t; d)|Γ3T , u(x, y, t; d)|Γ4T

)
. (20)

Then, the inverse problem is defined as a solution of the following operator equation:

Φ(d) = g, g = (ĝ1(x, t), ĝ2(y, t)) ∈ L2(Γ3T)× L2(Γ4T). (21)

However, due to the measurement errors in practice, the exact equality in (21) is usually
not achieved. Hence, one needs to introduce the auxiliary (error) functional:

I(d) :=
∫ T

0

∫
Γ3

∣∣∣∣u(x, y, t; d)− ĝ1(x, t)
∣∣∣∣2 dx dt +

∫ T

0

∫
Γ4

∣∣∣∣u(x, y, t; d)− ĝ2(y, t)
∣∣∣∣2 dy dt, (22)

and consider the following minimization problem:

I(d̂) = min
d∈D

I(d). (23)

A solution of the minimization problem (23) is called a quasi-solution (or approximate
solution) of the inverse problem. Evidently, if I(d̂) = 0, then the quasi-solution d̂ is also a
strict solution of the inverse problem.

3. Analysis of the Direct and the Inverse Problems

In this section, we analyse both the direct and the inverse problems. The theoretical
aspect of the direct problem (13) is studied in [46]. In this study, the authors prove that
the direct problem (13) is well-posed in the sense of Hadamard. For the sake of the reader,
we provide some relevant results from [46]. The following theorems state that the direct
problem (13) has a unique weak solution that depends continuously on the coefficient d(u).
We refer the readers to [46] for detailed proofs.

Theorem 1. Let d ∈ D. Then, the direct problem (13) has a unique weak solution u ∈ Sβ(ΓT).
Moreover, for almost every t ∈ [0, T] there exist some constants c, C > 0 such that

∂β‖u‖2

∂tβ
+ c ‖u‖2

H1
0 (Ω)

≤ C
[
‖ f ‖2 + ‖g1‖2

L2(Γ1)
+ ‖g2‖2

L2(Γ2)

]
.

Theorem 2. Suppose that a sequence of coefficients {dm} ⊂ D converges pointwise in [0, ∞) to
a function d ∈ D. Then, the sequence of solutions um := u(x, y, t; dm) converges to the solution
u := u(x, y, t; d) ∈ Sβ(ΓT), where u := u(x, y, t; d) denotes the solution of the direct problem (13)
for a given coefficient d ∈ D.
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Next, we prove a theorem for the existence of the solution to the inverse problem. There
are two methods in the literature to prove the existence of the solution of inverse problems.
The first method is called the monotonicity method, which is based on the continuity
and the monotonicity of the input-output mapping. The second method is called quasi-
solution method, which is based on minimizing an error functional between the output
data and the additional data. We adopt the quasi-solution approach to the inverse problem
under consideration. For this purpose, we show that the cost functional defined by (22) is
continuous and we construct a compact subset of the class of the admissible coefficients.

Theorem 3. Assume that a sequence of coefficients {dm} ⊂ D converges pointwise in [0, ∞) to a

function d ∈ D. Then,
∣∣∣∣I(dm)− I(d)

∣∣∣∣→ 0 as n→ ∞.

Proof. Let {dm} ⊂ D be a sequence of coefficients that converges pointwise in [0, ∞) to a
function d ∈ D, um := u(x, y, t; dm) and u := u(x, y, t; d). Then, we have:∣∣∣∣I(dm)− I(d)

∣∣∣∣ = ∣∣∣∣ ∫ T

0

∫
Γ3

∣∣um − ĝ1(x, t)
∣∣2 dx dt−

∫ T

0

∫
Γ3

∣∣u− ĝ1(x, t)
∣∣2 dx dt

+
∫ T

0

∫
Γ4

∣∣um − ĝ2(y, t)
∣∣2 dy dt−

∫ T

0

∫
Γ4

∣∣u− ĝ2(y, t)
∣∣2 dy dt

∣∣∣∣. (24)

For the first two terms in (24), we have:

∫ T

0

∫
Γ3

∣∣∣∣um − ĝ1(x, t)
∣∣∣∣2 dx dt−

∫ T

0

∫
Γ3

∣∣∣∣u− ĝ1(x, t)
∣∣∣∣2 dx dt

=

∣∣∣∣∥∥∥∥um − ĝ1(x, t)
∥∥∥∥2

L2(Γ3T)

−
∥∥∥∥u− ĝ1(x, t)

∥∥∥∥2

L2(Γ3T)

∣∣∣∣
≤
∥∥∥∥um − u

∥∥∥∥
L2(Γ3T)

×
(∥∥∥∥um − ĝ1(x, t)

∥∥∥∥
L2(Γ3T)

+

∥∥∥∥u− ĝ1(x, t)
∥∥∥∥

L2(Γ3T)

)
≤
∥∥∥∥um − u

∥∥∥∥
L2(ΓT)

×
(∥∥∥∥u− ĝ1(x, t)

∥∥∥∥
L2(Γ3T)

+

∥∥∥∥u− ĝ1(x, t)
∥∥∥∥

L2(Γ3T)

)
.

(25)

By using the fact that
∥∥u
∥∥

L2(0,T;H1
0 (Ω)) ≤ K

∥∥u
∥∥

Sβ(ΓT)
for some K > 0 (see [49] for

details), we conclude that the following holds for the first term on the right hand side
of (25): ∥∥∥∥um − u

∥∥∥∥
L2(ΓT)

≤
∥∥∥∥um − u

∥∥∥∥
L2(0,T;H1

0 (Ω))
≤ K

∥∥um − u
∥∥

Sβ(ΓT)
. (26)

From (26) and Theorem 2, we conclude that the first two terms in (24) goes to zero as
n→ ∞. Similarly, we can prove that the last two terms in (24) tend to zero as n→ ∞. This
completes the proof.

The conditions (14) and (15) arise in the solvability of the direct problem (13) and can
be found in some papers, for example see the condition H3 in [50]. In virtue of Theorem 3,
it is natural to construct a compact set of admissible coefficients in C(I). For this reason,
in addition to the assumptions (14) and (15), we assume that there is a subset Dc of D
which is equicontinuous, i.e., Dc ⊂ D and for every ε > 0 there exists a δ > 0 such that if
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d ∈ Dc, s1, s2 ∈ I and |s1 − s2| < δ, then |d(s1)− d(s2)| < ε. By following Theorem 3 in [51]
it can be proved that Dc is compact. Then, we obtain the following existence theorem.

Theorem 4. The inverse problem has at least one quasi-solution in the set of admissible coeffi-
cients Dc.

Proof. The Weierstrass theorem and Theorem 3 guarantees the existence of the solution to
the inverse problem is proved.

The following theorem shows that the input-output operator defined by (20) is a
compact operator.

Theorem 5. Let the conditions (14) and (15) hold. Then, the input-output operator defined by (20)
is a compact operator [46].

Since nonlinear equations with compact operators are ill-posed [52], the inverse prob-
lem under consideration is also ill-posed.

The following example shows that there exists a sequence {dn} such that u(x, y, t; dn), (x, y, t)
∈ Γ1T and u(x, y, t; dn), (x, y, t) ∈ Γ2T converges to zero as n→ ∞, but dn → ∞ as n→ ∞.

Example 1. For dn(u) = n2, β = 1/2 and fn(x, t) = 8x3y2t3/2

3
√

πn5 − 2xt2

n3 (3y2 + x2), the inverse
problem (13) becomes

∂βu
∂tβ = (n2ux)x + (n2uy)y +

8x3y2t3/2

3
√

πn5 − 2xt2

n3 (3y2 + x2), (x, y, t) ∈ ΓT ,
u(x, y, t) = 0, (x, y, t) ∈ Γ3T ∪ ∈ Γ4T ,
−n2uy(x, y, t) = − 2

n3 x3t2, (x, y, t) ∈ Γ1T ,
−n2ux(x, y, t) = − 3

n3 y2t2, (x, y, t) ∈ Γ2T ,
u(x, y, 0) = 0, (x, y) ∈ Ω̄.

(27)

It can easily be verified that the function un(x, y, t; dn) = x3y2

n5 t2 is the solution of the
corresponding direct problem. Obviously, un(x, 1, t; dn) and un(1, y, t; dn) converge to zero
as n→ ∞, but dn(u)→ ∞ as n→ ∞.

4. Numerical Solution of the Direct Problem

In this section we introduce the methodology used for solving the direct problem
numerically. The main idea is to convert the fractional partial differential equation into a
system of fractional ordinary differential equations using the method of lines and vector-
ization and then solve the resulting system of fractional ordinary differential equations.
In addition to the classical method of lines, we adopt the operator approach to approximate
derivatives, which reduces computations and memory demand of the algorithm. We first
illustrate the methodology over a one-dimensional heat equation. For this purpose, we
consider the following one-dimensional problem:

∂u
∂t = k ∂2u

∂x2 , x ∈ (0, 1), t ∈ (0, 1),
u(x, 0) = h(x), x ∈ (0, 1),
u(0, t) = f (t), u(1, t) = g(t), t ∈ (0, 1).

For a given positive integer M, let xi = i∆x for i = 0, 1, 2, · · · , M with ∆x = 1/M.
Additionally, let ui(t) denote the approximation of the solution at the node (xi, t) for
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i = 0, 1, 2, · · · , M, where u0(t) = f (t) and uM(t) = g(t). We approximate the given
equation by the following system of ordinary differential equations for ui’s:{

dui
dt = k ui+1−2ui+ui−1

∆x2 , t ∈ (0, 1), i = 1, · · · , M− 1,
ui(0) = h(xi), i = 1, · · · , M− 1.

(28)

Given the vector of approximate solutions at each node without boundaries, [ui] =
[u1, u2, · · · , uM−1], we define the left and right shift operators as

LS([ui]) = [ui+1] and RS([ui]) = [ui−1], i = 0, 1, 2, · · · , M− 1. (29)

Then, the system of ordinary differential equations given in (28) can be written as follows:[
dui
dt

]
=

LS([ui])− 2[ui] + RS([ui])

∆x2 , (30)

with
[

dui
dt

]
=
[

du1
dt , du2

dt , · · · , duM−1
dt

]
being the vector of time derivatives at the discretized

nodes. To illustrate how we generalize the shift-operator approach to higher dimensional
partial differential equations, we consider the following two-dimensional problem:

∂u
∂t = ∂2u

∂x2 +
∂2u
∂y2 + f (x, y, t), (x, y, t) ∈ ΓT ,

u(x, y, 0) = h(x, y), (x, y) ∈ Ω,
u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, 1).

(31)

Let xi = i∆x, i = 0, · · · , M and yj = j∆y, j = 0, 1, 2, · · · , N with ∆x = 1/M and
∆y = 1/N. Additionally, let uij(t) denote the solution at point (xi, yj) at a time t ∈ (0, 1),
where u0j = g(0, yj, t), uMj = g(1, yj, t), ui0 = g(xi, 0, t) and uiN = g(xi, 1, t). Then,
the centered difference approximation of the time derivative at point (xi, yj) will be

duij

dt
=

ui+1j − 2uij + ui−1j

∆x2 +
uij+1 − 2uij + uij−1

∆y2 + f (xi, yj, t),

with i = 1, · · · , M − 1 and j = 1, · · · , N − 1. This approximation can be vectorized by
defining the solution matrix at the interior points [uij] = u(xi, yj) with i = 1, · · · , M− 1
and j = 1, · · · , N − 1. We define the left and right shift operators on the matrix [uij] of
solution approximations at the interior points as follows:

LS([uij]) = [ui+1j] and RS([uij]) = [ui−1j],

with i = 1, · · · , M− 1 and j = 1, · · · , N − 1. Then the matrices of the centered difference
approximations to the first order derivatives can be expressed as follows:

[uxij] =
LS([uij])− RS([uij)]

2∆x
, (32)

[uyij] =
LS([uij]

′)− RS([uij]
′)

2∆y
, (33)

where [aij]
′ denotes the transpose of the matrix [aij]. The matrices of the centered difference

approximations to the second order derivatives, [uxxij], [uyyij], and [uxyij] can be obtained
by applying LS and RS operators to the matrices of the first order derivative approximations
given in (32) and (33). Then, (31) can be expressed in matrix form as follows:[ duij

dt

]
= [uxxij] + [uyyij] + [ f (xi, yj, t)], (34)

with initial condition matrix [uij(0)] = [h(xi, yj)] of size M− 1× N − 1.
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Next, we consider the following time-fractional problem:
∂βu
∂tβ = f (x, y, t, u, ux, uy, uxx, uyy, uxy), (x, y, t) ∈ ΓT ,
u(x, y, 0) = h(x, y) (x, y) ∈ Ω,
u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, 1).

(35)

The vectorized method of lines approach described in examples above results in the
following difference approximation for the equation in (35):[

∂βuij

∂tβ

]
= f ([xij], [yij], t, [uij], [uxij], [uyij], [uxxij], [uyyij], [uxyij])], (36)

with [uij(0)] = [h(xi, yj)] [xij] = [xi]1×M−1 ⊗ [1]N−1×1 and [yij] = [yj]N−1×1 ⊗ [1]M−1×1,
where⊗ denotes the Kronecker matrix product. We solve this system of nonlinear fractional
ordinary differential equations using a Matlab implementation of the Adam-Bashfort-
Moulton(ABM) type predictor-corrector method given in [53]. Detailed convergence and
stability analysis are considered both in [54,55]. In [54], it is concluded that if the solution
under consideration is sufficiently smooth, the method has uniform convergence of order
h2 for β > 1, and of order h1+β for β < 1, respectively. It is further shown by numerical
examples that, these bounds are strict and cannot be improved.

The ABM is a Predict-Evaluate-Correct-Evaluate (PECE)-type method. That is, for the
approximation at the time nodes tk, and corresponding approximations, yj

∼= y(tk) at each
kth step, there are two approximations computed for the next node, namely, predictor,
yp(tk+1), and using the predictor, the corrector approximation yc(tk+1) is obtained and
used in the calculation. The approximation error is obtained by finding the difference
of predictor and corrector approximations. There are two main advantages of using a
PECE-type method compared to the classical equivalent-order explicit methods. The first
benefit of using an algorithm of type PECE is the high accuracy and stability, see [55–58].
For fractional ordinary differential equations, it has been shown that the stability and
accuracy remains high compared to equivalent-order numerical methods, see [53–55].
The second advantage of using a PECE-type numerical algorithm is that these methods use
variable time steps that reduce the computational cost of the approximation. The method
can control the time steps by using the difference between the corrector and the predictor
approximations. When the difference is smaller than the desired level of accuracy with
the current time step, this can be used as an indication that the solver is in a non-stiff area,
and consequently time steps are increased in an adaptive manner.

The idea of combining the method of lines approach to reduce the given fractional
partial differential equation to a system of fractional ordinary differential equations and
using shift operators in the evaluation of the right-hand side of the PDE can prove to be
useful in terms of memory and computation compared to similar operator approaches,
such as that of Podlubny’s intuitive matrix operator approach, see [59,60], depending on
the problem under consideration. In terms of memory, the method of lines approach uses
matrices of size M× N. Whereas in Podlubny’s Matrix Operator approach, the matrices
under consideration are of size M × N × K where K is the number of mesh points in t
direction used in the calculation. So, the method of lines approach is able to improve the
memory demand of the calculations. However, this improvement in memory demand
comes at the cost of calculation of the right-hand side function at each time step. Simi-
larly, Podlubny’s matrix operator approach may also face the computational challenges
depending on the complexity of the fractional partial differential equation. This is because
the method requires solving nonlinear algebraic matrix equation of very high dimensions.
Hence, the very nature of the question under consideration is the sole factor in choosing
the numerical method to apply.

The first series of the numerical simulations is related to numerical solution of the direct
problem. For this purpose, the function u(x, y, t) = tx2y2 is taken to be the analytic solution
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of the equation ∂βu
∂tβ = (d(u)ux)x + (d(u)uy)y + f (x, y, t), with the function d(u) = 1 + u

and appropriately chosen source function f (x, y, t). The boundary conditions are found
from the trace of the function u(x, y, t) = tx2y2 on Ω. First, we check the difference
between the numerical solution unum and the exact solution uexact = u(x, y, t) = tx2y2.
The absolute error between unum and uexact is defined by ‖unum − uexact‖∞ , where
‖ · ‖∞ denotes the supremum norm, which is taken over all x, y, t where x ∈ [0, 1], y ∈ [0, 1]
and t ∈ [0, 0.3]. The software is simulated for different values of the system parameters
to evaluate their effect on the absolute error and the simulation time. The time step is
taken ∆t = 10−5. We note that a decay in the time step may lead to and increase in the
simulation time and has almost no effect on the computations. However, there is a subtle
relation between the number of time nodes and x-y nodes. Increasing ∆t = 10−5 when
t ∈ [0, 0.3] affects the stability of the simulation when higher number of x-y nodes is used.
We simulated the solution for M = N = 5, M = N = 10 and M = N = 20 for β = 0.6 and
β = 0.7. We show the results with computation times in Tables 1 and 2. We observe that
M = N = 5 serves the best time and the least absolute error. In addition, it appears that as
β increases towards 1, the absolute error decreases. Hence, the time step and number of
discretization nodes for the remaining simulations are chosen to be seemingly the optimal
values of 10−5 and M = N = 5.

Table 1. Absolute error between unum and uexact for β = 0.7.

M (=N) Absolute Error CPU Time (seconds)

20 0.2347 17.22

10 0.0847 8.49

5 0.021 6.14

Table 2. Absolute error between unum and uexact for β = 0.6.

M (=N) Absolute Error CPU Time (seconds)

20 0.3135 23.139

10 0.0949 8.397

5 0.0232 6.12

Next, we consider the ill-posedness of the inverse problem. A problem is called to be
well-posed in the Hadamard sense if the solution exists, unique and depends continuously
on the input data. Failure to comply any of the mentioned properties makes the given
problem ill-posed. To show that the inverse problem under consideration is ill-posed, we
simulate the direct problem for a1(u) = 1 + u and a2(u) = 3 + u. The functions u1(x, y, 1)
and u2(x, y, 1) are found through the numerical solution. Figure 1 shows that the graph of
the difference u1(x, y, 1)− u2(x, y, 1) where we see the solutions on both Γ3T and Γ4T are
very close to each other with an absolute difference less than 0.02.
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Figure 1. Ill-posedness of the inverse problem: the graph of the difference between the numerical
solutions corresponding to a1(u) = u + 1 and a2(u) = u + 3.

5. Numerical Solution of the Inverse Problem

We assume that for a fixed β, the following problem has the solution ũ(x, y, t) for the
specific functions d̃, f (x, y, t), g1(x, t) and g2(y, t) . In the inverse problem, we aim to try to
find the function d̃ when only ũ(x, 1, t) and ũ(1, y, t) are known about the solution ũ while
the boundary conditions and f (x, y, t) are known and fixed. The boundaries are the same
as in the Equation (13).

∂βu
∂tβ = ∇ · (d(u)∇u) + f (x, y, t), (x, y, t) ∈ ΓT ,
u(x, y, t) = 0, (x, y, t) ∈ Γ3T ∪ ∈ Γ4T ,
−d(u)uy(x, y, t) = g1(x, t), (x, y, t) ∈ Γ1T ,
−d(u)ux(x, y, t) = g2(y, t), (x, y, t) ∈ Γ2T ,
u(x, y, 0) = 0, (x, y) ∈ Ω̄.

(37)

In our experiments, first we fix our solution ũ(x, y, t) as tx2y2 and the specific function
d(u) beforehand. By using them we find the exact values of g1(x, t), g2(x, t), whereas
f (x, y, t) is found numerically. Now g1(x, t), g2(x, t) and f (x, y, t) at hand, we take
ũ(1, y, t) = ty2 and ũ(x, 1, t) = tx2 as additional conditions for the inverse problem and we
try to find d(u). To do this, we set up the following error functional for each function d as
in (23):

I(d) :=
∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(x, 1, t)
∣∣∣∣2 dx dt +

∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(1, y, t)
∣∣∣∣2 dy dt

where u(x, y, t; d) denotes the solution of the direct problem for the function d. We can easily
deduce that I(d̃) = 0. Thus, we expect to find d̃(u) as the minimizer of the error functional.

We carry out the experiment for the noise-free data and the noisy data. For the noisy
data, we add the noise 0.1φ1(x, t) and 0.1φ2(x, t) to g1(x, t) and g2(x, t), respectively. Here,
φ1(x, t) and φ2(x, t) assume the values in the form of 0.1×m(x, t) where m takes random
values from [−1, 1].

We will use polynomials to approximate the minimum d̃ in the light of Theorem 2.
For n > 0, we assume that d(u) = dnun + · · ·+ d0. Thus, I(d) is a function of the vectors
(d, d0) ∈ Rn+1 where d = (dn, · · · d1).

We apply the BGFS method, a Quasi-Newton method, to minimize the function.
The method requires the evaluation of the gradient of the function I(d). The BGFS method
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approximates the Hessian of the error function with a cubic line search procedure in each
step. For further reading, we refer [24]. We choose the stopping criteria for the algorithm
as ||∇I(d)|| < 10−6. The integration in I(d) is approximated by the trapezoid rule.

In the experiments, in accordance with the observations given in Section 4 we assume
β = 0.7 for the order of fractional time derivative, M = N = 5 are used to make a mesh-grid
for x and y on [0, 1]× [0, 1] and time step is taken as4t = 10−5 with upper bound T = 0.3.

We consider the variable d(u) as a second degree polynomial. Hence, I(d) is treated as
a function of three variables. The initial points are chosen to be close to the coefficients of
the second degree Taylor polynomial of d̃(u), a random number between 0 and 1 is added
to or subtracted from each component. In the Tables 3–11, we provide the value of I(d)
for the final d, i.e., dfinal calculated by the algorithm. We also provide the relative error
between the solution of the direct problem for the calculated value of dfinal and u = tx2y2.
The relative error is given by

||ufinal(x, y, t)− tx2y2||∞
||tx2y2||∞

,

where || · ||∞ is estimated by the maximum value of the function on the meshgrid on
[0, 1]× [0, 1]× [0, 0.3].

The inverse problem is an ill-posed problem and it is sensitive to the noise. To deal
with the noisy data, we use Tikhonov regularization in the error functional and define it as:

I(d) :=
∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(x, 1, t)
∣∣∣∣2 dx dt +

∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(1, y, t)
∣∣∣∣2 dy dt + λ||d||2, (38)

where || · || is the Euclidean norm. We run the algorithm for different regularization
parameter λ with the same initial values and present the best results according to the
relative error.

Experiment 1. The correct d(·) is d̃(u) = 2 sin(u) + cos(u), whose second degree Taylor poly-
nomial is −0.5u2 + 2u + 1. Tables 3 and 4 show the results for the noise-free and noisy data,
respectively. Table 5 shows the best results for different values of the regularization parameter λ.

Table 3. Results for noise-free data for d̃(u) = 2 sin(u) + cos(u).

dinitial dfinal I(dfinal) Relative Error

−0.27408 2.0855 1.0987 −0.30691 1.9416 1.0172 6.5695× 10−8 0.0053729
−0.32929 2.2625 0.73813 −0.41756 1.9666 1.0105 2.3175× 10−8 0.0032792
−1.4234 2.7303 0.27877 −0.56634 2.0006 1.0014 3.0948× 10−10 0.00055506
−0.93021 1.5114 1.1068 −0.79997 2.0539 0.98705 4.4387× 10−8 0.0039033
−0.68482 1.4215 0.34624 −0.60656 2.0101 0.99864 9.2876× 10−10 0.00053536
0.40488 2.2373 1.4942 −0.58484 2.0048 1.0003 2.2985× 10−10 0.00029774
0.47975 2.4588 0.22095 −0.58776 2.0056 0.99998 2.7193× 10−10 0.00034198
−0.06113 1.0369 1.715 −0.58706 2.0054 1.0001 2.6604× 10−10 0.00034775
−0.38888 1.4532 0.096279 −0.35227 1.9509 1.0152 4.5877× 10−8 0.0044349
−0.75806 2.5211 1.8909 −0.79146 2.0521 0.9875 4.1074× 10−8 0.0037083
−0.76221 1.3759 0.80219 −0.63609 2.0172 0.99653 3.2795× 10−9 0.0008257
−0.27825 1.6326 1.5 −0.19536 1.9171 1.0234 1.3041× 10−7 0.0076122
−0.79668 2.0377 1.9047 −0.74601 2.0417 0.99027 2.5509× 10−8 0.0028553
−0.92417 1.0867 1.6177 −0.68659 2.0283 0.99378 1.0782× 10−8 0.0017539
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Table 4. Results for noisy data for d̃(u) = 2 sin(u) + cos(u).

dinitial dfinal I(dfinal) Relative Error

−0.27408 2.0855 1.0987 −0.3141 1.9232 1.0344 0.0020018 0.0052846
−0.32929 2.2625 0.73813 −0.42473 1.9484 1.0275 0.0020017 0.0032272
−1.4234 2.7303 0.27877 −0.67733 2.0063 1.0119 0.0020016 0.0021874
−0.93021 1.5114 1.1068 −0.80617 2.0373 1.0027 0.0020016 0.0037943
−0.68482 1.4215 0.34624 −0.61309 1.9932 1.0148 0.0020016 0.0021119
0.40488 2.2373 1.4942 −0.69746 2.0106 1.0109 0.0020016 0.0022959
0.47975 2.4588 0.22095 −0.70218 2.012 1.0104 0.0020016 0.0023236
−0.06113 1.0369 1.715 −0.70344 2.0122 1.0104 0.0020016 0.0023527
−0.38888 1.4532 0.096279 −0.35922 1.9326 1.0323 0.0020017 0.0043445
−0.75806 2.5211 1.8909 −0.79917 2.0341 1.0044 0.0020016 0.0037813
−0.76221 1.3759 0.80219 −0.64273 1.9991 1.0135 0.0020016 0.002096
−0.27825 1.6326 1.5 −0.20201 1.899 1.0403 0.0020018 0.0075475
−0.79668 2.0377 1.9047 −0.75291 2.0236 1.0072 0.0020016 0.0029034
−0.92417 1.0867 1.6177 −0.69291 2.0101 1.0107 0.0020016 0.0022322

Table 5. Results for noisy data for d̃(u) = 2 sin(u) + cos(u) with regularization parameter.

dinitial dfinal I(dfinal) Relative Error λ

−0.32929 2.2625 0.73813 −0.41297 1.936 1.0355 0.0020067 0.0037234 10−6

0.40488 2.2373 1.4942 0.229 1.7102 1.1339 0.0020458 0.021791 10−5

−0.68482 1.4215 0.34624 0.22395 1.4118 1.3433 0.0024042 0.083568 10−4

−0.92417 1.0867 1.6177 0.16702 1.1677 1.3914 0.0055819 0.31648 10−3

Experiment 2. The correct d(·) is d̃(u) = u2 + u + 1. Tables 6 and 7 show the results for the
noise-free and noisy data, respectively. Table 8 shows the best results for different values of the
regularization parameter λ.

Table 6. Results for noise-free data for d̃(u) = u2 + u + 1.

dinitial dfinal I(dfinal) Relative Error

1.8143 1.5688 1.1067 0.98685 1.0027 0.99947 1.8662× 10−10 0.00021487
1.2435 1.4694 0.038102 1.0944 0.981 1.0043 8.5119× 10−9 0.0014074
1.9293 0.9881 1.0046 0.98892 1.0026 0.9992 1.3021× 10−10 0.00018254
0.8034 1.1622 1.8173 0.81833 1.0366 0.99164 3.1636× 10−8 0.0027013
1.3517 1.1656 1.2599 1.3088 0.9365 1.0151 9.1374× 10−8 0.0046914
1.8308 1.602 0.19993 0.98007 1.0051 0.99838 5.4332× 10−10 0.00039664
1.5853 0.73703 1.4314 0.9837 1.0037 0.99902 3.2042× 10−10 0.00029842

0.082806 1.6892 1.1818 1.0041 0.99907 1.0003 1.7019× 10−11 6.6238e-05
0.2428 0.54946 1.1455 1.0075 0.99842 1.0004 5.5279× 10−11 0.00011151
0.24627 0.91618 0.86393 1.0279 0.99108 1.0038 1.5989× 10−9 0.00061966
1.0759 0.84762 1.5499 1.1222 0.97718 1.0042 1.438× 10−8 0.0017248
1.054 0.17418 0.85505 1.1964 0.96141 1.0082 3.6805× 10−8 0.0028801

0.22083 1.9961 0.37794 1.0108 0.99797 1.0004 1.1477× 10−10 0.00014608
0.065989 0.92182 1.351 1.0119 0.9973 1.0008 1.4633× 10−10 0.00018962

Table 7. Results for noisy data for d̃(u) = u2 + u + 1.

dinitial dfinal I(dfinal) Relative Error

1.8143 1.5688 1.1067 0.87821 1.0042 1.0132 0.0020016 0.0015718
1.2435 1.4694 0.038102 1.0871 0.96223 1.0227 0.0020017 0.0023355
1.9293 0.9881 1.0046 0.86725 1.0068 1.0123 0.0020016 0.00169
0.8034 1.1622 1.8173 0.81146 1.0196 1.0086 0.0020016 0.002464
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Table 7. Cont.

dinitial dfinal I(dfinal) Relative Error

1.3517 1.1656 1.2599 1.3018 0.9178 1.0335 0.0020018 0.0050523
1.8308 1.602 0.19993 0.86061 1.0086 1.0118 0.0020016 0.0018171
1.5853 0.73703 1.4314 0.87637 1.0045 1.0131 0.0020016 0.001589

0.082806 1.6892 1.1818 0.88511 1.0027 1.0136 0.0020016 0.001566
0.2428 0.54946 1.1455 0.37128 1.1072 0.98935 0.0020019 0.0089087

0.24627 0.91618 0.86393 0.89739 0.99902 1.0151 0.0020016 0.0016656
1.0759 0.84762 1.5499 1.1151 0.95842 1.0225 0.0020017 0.0023623
1.054 0.17418 0.85505 1.1896 0.94251 1.0266 0.0020017 0.0032631

0.22083 1.9961 0.37794 0.89089 1.0018 1.0136 0.0020016 0.0015688
0.065989 0.92182 1.351 0.91539 0.99126 1.0192 0.0020016 0.0019827

Table 8. Results for noisy data for d̃(u) = u2 + u + 1 with regularization parameter.

dinitial dfinal I(dfinal) Relative Error λ

0.8034 1.1622 1.8173 0.79386 1.0152 1.0136 0.0020043 0.0023183 10−6

1.3517 1.1656 1.2599 0.23178 1.0905 1.0144 0.0020249 0.0095046 10−5

0.22083 1.9961 0.37794 0.15297 0.96968 1.0883 0.0022225 0.025866 10−4

1.3517 1.1656 1.2599 0.11759 0.81796 1.0163 0.0039331 0.1176 10−3

Experiment 3. The correct d(·) is d̃(u) = eu whose second degree Taylor polynomial is
0.5u2 + u + 1. Tables 9 and 10 show the results for the noise-free and noisy data, respectively.
Table 11 shows the best results for different values of the regularization parameter λ.

Table 9. Results for noise-free data for d̃(u) = eu.

dinitial dfinal I(dfinal)
Relative

Error

0.90181 1.5752 1.4868 0.79218 0.94905 1.0105 5.6575× 10−8 0.0046883
0.57597 1.0598 0.56414 0.54444 0.99668 1.0006 1.4739× 10−10 0.000262
0.73992 0.76522 1.4468 0.78835 0.95044 1.0099 5.4814× 10−8 0.0047249
0.62332 0.64684 0.69365 0.67086 0.97351 1.0048 1.5113× 10−8 0.0024087
0.26005 1.0154 0.48923 0.25222 1.0548 0.98759 7.5481× 10−8 0.0059219
0.45035 0.83101 0.20517 0.45166 1.0131 0.99813 7.8171× 10−9 0.0022299
1.4027 1.6491 1.6443 0.53726 0.99922 0.99945 6.6822× 10−11 0.00026575
1.4448 1.7317 0.62139 0.51571 1.0057 0.99697 1.064× 10−9 0.00053638
−0.40005 1.2963 0.060998 0.5487 0.99689 1 9.9924× 10−11 0.00019071
0.13075 0.25531 1.8759 0.32007 1.0428 0.98936 4.4431× 10−8 0.0045091
0.88974 1.1835 0.41296 0.81012 0.94438 1.0121 6.5201× 10−8 0.0048764
0.40355 1.7802 1.4709 0.28431 1.0486 0.98887 5.966× 10−8 0.0052538
−0.44205 0.070614 1.8443 0.55639 0.99609 0.99981 2.7998× 10−10 0.00020745
−0.45613 0.22429 0.80524 0.55508 0.99551 1.0004 2.3236× 10−10 0.00026031

Table 10. Results for noisy data for d̃(u) = eu.

dinitial dfinal I(dfinal) Relative Error

0.90181 1.5752 1.4868 0.78517 0.93079 1.0288 0.0020018 0.0050131
0.57597 1.0598 0.56414 0.53751 0.97834 1.019 0.0020016 0.0022175
0.73992 0.76522 1.4468 0.78169 0.93207 1.0283 0.0020018 0.0051061
0.62332 0.64684 0.69365 0.66409 0.9552 1.0231 0.0020017 0.0028501
0.26005 1.0154 0.48923 0.24532 1.0365 1.0059 0.0020017 0.0055843
0.45035 0.83101 0.20517 0.44478 0.99464 1.0166 0.0020016 0.0023482
1.4027 1.6491 1.6443 0.40493 1.0054 1.0124 0.0020016 0.0024947
1.4448 1.7317 0.62139 0.41451 1.0035 1.013 0.0020016 0.0022539
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Table 10. Cont.

dinitial dfinal I(dfinal) Relative Error

−0.40005 1.2963 0.060998 0.42752 1.001 1.0135 0.0020016 0.0021903
0.13075 0.25531 1.8759 0.3134 1.0244 1.0078 0.0020016 0.0041734
0.88974 1.1835 0.41296 0.80315 0.92604 1.0305 0.0020018 0.0051862
0.40355 1.7802 1.4709 0.27712 1.0303 1.0072 0.0020017 0.0049314
−0.44205 0.070614 1.8443 0.43707 0.99816 1.0147 0.0020016 0.0022583
−0.45613 0.22429 0.80524 0.43069 1.0003 1.0138 0.0020016 0.002201

Table 11. Results for noisy data for d̃(u) = eu with regularization parameters.

dinitial dfinal I(dfinal) Relative Error λ

0.57597 1.0598 0.56414 0.52797 0.97607 1.0214 0.0020039 0.0023258 10−6

0.26005 1.0154 0.48923 0.22214 1.0051 1.0289 0.002023 0.012937 10−5

0.98925 0.54908 0.46717 0.13735 0.92151 1.0695 0.002208 0.051983 10−4

0.36803 1.0811 0.76951 0.10825 0.7698 0.96251 0.003772 0.27405 10−3

Since the algorithm is based on approaching d(u) with polynomials and the error
function is a function of three variables, the second degree Taylor polynomials of the correct
d(u)’s are expected to be attained by the algorithm for each initial point.

In all experiments with noise-free data, we notice that the algorithm finds the linear
coefficients of the target Taylor polynomial for almost all initial points, while it mostly fails
to reach the nonlinear coefficient, i.e., the coefficient of u2 of the target Taylor polynomial
for most of the initial points. However, the coefficients of the final d(u)’s with the least
relative errors almost match the coefficient of u2 of the target Taylor polynomial. In all of the
experiments, the relative error for the solution u corresponding to each final polynomial
d(u) is observed to fluctuate between 0.0001 and 0.007. Another observation for noise-free
experiments is that the relative error for the corresponding u increases with I(d).

In the experiments that are carried out with noisy data, there is a remarkable behavior
in the error function: I(dfinal) stays around 0.002 for almost all initial points. The relative
error for all initial points and experiments fluctuate between 0.001 and 0.009. So the relative
error increases up to 10 times. One observation about the experiments with noisy data
is that even though the linear coefficients of dfinal are more distanced from the linear
coefficients of the expected Taylor polynomials, they still seem to accumulate around the
expected linear coefficients. The nonlinear coefficients look far from the expected.

The experiments show that the linear part of the d(u) is stable with respect to the noise.
This is most probably due to the constraints imposed by the method used in the solution of
the direct problem. Note that we have a stable solution for t in [0, 0.3] with4 = 10−5.

For the noisy data, we apply the Tikhonov regularization. The regularization parame-
ters are very close to zero, i.e., the values that are less than 10−7 results in reliable results.
In addition, it has been observed that the linearization of d(u) is robust against the noise.
It appears that the robustness of the linear part increases as β approaches to 1. In the
experiments with β = 0.6, (not shown in this article) the results have shown that the error
is higher and that the final points are found to be beyond the expected. So, we can conclude
that the problem becomes more ill-posed as β decreases.

We also note that one can also use trust region methods to minimize the error func-
tional. Indeed, some preliminary tests have been carried out with trust region method and
the BGFS method. A significant difference in the computation time was observed between
two optimization methods. For this reason, the BGFS method was chosen as the primary
algorithm for this study.
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6. Concluding Remarks

We study an inverse problem for the nonlinear time fractional equation uβ
t = ∇ ·

(d(u)∇u) + f (x, y, t). We solve the direct problem by converting it into a system of frac-
tional ODEs using the method of lines and vectorization. In doing so, we adopted the
operator approach to approximate the derivatives that reduces computational and memory
demand of the algorithm. After we solve the direct problem, we reformulate the inverse
problem as a minimization problem. Then we solve the minimization problem by using
the BGFS method and a Quasi-Newton method. The inverse problem is solved for both
noise-free and noisy data. When solving the direct problem, we observe that as the order of
fractional time derivative approaches to the value 1, the numerical solution approximates
the exact solution in much faster and reliable manner. Additionally, it appears that there is a
subtle relation between the size of the interval and time steps used in the numerical scheme.
We observe that M = N = 5 provides the best performance in terms of the minimum
simulation time and the absolute error. The numerical results of the experiments show
that solving the inverse problem that we examined in this article using the error functional
with the help of polynomials and solving the direct problem with the method of lines work
well together. However, the computational constraints resulting from the discussion of the
solution of the direct problem makes the problem a bit restrictive on the meshgrid and time
interval. The experiments with the noise-free data verifies the theoretical results, i.e., the
existence of a unique quasi-solution.The experiments with noisy data show that the linear
part of the d(u) shows a robust behavior against the noise. Finally, the values of β away
from 1 results in unstable results, that is, the problem becomes more ill-posed.

The authors of this paper plan to study a set of three partial differential equations
involving time-fractional derivatives and nonlinear diffusion operators. After we prove
that the direct problem is a well-posed problem, we define the inverse problem. The inverse
problem may be either an inverse parameter problem, or an inverse coefficient problem,
or an inverse source problem. Then we study the existence and uniqueness of the solution
and solve the inverse problem by the method presented in this paper.
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