Fractional-Order Control Techniques for Renewable Energy and Energy-Storage-Integrated Power Systems: A Review
Abstract
:1. Introduction
1.1. Motivations
1.2. Methodology
2. Fractional-Order Systems
2.1. Fractional-Order Definitions
2.2. Fractional-Order Controller
2.3. Fractional Order in the Converters and Inverters
2.3.1. DC-DC Converters
2.3.2. AC-AC Inverters
3. Fractional-Order Technique and Renewable Energy Sources
4. Fractional-Order Technique and Energy Storage Systems
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclatures and Abbreviations (In Alphabetical Order)
ABC | Artificial bee colony |
ACA | Ant colony algorithm |
AEO | Artificial ecosystem-based optimization |
ANA | Adaptive noise algorithm |
ANN | Artificial neural network |
BEL | Brain emotional learning |
CD | Caputo definition |
CPE | Constant phase element |
CS | Cuckoo search |
EIS | Electrochemical impedance spectroscopy |
ESS | Energy storage system |
EV | Electric vehicle |
FO | Fractional order |
FOPID | Fractional-order proportional integral derivative |
GA | Genetic algorithm |
GLD | Grünwald–Letnikov definition |
GWO | Grey wolf optimization |
HGAPSO | Hybrid of GA and PSO |
HGPO | High-gain perturbation observer |
ISE | Integral of squared error |
ITAE | Integral time absolute error |
ITLO | Interactive teaching–learning optimization |
ITMAE | Integral of time multiplied absolute error |
KF | Kalman filter |
KHO | Krill herd optimization |
LFC | Load frequency control |
LIB | Lithium-ion battery |
LMB | Liquid metal battery |
LSA | Least square algorithm |
MBA | Mine blast algorithm |
MCA | Monte Carlo algorithm |
MG | Microgrid |
MGSO | Modified group search optimization |
MP | Magnitude of the peak |
MPC | Model predictive control |
MPPT | Maximum power point tracking |
MRFO | Manta ray foraging optimization |
MSA | Moth swarm algorithm |
OA | Optimization algorithm |
OSD | Oldham and Spanier definition |
PD | Proportional derivative |
PI | Proportional integral |
PID | Proportional integral derivative |
PO | Perturb and observe technique |
PSO | Particle swarm optimization |
PT | peak time |
PTM | Particle thermal method |
PV | Photovoltaic panel |
PWM | Pulse-width modulation |
RBF | Radial basis function |
RES | Renewable energy source |
RLD | Riemann–Liouville definition |
SCA | Sine cosine algorithm |
SMESS | Superconducting magnetic energy storage system |
SMT | Short memory technique |
ST | Settling time |
SG | Smart grid |
SOC | State of charge |
SOH | State of health |
SOP | State of power |
TID | Tilted integral derivative |
TLBO | Teaching–learning-based optimization |
VIC | Virtual inertia control |
WOA | Whale optimization algorithm |
WT | Wind turbine |
References
- Mohamed, M.A. A relaxed consensus plus innovation based effective negotiation approach for energy cooperation between smart grid and microgrid. Energy 2022, 252, 123996. [Google Scholar] [CrossRef]
- Alilou, M.; Tousi, B.; Shayeghi, H. Multi-objective energy management of smart homes considering uncertainty in wind power forecasting. Electr. Eng. 2021, 103, 1367–1383. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Abapour, M.; Mohammadi-Ivatloo, B. An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks. Sustainability 2022, 14, 5747. [Google Scholar] [CrossRef]
- Rezaei, H.; Abdollahi, S.E.; Abdollahi, S.; Filizadeh, S. Energy management strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends. J. Energy Storage 2022, 53, 105045. [Google Scholar] [CrossRef]
- Aliasghari, P.; Mohammadi-Ivatloo, B.; Alipour, M.; Abapour, M.; Zare, K. Optimal scheduling of plug-in electric vehicles and renewable micro-grid in energy and reserve markets considering demand response program. J. Clean. Prod. 2018, 186, 293–303. [Google Scholar] [CrossRef]
- Erdinç, F.G.; Çiçek, A.; Erdinç, O.; Yumurtacı, R.; Oskouei, M.Z.; Mohammadi-Ivatloo, B. Decision-making framework for power system with RES including responsive demand, ESSs, EV aggregator and dynamic line rating as multiple flexibility resources. Electr. Power Syst. Res. 2022, 204, 107702. [Google Scholar] [CrossRef]
- Alilou, M.; Gharehpetian, G.B.; Ahmadiahangar, R.; Rosin, A.; Anvari-Moghaddam, A. Day-Ahead Scheduling of Electric Vehicles and Electrical Storage Systems in Smart Homes Using a Novel Decision Vector and AHP Method. Sustainability 2022, 14, 11773. [Google Scholar] [CrossRef]
- Zhang, G.; Ge, Y.; Ye, Z.; Al-Bahrani, M. Multi-objective planning of energy hub on economic aspects and resources with heat and power sources, energizable, electric vehicle and hydrogen storage system due to uncertainties and demand response. J. Energy Storage 2023, 57, 106160. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [Google Scholar] [CrossRef]
- Hidalgo-Reyes, J.I.; Gómez-Aguilar, J.F.; Escobar-Jiménez, R.F.; Alvarado-Martínez, V.M.; López-López, M.G. Classical and fractional-order modeling of equivalent electrical circuits for supercapacitors and batteries, energy management strategies for hybrid systems and methods for the state of charge estimation: A state of the art review. Microelectron. J. 2019, 85, 109–128. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, B.; Li, C.; Wu, Q.; Xia, S.; Wang, H.; Yang, H. Fractional-order modeling and sliding mode control of energy-saving and emission-reduction dynamic evolution system. Int. J. Electr. Power Energy Syst. 2018, 100, 400–410. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Meng, Y. Experiment on Grid-Connection Process of Wind Turbines in Fractional Frequency Wind Power System. IEEE Trans. Energy Convers. 2015, 30, 22–31. [Google Scholar] [CrossRef]
- Sondhi, S.; Hote, Y. V Fractional order PID controller for perturbed load frequency control using Kharitonov’s theorem. Int. J. Electr. Power Energy Syst. 2016, 78, 884–896. [Google Scholar] [CrossRef]
- Aghababa, M.P.; Haghighi, A.R.; Roohi, M. Stabilisation of unknown fractional-order chaotic systems: An adaptive switching control strategy with application to power systems. IET Gener. Transm. Distrib. 2015, 9, 1883–1893. [Google Scholar] [CrossRef]
- Aghababa, M.P. Fractional modeling and control of a complex nonlinear energy supply-demand system. Complexity 2015, 20, 74–86. [Google Scholar] [CrossRef]
- Borah, M.; Roy, B.K. Dynamics of the fractional-order chaotic PMSG, its stabilisation using predictive control and circuit validation. IET Electr. Power Appl. 2017, 11, 707–716. [Google Scholar] [CrossRef]
- Mohanty, A.; Viswavandya, M.; Mohanty, S. An optimised FOPID controller for dynamic voltage stability and reactive power management in a stand-alone micro grid. Int. J. Electr. Power Energy Syst. 2016, 78, 524–536. [Google Scholar] [CrossRef]
- Liu, L.; Qian, J.; Hua, L.; Zhang, B. System estimation of the SOFCs using fractional-order social network search algorithm. Energy 2022, 255, 124516. [Google Scholar] [CrossRef]
- Ye, L.; Peng, D.; Xue, D.; Chen, S.; Shi, A. Co-estimation of lithium-ion battery state-of-charge and state-of-health based on fractional-order model. J. Energy Storage 2023, 65, 107225. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Jiang, H.; Fernandez, C. A novel combined estimation method for state of energy and predicted maximum available energy based on fractional-order modeling. J. Energy Storage 2023, 62, 106930. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Y.; Zhang, H.; Yang, F.; Wang, X.; Li, C. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order model with multi-innovations unscented Kalman filter method. J. Energy Storage 2022, 52, 104904. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Yu, H.; Miao, J.; Zheng, C.; Zhang, X. A framework for battery temperature estimation based on fractional electro-thermal coupling model. J. Energy Storage 2023, 63, 107042. [Google Scholar] [CrossRef]
- Raheem, A.; Afreen, A.; Khatoon, A. Multi-term time-fractional stochastic system with multiple delays in control. Chaos Solitons Fractals 2023, 167, 112979. [Google Scholar] [CrossRef]
- Mousavi, Y.; Bevan, G.; Kucukdemiral, I.B.; Fekih, A. Sliding mode control of wind energy conversion systems: Trends and applications. Renew. Sustain. Energy Rev. 2022, 167, 112734. [Google Scholar] [CrossRef]
- Darvish Falehi, A.; Torkaman, H. Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbine. J. Energy Storage 2021, 42, 102983. [Google Scholar] [CrossRef]
- Girgis, M.E.; Fahmy, R.A.; Badr, R.I. Optimal fractional-order PID control for plasma shape, position, and current in Tokamaks. Fusion Eng. Des. 2020, 150, 111361. [Google Scholar] [CrossRef]
- Gao, Q.; Cai, J.; Liu, Y.; Chen, Y.; Shi, L.; Xu, W. Power mapping-based stability analysis and order adjustment control for fractional-order multiple delayed systems. ISA Trans. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Lusekelo, E.; Helikumi, M.; Kuznetsov, D.; Mushayabasa, S. Dynamic modelling and optimal control analysis of a fractional order chikungunya disease model with temperature effects. Results Control Optim. 2023, 10, 100206. [Google Scholar] [CrossRef]
- Barry, L.E.; O’Neill, C.; Butler, C.; Chaudhuri, R.; Heaney, L.G. Cost-Effectiveness of Fractional Exhaled Nitric Oxide Suppression Testing as an Adherence Screening Tool Among Patients With Difficult-to-Control Asthma. J. Allergy Clin. Immunol. Pract. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Huang, C.; Zhou, L.; Xiong, L.; Liu, J.; Li, P. A fixed-time fractional-order sliding mode control strategy for power quality enhancement of PMSG wind turbine. Int. J. Electr. Power Energy Syst. 2022, 134, 107354. [Google Scholar] [CrossRef]
- Hao, J.; Wang, J.; Yu, D.; Zhu, J.; Moattari, M. Fractional-order pathfinder algorithm for optimum design of an HRES based on photovoltaic and proton exchange membrane fuel cell: A case study. Int. J. Hydrogen Energy, 2023; in press. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Y.; Li, Y.; Cui, N.; Duan, B.; Zhang, C. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries. ISA Trans. 2020, 97, 448–457. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Sang, Y.; Yu, L.; Shu, H.; Li, S.; He, T.; Yang, L.; Zhang, X.; Yu, T. Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control. Energy 2019, 187, 115905. [Google Scholar] [CrossRef]
- Statistical Review of World Energy. 2022. Available online: www.bp.com (accessed on 1 June 2022).
- François, B.; Puspitarini, H.D.; Volpi, E.; Borga, M. Statistical analysis of electricity supply deficits from renewable energy sources across an Alpine transect. Renew. Energy 2022, 201, 1200–1212. [Google Scholar] [CrossRef]
- Alilou, M.; Toosi, B.; Shayeghi, H. Multi-objective unit and load commitment in smart homes considering uncertainties. Int. Trans. Electr. Energy Syst. 2020, 30, e12614. [Google Scholar] [CrossRef]
- Singh, S.; Tayal, V.K.; Singh, H.P.; Yadav, V.K. Fractional Control Design of Renewable Energy Systems. In Proceedings of the ICRITO 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), Noida, India, 4–5 June 2020; pp. 1246–1251. [Google Scholar] [CrossRef]
- Azami, H.; Alizadeh, B.A.M.; Abapour, M. Optimal Smart Home Scheduling with Considering Hybrid Resource Management. In Proceedings of the 2021 11th Smart Grid Conference (SGC), Tabriz, Iran, 7–9 December 2021. [Google Scholar] [CrossRef]
- Thangam, T.; Muthuvel, M.K. Passive Fractional-order Proportional-Integral-Derivative control design of a Grid-connected Photovoltaic inverter for Maximum Power Point Tracking. Comput. Electr. Eng. 2022, 97, 107657. [Google Scholar] [CrossRef]
- Oshnoei, S.; Oshnoei, A.; Mosallanejad, A.; Haghjoo, F. Contribution of GCSC to regulate the frequency in multi-area power systems considering time delays: A new control outline based on fractional order controllers. Int. J. Electr. Power Energy Syst. 2020, 123, 106197. [Google Scholar] [CrossRef]
- Oshnoei, S.; Aghamohammadi, M.; Oshnoei, S.; Oshnoei, A.; Mohammadi-Ivatloo, B. Provision of Frequency Stability of an Islanded Microgrid Using a Novel Virtual Inertia Control and a Fractional Order Cascade Controller. Energies 2021, 14, 4152. [Google Scholar] [CrossRef]
- Suo, J.; Shi, M.; Li, Y.; Yang, Y. Proportional-integral control for synchronization of complex dynamical networks under dynamic event-triggered mechanism. J. Frankl. Inst. 2023, 360, 1436–1453. [Google Scholar] [CrossRef]
- Çelik, E.; Öztürk, N. Novel fuzzy 1PD-TI controller for AGC of interconnected electric power systems with renewable power generation and energy storage devices. Eng. Sci. Technol. Int. J. 2022, 35, 101166. [Google Scholar] [CrossRef]
- Aryan, P.; Raja, G.L. Restructured LFC Scheme with Renewables and EV Penetration using Novel QOEA Optimized Parallel Fuzzy I-PID Controller. IFAC-Pap. 2022, 55, 460–466. [Google Scholar] [CrossRef]
- Oberlin, P.; Rathinam, S.; Darbha, S. A transformation for a Heterogeneous, Multiple Depot, Multiple Traveling Salesman Problem. In Proceedings of the 2009 American Control Conference, Saint Louis, Mo, USA, 10–12 June 2009; IEEE: New York, NY, USA, 2009; pp. 1292–1297. [Google Scholar]
- Oshnoei, A.; Sadeghian, O.; Anvari-Moghaddam, A. Intelligent Power Control of Inverter Air Conditioners in Power Systems: A Brain Emotional Learning-Based Approach. IEEE Trans. Power Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Yang, S.; Wan, M.P.; Chen, W.; Ng, B.F.; Dubey, S. Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization. Appl. Energy 2020, 271, 115147. [Google Scholar] [CrossRef]
- Oshnoei, A.; Kheradmandi, M.; Muyeen, S.M. Robust Control Scheme for Distributed Battery Energy Storage Systems in Load Frequency Control. IEEE Trans. Power Syst. 2020, 35, 4781–4791. [Google Scholar] [CrossRef]
- Oshnoei, A.; Khezri, R.; Muyeen, S.M.; Oshnoei, S.; Blaabjerg, F. Automatic Generation Control Incorporating Electric Vehicles. Electr. Power Compon. Syst. 2019, 47, 720–732. [Google Scholar] [CrossRef]
- Oshnoei, S.; Oshnoei, A.; Mosallanejad, A.; Haghjoo, F. Novel load frequency control scheme for an interconnected two-area power system including wind turbine generation and redox flow battery. Int. J. Electr. Power Energy Syst. 2021, 130, 107033. [Google Scholar] [CrossRef]
- Al-Dhaifallah, M.; Nassef, A.M.; Rezk, H.; Nisar, K.S. Optimal parameter design of fractional order control based INC-MPPT for PV system. Sol. Energy 2018, 159, 650–664. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Selim, A.; Mohamed, E.A.; Aly, M.; Alnuman, H.; Ramadan, H.A. Modified manta ray foraging optimization algorithm based improved load frequency controller for interconnected microgrids. IET Renew. Power Gener. 2022, 16, 3587–3613. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Elmelegi, A.; Shawky, A.; Aly, M.; Alhosaini, W.; Mohamed, E.A. Frequency Regulation of Electric Vehicle-Penetrated Power System Using MPA-Tuned New Combined Fractional Order Controllers. IEEE Access 2021, 9, 107548–107565. [Google Scholar] [CrossRef]
- Song, K.; Hu, D.; Tong, Y.; Yue, X. Remaining life prediction of lithium-ion batteries based on health management: A review. J. Energy Storage 2023, 57, 106193. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Hashmi, S.A.; Khan, M.; Choi, D.; Qurashi, A. Frontiers and recent developments on supercapacitor’s materials, design, and applications: Transport and power system applications. J. Energy Storage 2023, 58, 106104. [Google Scholar] [CrossRef]
- Elkasem, A.H.A.; Khamies, M.; Hassan, M.H.; Agwa, A.M.; Kamel, S. Optimal Design of TD-TI Controller for LFC Considering Renewables Penetration by an Improved Chaos Game Optimizer. Fractal Fract. 2022, 6, 220. [Google Scholar] [CrossRef]
- Chen, Y.; Li, R.; Sun, Z.; Zhao, L.; Guo, X. SOC estimation of retired lithium-ion batteries for electric vehicle with improved particle filter by H-infinity filter. Energy Rep. 2023, 9, 1937–1947. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Bin Idris, M.Y.I.; Mekhilef, S.; Adnan, S.B.R.S. Comprehensive co-estimation of lithium-ion battery state of charge, state of energy, state of power, maximum available capacity, and maximum available energy. J. Energy Storage 2022, 56, 106049. [Google Scholar] [CrossRef]
- Sheng, C.; Fu, J.; Li, D.; Jiang, C.; Guo, Z.; Li, B.; Lei, J.; Zeng, L.; Deng, Z.; Fu, X.; et al. Energy management strategy based on health state for a PEMFC/Lithium-ion batteries hybrid power system. Energy Convers. Manag. 2022, 271, 116330. [Google Scholar] [CrossRef]
- Chen, L.; Wu, X.; Tenreiro Machado, J.A.; Lopes, A.M.; Li, P.; Dong, X. State-of-Charge Estimation of Lithium-Ion Batteries Based on Fractional-Order Square-Root Unscented Kalman Filter. Fractal Fract. 2022, 6, 52. [Google Scholar] [CrossRef]
- Chen, J.; Feng, X.; Jiang, L.; Zhu, Q. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. Energy 2021, 227, 120451. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Q.; Kou, X.; Ma, W.; Zhang, H.; Liu, R. Noise immune state of charge estimation of li-ion battery via the extreme learning machine with mixture generalized maximum correntropy criterion. Energy 2022, 239, 122406. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zhang, L. Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy 2019, 174, 33–44. [Google Scholar] [CrossRef]
- Ma, Y.; Duan, P.; Sun, Y.; Chen, H. Equalization of Lithium-Ion Battery Pack Based on Fuzzy Logic Control in Electric Vehicle. IEEE Trans. Ind. Electron. 2018, 65, 6762–6771. [Google Scholar] [CrossRef]
- Xing, Y.; He, W.; Pecht, M.; Tsui, K.L. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl. Energy 2014, 113, 106–115. [Google Scholar] [CrossRef]
- Xu, J.; Mi, C.C.; Cao, B.; Deng, J.; Chen, Z.; Li, S. The State of Charge Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer. IEEE Trans. Veh. Technol. 2014, 63, 1614–1621. [Google Scholar] [CrossRef]
- Hubert, A.; Forgez, C.; Yvars, P.-A. Designing the architecture of electrochemical energy storage systems. A model-based system synthesis approach. J. Energy Storage 2022, 54, 105351. [Google Scholar] [CrossRef]
- Mohammed, A.; Ghaithan, A.M.; Al-Hanbali, A.; Attia, A.M. A multi-objective optimization model based on mixed integer linear programming for sizing a hybrid PV-hydrogen storage system. Int. J. Hydrogen Energy 2022, 48, 9748–9761. [Google Scholar] [CrossRef]
- Shi, Q.; Guo, Z.; Wang, S.; Yan, S.; Zhou, X.; Li, H.; Wang, K.; Jiang, K. Physics-based fractional-order model and parameters identification of liquid metal battery. Electrochim. Acta 2022, 428, 140916. [Google Scholar] [CrossRef]
- Bingi, K.; Rajanarayan Prusty, B.; Pal Singh, A. A Review on Fractional-Order Modelling and Control of Robotic Manipulators. Fractal Fract. 2023, 7, 77. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Basit, A.; Aslam, S.; Zhang, G. Modified FOPID Controller for Frequency Regulation of a Hybrid Interconnected System of Conventional and Renewable Energy Sources. Fractal Fract. 2023, 7, 89. [Google Scholar] [CrossRef]
- Ali, F.; Iftikhar, M.; Khan, I.; Sheikh, N.A.; Aamina; Nisar, K.S. Time fractional analysis of electro-osmotic flow of Walters’s-B fluid with time-dependent temperature and concentration. Alex. Eng. J. 2020, 59, 25–38. [Google Scholar] [CrossRef]
- Kaleem, M.M.; Usman, M.; Asjad, M.I.; Eldin, S.M. Magnetic Field, Variable Thermal Conductivity, Thermal Radiation, and Viscous Dissipation Effect on Heat and Momentum of Fractional Oldroyd-B Bio Nano-Fluid within a Channel. Fractal Fract. 2022, 6, 712. [Google Scholar] [CrossRef]
- Eyebe, G.J.; Betchewe, G.; Mohamadou, A.; Kofane, T.C. Nonlinear Vibration of a Nonlocal Nanobeam Resting on Fractional-Order Viscoelastic Pasternak Foundations. Fractal Fract. 2018, 2, 21. [Google Scholar] [CrossRef]
- Alazman, I.; Alkahtani, B.S.T. Investigation of Novel Piecewise Fractional Mathematical Model for COVID-19. Fractal Fract. 2022, 6, 661. [Google Scholar] [CrossRef]
- Sajid, M.; Chaudhary, H.; Allahem, A.; Kaushik, S. Chaos Controllability in Fractional-Order Systems via Active Dual Combination–Combination Hybrid Synchronization Strategy. Fractal Fract. 2022, 6, 717. [Google Scholar] [CrossRef]
- Bertsias, P.; Psychalinos, C.; Minaei, S.; Yesil, A.; Elwakil, A.S. Fractional-order inverse filters revisited: Equivalence with fractional-order controllers. Microelectron. J. 2023, 131, 105646. [Google Scholar] [CrossRef]
- Meng, X.; Jiang, B.; Karimi, H.R.; Gao, C. An event-triggered mechanism to observer-based sliding mode control of fractional-order uncertain switched systems. ISA Trans. 2022, 135, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, H.; Zhang, J.; Yang, F.; Tong, L.; Yan, D.; Yang, H.; Wang, Y. State of charge estimation under different temperatures using unscented Kalman filter algorithm based on fractional-order model with multi-innovation. J. Energy Storage 2022, 56, 106101. [Google Scholar] [CrossRef]
- Jin, X.-C.; Lu, J.-G.; Zhang, Q.-H. Delay-dependent and order-dependent conditions for stability and stabilization of fractional-order memristive neural networks with time-varying delays. Neurocomputing 2023, 522, 53–63. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Rodríguez-Germá, L.; Trujillo, J.J. Complex Grünwald–Letnikov, Liouville, Riemann–Liouville, and Caputo derivatives for analytic functions. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4174–4182. [Google Scholar] [CrossRef]
- Scherer, R.; Kalla, S.L.; Tang, Y.; Huang, J. The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef]
- Haq, A.; Sukavanam, N. Existence and partial approximate controllability of nonlinear Riemann–Liouville fractional systems of higher order. Chaos Solitons Fractals 2022, 165, 112783. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Altanji, M. Fractional models of falling object with linear and quadratic frictional forces considering Caputo derivative. Chaos Solitons Fractals 2023, 166, 112980. [Google Scholar] [CrossRef]
- Shukla, K.; Sapra, P. Fractional Calculus and Its Applications for Scientific Professionals: A Literature Review. Int. J. Mod. Math. Sci. 2019, 17, 111–137. [Google Scholar]
- Frikh, M.L.; Soltani, F.; Bensiali, N.; Boutasseta, N.; Fergani, N. Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches. Comput. Electr. Eng. 2021, 95, 107410. [Google Scholar] [CrossRef]
- Dudhe, S.; Kumar Dheer, D.; Lloyds Raja, G. Modeling and control of suction pressure in portable meconium aspirator system using fractional order IMC-PID controller and RDR techniques. Mater. Today Proc. 2023, 80, 320–326. [Google Scholar] [CrossRef]
- Xuet, D.; Chen, Y.; Systems, I. A comparative introduction of four fractional order controllers. In Proceedings of the 4th World Congress on Intelligent Control and Automation, online, 10–14 June 2002; pp. 3228–3235. [Google Scholar]
- Hasan, R.; Masud, M.S.; Haque, N.; Abdussami, M.R. Frequency control of nuclear-renewable hybrid energy systems using optimal PID and FOPID controllers. Heliyon 2022, 8, e11770. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, E.; Güzelkaya, M.; Eksin, İ. Analytical fractional PID controller design based on Bode’s ideal transfer function plus time delay. ISA Trans. 2019, 91, 196–206. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V. Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator. AEU-Int. J. Electron. Commun. 2017, 79, 219–233. [Google Scholar] [CrossRef]
- Dastjerdi, A.A.; Vinagre, B.M.; Chen, Y.Q.; HosseinNia, S.H. Linear fractional order controllers; A survey in the frequency domain. Annu. Rev. Control 2019, 47, 51–70. [Google Scholar] [CrossRef]
- Vanitha, D.; Rathinakumar, M. Fractional order PID controlled PV buck boost converter with coupled inductor. Int. J. Power Electron. Drive Syst. 2017, 8, 1401–1407. [Google Scholar]
- Soriano-Sánchez, A.G.; Rodríguez-Licea, M.A.; Pérez-Pinal, F.J.; Vázquez-López, J.A. Fractional-order approximation and synthesis of a PID controller for a buck converter. Energies 2020, 13, 629. [Google Scholar] [CrossRef]
- Mollaee, H.; Ghamari, S.M.; Saadat, S.A.; Wheeler, P. A novel adaptive cascade controller design on a buck–boost DC–DC converter with a fractional-order PID voltage controller and a self-tuning regulator adaptive current controller. IET Power Electron. 2021, 14, 1920–1935. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, B.; Jiang, Y. Analysis and Modeling of Fractional-Order Buck Converter Based on Riemann-Liouville Derivative. IEEE Access 2019, 7, 162768–162777. [Google Scholar] [CrossRef]
- Kumar, V.A.; Mouttou, A. Improved performance with fractional order control for asymmetrical cascaded h-bridge multilevel inverter. Bull. Electr. Eng. Inform. 2020, 9, 1335–1344. [Google Scholar] [CrossRef]
- Silva Júnior, D.C.; Oliveira, J.G.; de Almeida, P.M.; Boström, C. Control of a multi-functional inverter in an AC microgrid–Real-time simulation with control hardware in the loop. Electr. Power Syst. Res. 2019, 172, 201–212. [Google Scholar] [CrossRef]
- Lai, J.; Yin, X.; Yin, X.; Jiang, L. Fractional order harmonic disturbance observer control for three-phase LCL-type inverter. Control Eng. Pract. 2021, 107, 104697. [Google Scholar] [CrossRef]
- Arulmurugan, R.; Suthanthiravanitha, N. Improved Fractional Order VSS Inc-Cond MPPT Algorithm for Photovoltaic Scheme. Int. J. Photoenergy 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Yang, B.; Yu, T.; Shu, H.; Zhu, D.; Zeng, F.; Sang, Y.; Jiang, L. Perturbation observer based fractional-order PID control of photovoltaics inverters for solar energy harvesting via Yin-Yang-Pair optimization. Energy Convers. Manag. 2018, 171, 170–187. [Google Scholar] [CrossRef]
- Tasnin, W.; Saikia, L.C.; Raju, M. Deregulated AGC of multi-area system incorporating dish-Stirling solar thermal and geothermal power plants using fractional order cascade controller. Int. J. Electr. Power Energy Syst. 2018, 101, 60–74. [Google Scholar] [CrossRef]
- Nosrati, K.; Mansouri, H.R.; Saboori, H. Fractional-order PID controller design of frequency deviation in a hybrid renewable energy generation and storage system. CIRED-Open Access Proc. J. 2017, 2017, 1148–1152. [Google Scholar] [CrossRef]
- Pan, I.; Das, S. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 2016, 62, 19–29. [Google Scholar] [CrossRef]
- Gül, O.; Tan, N. Application of fractional-order voltage controller in building-integrated photovoltaic and wind turbine system. Meas. Control 2019, 52, 1145–1158. [Google Scholar] [CrossRef]
- Pathak, D.; Gaur, P. A fractional order fuzzy-proportional-integral-derivative based pitch angle controller for a direct-drive wind energy system. Comput. Electr. Eng. 2019, 78, 420–436. [Google Scholar] [CrossRef]
- Asgharnia, A.; Jamali, A.; Shahnazi, R.; Maheri, A. Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller. ISA Trans. 2020, 96, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Beschi, M.; Padula, F.; Visioli, A. Fractional robust PID control of a solar furnace. Control Eng. Pract. 2016, 56, 190–199. [Google Scholar] [CrossRef]
- Sahin, E. A PSO Optimized Fractional-Order PID Controller for a PV System with DC-DC Boost Converter. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014; pp. 477–481. [Google Scholar]
- Ramadan, H.S. Optimal fractional order PI control applicability for enhanced dynamic behavior of on-grid solar PV systems. Int. J. Hydrogen Energy 2017, 42, 4017–4031. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Member, S.; Mohamed, E.A.; Elmelegi, A. Optimum Modified Fractional Order Controller for Future Electric Vehicles and Renewable Energy-Based Interconnected Power Systems. IEEE Access 2021, 9, 29993–30010. [Google Scholar] [CrossRef]
- Elmelegi, A.; Mohamed, E.A.; Aly, M.; Ahmed, E.M.; Mohamed, A.A.A.; Elbaksawi, O. Optimized Tilt Fractional Order Cooperative Controllers for Preserving Frequency Stability in Renewable Energy-Based Power Systems. IEEE Access 2021, 9, 8261–8277. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H.; Ferahtia, S.; Ghoniem, R.M.; Alkanhel, R.; Ghoniem, M.M. A New Fractional-Order Load Frequency Control for Multi-Renewable Energy Interconnected Plants Using Skill Optimization Algorithm. Sustainability 2022, 14, 14999. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Azar, A.T.; Aslam, S.; Alkhalifah, T.; Alturise, F. Optimized Fractional Order Integral-Tilt Derivative Controller for Frequency Regulation of Interconnected Diverse Renewable Energy Resources. IEEE Access 2022, 10, 43514–43527. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Ahmed, E.M.; Elmelegi, A.; Aly, M.; Elbaksawi, O.; Mohamed, A.A.A. An Optimized Hybrid Fractional Order Controller for Frequency Regulation in Multi-Area Power Systems. IEEE Access 2020, 8, 213899–213915. [Google Scholar] [CrossRef]
- Yu, K.N.; Liao, C.K.; Yau, H.T. A New Fractional-Order Based Intelligent Maximum Power Point Tracking Control Algorithm for Photovoltaic Power Systems. Int. J. Photoenergy 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Yang, B.; Yu, T.; Shu, H.; Zhu, D.; An, N.; Sang, Y.; Jiang, L. Energy reshaping based passive fractional-order PID control design and implementation of a grid-connected PV inverter for MPPT using grouped grey wolf optimizer. Sol. Energy 2018, 170, 31–46. [Google Scholar] [CrossRef]
- Mu, H.; Xiong, R.; Zheng, H.; Chang, Y.; Chen, Z. A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy 2017, 207, 384–393. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Chen, Z. Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation. Appl. Energy 2020, 278, 115736. [Google Scholar] [CrossRef]
- Guo, R.; Shen, W. Online state of charge and state of power co-estimation of lithium-ion batteries based on fractional-order calculus and model predictive control theory. Appl. Energy 2022, 327, 120009. [Google Scholar] [CrossRef]
- Chen, L.; Guo, W.; Lopes, A.M.; Wu, R.; Li, P.; Yin, L. State-of-charge estimation for lithium-ion batteries based on incommensurate fractional-order observer. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107059. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, S.; Wang, K.; Jiang, K. A Fractional-order Model for Liquid Metal Batteries. Energy Procedia 2019, 158, 4690–4695. [Google Scholar] [CrossRef]
- Lu, X.; Li, H.; Chen, N. An indicator for the electrode aging of lithium-ion batteries using a fractional variable order model. Electrochim. Acta 2019, 299, 378–387. [Google Scholar] [CrossRef]
- Ruan, H.; Sun, B.; Jiang, J.; Zhang, W.; He, X.; Su, X.; Bian, J.; Gao, W. A modified-electrochemical impedance spectroscopy-based multi-time-scale fractional-order model for lithium-ion batteries. Electrochim. Acta 2021, 394, 139066. [Google Scholar] [CrossRef]
- Zhu, G.; Kong, C.; Wang, J.V.; Kang, J.; Yang, G.; Wang, Q. A fractional-order model of lithium-ion battery considering polarization in electrolyte and thermal effect. Electrochim. Acta 2023, 438, 141461. [Google Scholar] [CrossRef]
- Fouda, M.E.; Elwakil, A.S.; Radwan, A.G.; Allagui, A. Power and energy analysis of fractional-order electrical energy storage devices. Energy 2016, 111, 785–792. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, M.; Liu, W.; Zheng, M. A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter. Energy 2019, 187, 115880. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, T.; Zhang, X.; Wang, J.; Shu, H.; Li, S.; He, T.; Yang, L.; Yu, T. Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach. Energy 2020, 191, 116510. [Google Scholar] [CrossRef]
- He, L.; Wang, Y.; Wei, Y.; Wang, M.; Hu, X.; Shi, Q. An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery. Energy 2022, 244, 122627. [Google Scholar] [CrossRef]
- Guo, D.; Yang, G.; Feng, X.; Han, X.; Lu, L.; Ouyang, M. Physics-based fractional-order model with simplified solid phase diffusion of lithium-ion battery. J. Energy Storage 2020, 30, 101404. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Zhao, D.; Zhang, C. Adaptive state of charge estimation for lithium-ion batteries based on implementable fractional-order technology. J. Energy Storage 2020, 32, 101838. [Google Scholar] [CrossRef]
- Liu, C.; Hu, M.; Jin, G.; Xu, Y.; Zhai, J. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model. J. Energy Storage 2021, 41, 102954. [Google Scholar] [CrossRef]
- Solomon, O.O.; Zheng, W.; Chen, J.; Qiao, Z. State of charge estimation of Lithium-ion battery using an improved fractional-order extended Kalman filter. J. Energy Storage 2022, 49, 104007. [Google Scholar] [CrossRef]
- Miao, Y.; Gao, Z. Estimation for state of charge of lithium-ion batteries by adaptive fractional-order unscented Kalman filters. J. Energy Storage 2022, 51, 104396. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Chen, M.; Yu, F.; Li, M. A fractional-order model of lithium-ion batteries and multi-domain parameter identification method. J. Energy Storage 2022, 50, 104595. [Google Scholar] [CrossRef]
- Wu, J.; Fang, C.; Jin, Z.; Zhang, L.; Xing, J. A multi-scale fractional-order dual unscented Kalman filter based parameter and state of charge joint estimation method of lithium-ion battery. J. Energy Storage 2022, 50, 104666. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.; Jing, B.; Yang, C.; Ji, J.; Zhao, Z. Fractional variable-order calculus based state of charge estimation of Li-ion battery using dual fractional order Kalman filter. J. Energy Storage 2022, 52, 104685. [Google Scholar] [CrossRef]
- Abdullaeva, B.; Opulencia, M.J.C.; Borisov, V.; Uktamov, K.F.; Abdelbasset, W.K.; Al-Nussair, A.K.J.; Abdulhasan, M.M.; Thangavelu, L.; Jabbar, A.H. Optimal variable estimation of a Li-ion battery model by fractional calculus and bio-inspired algorithms. J. Energy Storage 2022, 54, 105323. [Google Scholar] [CrossRef]
- Guo, H.; Han, X.; Yang, R.; Shi, J. State of charge estimation for lithium-ion batteries based on fractional order multiscale algorithm. J. Energy Storage 2022, 55, 105630. [Google Scholar] [CrossRef]
- Rodríguez-Iturriaga, P.; Alonso-del-Valle, J.; Rodríguez-Bolívar, S.; Anseán, D.; Viera, J.C.; López-Villanueva, J.A. A novel Dual Fractional-Order Extended Kalman Filter for the improved estimation of battery state of charge. J. Energy Storage 2022, 56, 105810. [Google Scholar] [CrossRef]
- Mao, S.; Yu, Z.; Zhang, Z.; Lv, B.; Sun, Z.; Huai, R.; Chang, L.; Li, H. Parameter identification method for the variable order fractional-order equivalent model of lithium-ion battery. J. Energy Storage 2023, 57, 106273. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Wang, J.; Shu, H.; Li, D.; Zeng, C.; Chen, Y.; Zhang, X.; Yu, T. Robust fractional-order PID control of supercapacitor energy storage systems for distribution network applications: A perturbation compensation based approach. J. Clean. Prod. 2021, 279, 123362. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.; Podlubny, I.; Gong, F.; Sun, Y.; Zhang, Q.; Shang, Y.; Duan, B.; Zhang, C. Fractional-order modeling of lithium-ion batteries using additive noise assisted modeling and correlative information criterion. J. Adv. Res. 2020, 25, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, S.E.; Peng, H.; Liu, Z. Fractional-order modeling and parameter identification for lithium-ion batteries. J. Power Sources 2015, 293, 151–161. [Google Scholar] [CrossRef]
- Mawonou, K.S.R.; Eddahech, A.; Dumur, D.; Beauvois, D.; Godoy, E. Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter. J. Power Sources 2019, 435, 226710. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Yu, M.; Zhou, Z.; Zhang, Q.; Duan, B.; Shang, Y.; Zhang, C. Variable fractional order-A comprehensive evaluation indicator of lithium-ion batteries. J. Power Sources 2020, 448, 227411. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, G.; Li, X.; Chen, Z. A fractional-order model-based state estimation approach for lithium-ion battery and ultra-capacitor hybrid power source system considering load trajectory. J. Power Sources 2020, 449, 227543. [Google Scholar] [CrossRef]
- Saxena, A.; Shankar, R. Improved load frequency control considering dynamic demand regulated power system integrating renewable sources and hybrid energy storage system. Sustain. Energy Technol. Assess. 2022, 52, 102245. [Google Scholar] [CrossRef]
- Prasad, E.N.V.D.V.; Sahani, M.; Dash, P.K. A new adaptive integral back stepping fractional order sliding mode control approach for PV and wind with battery system based DC microgrid. Sustain. Energy Technol. Assess. 2022, 52, 102261. [Google Scholar] [CrossRef]
- Morsali, J. Fractional order control strategy for superconducting magnetic energy storage to take part effectually in automatic generation control issue of a realistic restructured power system. J. Energy Storage 2022, 55, 105764. [Google Scholar] [CrossRef]
- Saha, S.K.; Takano, T.; Fushimi, K.; Sakairi, M.; Saito, R. Passivity of iron surface in curing cement paste environment investigated by electrochemical impedance spectroscopy and surface characterization techniques. Surf. Interfaces 2023, 36, 102549. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Deng, Z.; Yang, L. Application of electrochemical impedance spectroscopy in battery management system: State of charge estimation for aging batteries. J. Energy Storage 2023, 57, 106275. [Google Scholar] [CrossRef]
Sections | Objectives |
---|---|
2. Fractional-order systems | Mathematical formulation of FO systems, Definitions of FO operators, FO controller, FO-based converters and inverters |
3. Fractional-order techniques and renewable energy sources | Applications of FO methods in RESs, description of different methods, Evaluation of numerical results, Discussion about the effect of FO methods on the energy system of RESs |
4. Fractional-order techniques and energy storage systems | Applications of FO methods in ESSs, explanation of various techniques, Evaluation of numerical results, Discussion about the advantages and disadvantages of FO methods in the energy system of ESSs |
5. Future perspectives | Future perspective on FO methods, Presenting some suggestions for future works on fractional-order systems |
6. Conclusion | Conclusion of the literature review and summary of advantages and disadvantages of FO methods |
Ref. | Type of Controller | Remark | Optimization/Analytical Method | Application |
---|---|---|---|---|
[94] | FOPID | Improving buck–boost efficiency with simulink | Analytical frequency domain design method | PV |
[95] | FOPID | Tuning attached controller to DC-DC converter with simulink | Analytical frequency domain design method | PV |
[97] | FOPID | Buck converter based on RLD | RLD | PV |
[98] | FOPID | Asymmetrical cascaded H-bridge multi-level inverter with simulink | Analytical frequency domain design method | PV |
[101] | FO controller | MPPT | Inc-Cond algorithm | PV |
[102] | FOPID | MPPT | Yin yang pair algorithm | PV and WT |
[103] | FOPI- FOPID | Deregulated AGC | Sine cosine algorithm | Geothermal plant |
[104] | FOPID | Minimizing mean square error with simulink | Analytical frequency domain design method | RESs |
[105] | Fuzzy FOPID | Chaos control | PSO | RESs |
[106] | FO controller | Model control and space vector PWM | Analytical frequency domain design method | PV and WT |
[107] | Fuzzy FOPID | Tuning WT inverter | TLBO | WT |
[108] | FOPID | Pitch angle RBF neural network | Chaotic optimization | WT |
[109] | FOPID | Generalized isodamping technique | Gain-scheduling algorithm | Solar system |
[110] | FOPID | Yuning attached controller to DC-DC converter | PSO | HES |
[111] | FOPI | Enhancing dynamic behavior | Metaheuristic algorithms | PV |
[112] | FOPID-TID | load frequency control | Artificial ecosystem-based optimization | RESs |
[113] | Fractional based TID | LFC and VIC | HGAPSO | RESs |
[114] | FOPD-LFC | ITAE minimizing | SO algorithms | RESs |
[115] | FOI-TD | Fitness-dependent optimizer | Hybrid sine cosine algorithm | RESs |
[116] | FOPID | LFC and SEES controlling | Manta ray foraging optimization | RESs |
[117] | FOPID | MPPT | Inc-Cond algorithm | PV |
[118] | FOPID | MPPT | GWO | PV |
Ref. | ESS Model | FO-Based Structures and Techniques | Main Objectives | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LIB | Supercapacitor | LMB | SMESS | Battery | EIS | GA | KF | SMT | PSO | HGAPSO | LSA | PTM | HGPO | MCA | ANA | KHO | ACA | ITLO | MGSO | SOC | Temperature | Voltage | SOP | Electrode aging | Control costs | Solid phase diffusion | SOH | |
[119] | * | * | * | * | * | * | ||||||||||||||||||||||
[120] | * | * | * | * | * | * | ||||||||||||||||||||||
[121] | * | * | * | * | ||||||||||||||||||||||||
[122] | * | * | * | * | ||||||||||||||||||||||||
[123] | * | * | * | * | ||||||||||||||||||||||||
[124] | * | * | * | |||||||||||||||||||||||||
[125] | * | * | * | * | ||||||||||||||||||||||||
[126] | * | * | * | * | ||||||||||||||||||||||||
[127] | * | * | ||||||||||||||||||||||||||
[128] | * | * | * | * | ||||||||||||||||||||||||
[34] | * | * | * | * | ||||||||||||||||||||||||
[129] | * | * | * | |||||||||||||||||||||||||
[130] | * | * | * | * | * | |||||||||||||||||||||||
[131] | * | * | * | * | ||||||||||||||||||||||||
[132] | * | * | * | * | * | * | ||||||||||||||||||||||
[133] | * | * | * | * | ||||||||||||||||||||||||
[134] | * | * | * | * | * | |||||||||||||||||||||||
[135] | * | * | * | * | ||||||||||||||||||||||||
[136] | * | * | * | * | ||||||||||||||||||||||||
[137] | * | * | * | * | ||||||||||||||||||||||||
[138] | * | * | * | * | ||||||||||||||||||||||||
[22] | * | * | * | * | * | |||||||||||||||||||||||
[139] | * | * | * | * | * | |||||||||||||||||||||||
[140] | * | * | * | * | * | * | ||||||||||||||||||||||
[141] | * | * | * | * | ||||||||||||||||||||||||
[142] | * | * | * | * | ||||||||||||||||||||||||
[143] | * | * | * | * | ||||||||||||||||||||||||
[144] | * | * | * | * | ||||||||||||||||||||||||
[145] | * | * | * | * | ||||||||||||||||||||||||
[146] | * | * | * | * | * | |||||||||||||||||||||||
[147] | * | * | * | * | ||||||||||||||||||||||||
[148] | * | * | * | * | * | * | * | |||||||||||||||||||||
[149] | * | * | ||||||||||||||||||||||||||
[150] | * | * | * | |||||||||||||||||||||||||
[151] | * | * | * |
Identification Method | Refs. |
---|---|
Hybrid of genetic algorithm and particle swarm optimization | [119,136] |
Global optimization | [22,120] |
Hybrid pulse tests | [121] |
Particle swarm optimization | [122,133,134,142,145,148] |
Electrochemical impedance spectroscopy | [123,125,141,144,146,147] |
Least squares method | [124] |
Pseudo-two-dimensional electrochemical method | [126] |
Specific current condition test | [128] |
Genetic algorithm | [130,137] |
Decoupling the dynamics in frequency and spatial domain | [131] |
Dynamic stress test | [132,139] |
Augmented vector method | [135] |
Forgetting factor recursive least squares method | [138] |
Ant colony algorithm | [140] |
Control Strategy | Control Parameters | ||||
---|---|---|---|---|---|
ST (s) | PT (s) | MP (Pu) | ISE | ITMAE | |
PID | 25.85 | 1.76 | 0.07 | 0.04 | 7.67 |
TID | 25.23 | 1.74 | 0.06 | 0.03 | 6.04 |
FOPID | 17.81 | 1.74 | 0.04 | 0.02 | 3.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alilou, M.; Azami, H.; Oshnoei, A.; Mohammadi-Ivatloo, B.; Teodorescu, R. Fractional-Order Control Techniques for Renewable Energy and Energy-Storage-Integrated Power Systems: A Review. Fractal Fract. 2023, 7, 391. https://doi.org/10.3390/fractalfract7050391
Alilou M, Azami H, Oshnoei A, Mohammadi-Ivatloo B, Teodorescu R. Fractional-Order Control Techniques for Renewable Energy and Energy-Storage-Integrated Power Systems: A Review. Fractal and Fractional. 2023; 7(5):391. https://doi.org/10.3390/fractalfract7050391
Chicago/Turabian StyleAlilou, Masoud, Hatef Azami, Arman Oshnoei, Behnam Mohammadi-Ivatloo, and Remus Teodorescu. 2023. "Fractional-Order Control Techniques for Renewable Energy and Energy-Storage-Integrated Power Systems: A Review" Fractal and Fractional 7, no. 5: 391. https://doi.org/10.3390/fractalfract7050391
APA StyleAlilou, M., Azami, H., Oshnoei, A., Mohammadi-Ivatloo, B., & Teodorescu, R. (2023). Fractional-Order Control Techniques for Renewable Energy and Energy-Storage-Integrated Power Systems: A Review. Fractal and Fractional, 7(5), 391. https://doi.org/10.3390/fractalfract7050391