Qualitative and Quantitative Analysis of Fractional Dynamics of Infectious Diseases with Control Measures
Abstract
:1. Introduction
2. Theory of Fractional Calculus
3. Evaluation of the Model
Model Analysis
4. Existence Theory
- (A1) Constants , and are considered such that
- S1: We shall demonstrate the continuity of T in the first step. For this, we assume that is continuous for , which also means that is continuous. Here, take , in a way that . Further, take the following:
- This implies that the operator T is continuous, because is true as long as is continuous.
- S2: The boundedness of the operator T will be investigated in the second step. If we select any , then, we have
- S3: In the third stage, we select that to demonstrate the equi-continuity, and that , otherwise, the following:
- S4: In the final step of the theorem, we take the following:
5. Ulam–Hyers Stability
- (1) and ,
- (2)
- (a) , in which ,
- (b)
6. Numerical Results and Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierce-Williams, R.A.; Sheffield, J.S. Hepatitis B in the Perinatal Period. In Neonatal Infections: Pathophysiology, Diagnosis, and Management; Springer: Cham, Switzerland, 2018; pp. 103–109. [Google Scholar]
- Zheng, Y.; Wu, J.; Ding, C.; Xu, K.; Yang, S.; Li, L. Disease burden of chronic hepatitis B and complications in China from 2006 to 2050: An individual-based modeling study. Virol. J. 2020, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Cui, J.A.; Zhou, X. Dynamical behavior of a hepatitis B virus transmission model with vaccination. J. Theor. Biol. 2010, 265, 572–578. [Google Scholar] [CrossRef]
- Medley, G.F.; Lindop, N.A.; Edmunds, W.J.; Nokes, D.J. Hepatitis-B virus endemicity: Heterogeneity, catastrophic dynamics and control. Nat. Med. 2001, 7, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Thornley, S.; Bullen, C.; Roberts, M. Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy. J. Theor. Biol. 2008, 254, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Zhang, W.; Ruan, S. Modeling the transmission dynamics and control of hepatitis B virus in China. J. Theor. Biol. 2010, 262, 330–338. [Google Scholar] [CrossRef]
- Pang, J.; Cui, J.A.; Hui, J. The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn. 2012, 67, 723–734. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Song, S. Dynamics of an HBV model with diffusion and delay. J. Theor. Biol. 2008, 253, 36–44. [Google Scholar] [CrossRef]
- Xu, R.; Ma, Z. An HBV model with diffusion and time delay. J. Theor. Biol. 2009, 257, 499–509. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, Z.; Lu, Y. A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. Int. J. Epidemiol. 2000, 29, 744–752. [Google Scholar] [CrossRef]
- Khan, M.A.; Islam, S.; Arif, M. Transmission model of hepatitis B virus with the migration effect. Biomed Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, K.; Zhang, X. Modeling and analyzing the transmission dynamics of HBV epidemic in Xinjiang, China. PLoS ONE 2015, 10, e0138765. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Islam, S.; Zaman, G. Media coverage campaign in Hepatitis B transmission model. Appl. Math. Comput. 2018, 331, 378–393. [Google Scholar] [CrossRef]
- Alrabaiah, H.; Safi, M.A.; DarAssi, M.H.; Al-Hdaibat, B.; Ullah, S.; Khan, M.A.; Shah, S.A.A. Optimal control analysis of hepatitis B virus with treatment and vaccination. Results Phys. 2020, 19, 103599. [Google Scholar] [CrossRef]
- Sowndarrajan, P.T.; Shangerganesh, L.; Debbouche, A.; Torres, D.F. Optimal control of a heroin epidemic mathematical model. Optimization 2022, 71, 3107–3131. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Opoku, M.O.; Wiah, E.N.; Okyere, E.; Sackitey, A.L.; Essel, E.K.; Moore, S.E. Stability Analysis of Caputo Fractional Order Viral Dynamics of Hepatitis B Cellular Infection. Math. Comput. Appl. 2023, 28, 24. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Abdeljawad, T.; Iqbal, S.; Naheed, S. On certain fractional calculus operators and applications in mathematical physics. Phys. Scr. 2020, 95, 115210. [Google Scholar] [CrossRef]
- Jan, R.; Boulaaras, S. Analysis of fractional-order dynamics of dengue infection with non-linear incidence functions. Trans. Inst. Meas. Control 2022, 44, 2630–2641. [Google Scholar] [CrossRef]
- Tang, T.Q.; Shah, Z.; Jan, R.; Deebani, W.; Shutaywi, M. A robust study to conceptualize the interactions of CD4+ T-cells and human immunodeficiency virus via fractional-calculus. Phys. Scr. 2021, 96, 125231. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Granas, A.; Dugundji, J. Elementary fixed point theorems. In Fixed Point Theory; Springer: New York, NY, USA, 2003; pp. 9–84. [Google Scholar]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Martcheva, M. An Introduction to Mathematical Epidemiology; Springer: New York, NY, USA, 2015; Volume 61, pp. 9–31. [Google Scholar]
- Ullam, S.M. Problems in Modern Mathematics (Chapter VI); Wiley: New York, NY, USA, 1940. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative Study on Solutions of a Hadamard Variable Order Boundary Problem via the Ulam-Hyers-Rassias Stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Atangana, A.; Owolabi, K.M. New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 2018, 13, 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyobi, S.; Jan, R. Qualitative and Quantitative Analysis of Fractional Dynamics of Infectious Diseases with Control Measures. Fractal Fract. 2023, 7, 400. https://doi.org/10.3390/fractalfract7050400
Alyobi S, Jan R. Qualitative and Quantitative Analysis of Fractional Dynamics of Infectious Diseases with Control Measures. Fractal and Fractional. 2023; 7(5):400. https://doi.org/10.3390/fractalfract7050400
Chicago/Turabian StyleAlyobi, Sultan, and Rashid Jan. 2023. "Qualitative and Quantitative Analysis of Fractional Dynamics of Infectious Diseases with Control Measures" Fractal and Fractional 7, no. 5: 400. https://doi.org/10.3390/fractalfract7050400
APA StyleAlyobi, S., & Jan, R. (2023). Qualitative and Quantitative Analysis of Fractional Dynamics of Infectious Diseases with Control Measures. Fractal and Fractional, 7(5), 400. https://doi.org/10.3390/fractalfract7050400