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Abstract: This research article investigates the application of Lévy noise to understand the dynamic
aspects of measles epidemic modeling and seeks to explain the impact of vaccines on the spread
of the disease. After model formulation, the study utilises uniqueness and existence techniques to
derive a positive solution to the underlying stochastic model. The Lyapunov function is used to
investigate the stability results associated with the proposed stochastic model. The model’s dynamic
characteristics are analyzed in the vicinity of the infection-free and endemic states of the associated
ODEs model. The stochastic threshold Rs that ensures disease’s extinction whenever Rs < 1 is
calculated. We utilized data from Pakistan in 2019 to estimate the parameters of the model and
conducted simulations to forecast the future behavior of the disease. The results were compared to
actual data using standard curve fitting tools.

Keywords: stochastic models; Lévy jump; persistence; parameter estimation; real data; measles
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1. Introduction

The measles infection, also called rubella, is extremely contagious and spreads through-
out the globe. It is caused by the virus Morbilli, related to the community of Paramyxoviri-
dae [1,2]. Vaccination is a powerful tool in reducing the impact of the disease over time.
However, the force of mortality continues to affect young children under the age of five [3].
Measles infects ten million children each year, and millions of them die due to factors
such as the unavailability of a balanced diet, weak digestion, and pneumonia [4]. Disease
spread is caused by personal contact, sneezing, coughing, and contact with airborne and
nasal droplets. The virus stays active for approximately two hours, and remains highly
contagious during this period. The initial symptoms of the disease include nasal discharge,
sore throat, and the presence of small white spots on the tongue. In later stages, coughing
may occur. The typical incubation period for this infection is about four days before the
appearance of the rash, and lasts for nearly five days after the rash appears. The mean
incubation time is about fourteen or fifteen days, changing with external factors such as the
environment and weather of the surroundings [5]. In real practice, vaccinated people may
suffer side-effects, or it may be the case that vaccines are not available. On the other hand,
vaccination acts as a preventive measure against measles, reducing the incidence rate by up
to 73% over the past eighteen years. According to the World Health Organisation, Measles
is present in many developed countries around the world, particularly in Asia and Africa.
More than one hundred and fifty thousand people died due to measles in 2018. In the
meantime, the death to infection ratio has decreased by about 85 percent [6,7]. According to
reports from the WHO, nearly 110,000 people died in 2017 due to measles, with a majority
of them being children under six years old. This highlights the need for effective and safe
vaccination [8]. The discovery of vaccines for infectious diseases has lowered the ratio of
death and infection to a large extent. This process saves about three hundred thousand
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individuals from death each year. Vaccines produce antibodies that act against reinfection
and strengthen the immune system [9]. Specifically, measles can be controlled by the MMR
vaccines. These vaccines are considered very safe for both children and the elderly, and can
reduce the severity of measles infection to a great extent. According to studies, one dose of
the MMR vaccine can prevent disease in around 91% of cases, while two doses can provide
approximately 95% protection. Other diseases such as the mumps can be controlled by this
vaccine as well [10]. Nigeria experiences periodic outbreaks of measles, as the disease is
endemic in the country. The disease spreads in Nigeria during all seasons of the year, and
is highly contiguous during dry weather.

In addition, Pakistan is among the countries in the WHO’s Eastern Mediterranean
Region most highly burdened by measles [11]. Over the past 9 to 12 years, there has been a
sharp increase in measles outbreaks throughout Pakistan; some 2845 cases of measles were
reported in Pakistan in 2016. This number increased to 6791 in 2017 and 33,007 in 2018,
which represents approximately 43%, 21%, and 50% of all cases reported in the Eastern
Mediterranean region comprising 23 countries [11]. Nearly 129 children died from measles
in 2017, and in 2018 the number increased to about 300 [12].

Mathematical modeling is regarded as a significant and powerful approach for ex-
amining and forecasting the dynamic patterns of epidemics [7,12–14]. Most of the models
used to date employ the integer order derivative, and their analysis is related to classical
theory. The foundation of a mathematical modeling relies heavily on the availability of
biological information and data regarding the epidemic under consideration. Mathematical
models for the measles have wide application for understanding its spreading dynamics
and controlling it. White noise plays a vital role in explaining the dynamics of physical and
biological problems. The impact of external environmental factors such as white noise on
the dynamics of measles epidemics is significant [15]. Due to the non-homogeneity and
nonlinearity of population interactions and other complexities, epidemic prediction cannot
be depicted using traditional modeling approaches. Moreover, the dynamics and control of
various epidemics may be affected by global environmental factors.

The human population is subject to many complex and random variations in the
real world. Therefore, stochastic models are a more appropriate technique for modelling
epidemics. It has been demonstrated that stochastic models are more realistic compared to
deterministic models. Several researchers have recently focused on perturbations that can
capture the true dynamics of the epidemic based on stochastic modelling [13,15,16]. The
Lévy white noise is important at various velocities for the spacing of threshold parameters.
Adding Lévy noise terms can lead to more realistic and accurate results in stochastically
analyzed models for various infectious diseases. The stochastic version of the underlying
deterministic mode can be obtained by including this noise in the aforementioned systems.
Typically, two types of noise are utilized in such models, namely, Lévy noise and Gaussian
noise. The Lévy noise is more suitable than the Gaussian noise because the resulting system
is able to model systems with a higher degree of complexity [16–19]. Due to fluctuations in
diffusion problems, disturbances cannot be described by the continuous stochastic model;
thus, it is important to model these phenomena using jump processes. For this reason, we
consider the problem using Lévy noise.

The remainder of this manuscript is structured as follows. In Section 2, we propose a
model based on random processes for the transmission dynamics of measles. In Section 3,
we present the dynamic features of the globalized positive model’s solution. In Sections 4
and 5, we obtain necessary conditions related to disease elimination and persistence of
the proposed stochastic model. We optimize the proposed problem using the cases of
measles infection in the population of Pakistan for January to October 2019 in Section 6. In
Section 7, we verify the theory behind the obtained results qualitatively and quantitatively,
and provide numerical simulations. Finally, we conclude our analysis in Section 8 with
remarks and recommendations for future research work.
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2. Model Formulation

Olumuyiwa et al. [20] recently developed a mathematical model for describing the
infection dynamics of the epidemic measles by using a deterministic approach. The authors
employed the epidemiological concept of population and divided the entire human popu-
lation into six classes, including susceptible, vaccinated, exposed, infectious, hospitalised,
and recovered individuals, respectively denoted by S(t), V(t), E(t), I(t), H(t), and R(t).
The addition to the susceptible population per day is provided by the rate φ. The vulnerable
class is subject to a vaccination rate τ and loses immunity against the disease at a rate ω,
which is commonly known as the “waning rate of vaccination”. The rate of infection for
the susceptible class is denoted by α. Therefore, the term αSI represents the total infection
rate per time unit. Additionally, the transition from the exposed class to the infected class
is represented by β. Individuals in the infected population are hospitalized at a rate ρ and
then recover from measles at a rate γ. The model assumes a constant natural death rate,
denoted by µ, for all population classes. In addition, the infection-related death rate is
provided by the parameter δ. Here, we do not assume any natural recovery from measles
infection. The model chart is illustrated in Figure 1 [21]. The mathematical formulation
of the above discussion can be converted into a model of ordinary differential equations
(ODEs), represented in symbolic form as follows:

dS(t)
t

= −αI(t)S(t) + φ− (µ + τ)S(t) + ωV(t),

dV(t)
t

= −(ω + µ)V(t) + τS(t),

dE(t)
t

= −(β + µ)E(t) + αI(t)S(t),

dI(t)
t

= −(µ + ρ + δ)I(t) + βE(t),

dH(t)
t

= −(µ + γ + δ)H(t) + ρI(t),

dR(t)
t

= −µR(t) + γH(t).

(1)

The threshold parameter for the model (1) is obtained using standard techniques, and
has the following form:

RD
0 =

(µ + ω)φβα

(µ + β)(µ + δ + ρ)(µ + ω + τ)µ
. (2)

Figure 1. Moments of individuals among the classes in the measles model (1) [21].

The main theme of the present manuscript is to modify model (1) by including white
and Lévy noise as well as the incidence rate of nonlinear shapes; the white noise is used
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for the continuity part and the Lévy noise for the jumping part. The extended form of the
deterministic system can be written in stochastic form as follows:

dS =

[
φ− αS(t)I(t)

N(t) + ωV(t)− (τ + µ)S(t)
]

dt + ξ1S(t)dW1(t) +
∫

Y
X1(y)S

(
t−
)
Ñ(dt, dy),

dV =

[
τS(t)− (µ + ω)V(t)

]
dt + ξ2VdW2(t) +

∫
Y
X2(y)V

(
t−
)
Ñ(dt, dy),

dE =

[
αS(t)I(t)
N(t) − (µ + β)E(t)

]
dt + ξ3E(t)dW3(t) +

∫
Y
X3(y)E

(
t−
)
Ñ(dt, dy),

dI =
[

βE(t)− (ρ + δ + µ)I(t)
]

dt + ξ4I(t)dW4(t) +
∫

Y
X4(y)I

(
t−
)
Ñ(dt, dy),

dH =

[
ρI(t)− (γ + δ + µ)H(t)

]
dt + ξ5I(t)dW5(t) +

∫
Y
X5(y)H

(
t−
)
Ñ(dt, dy),

dR =

[
γH(t)− µR(t)

]
dt + ξ6R(t)dW6(t) +

∫
Y
X6(y)R

(
t−
)
Ñ(dt, dy),

(3)

where Wi(t) for i = 1, · · · , 6 is standard Brownian motion defined in a complete probability
space (Ω,F,P) with filtration {Ft}t>0, satisfying the usual condition ξ1, ξ2, ξ3, ξ4, ξ5, with
ξ6 representing the intensity of noise, S(t−),V(t−),E(t−), I(t−),H(t−) and R(t−) being
the left limit of S,V,E, I,H and R, respectively, Ñ = N(dt, dy)− v(dy)dt and N(dy, dt) a
Poisson counting measure with characteristic measure ν on the measurable subset Y of
[0, ∞), and with ν(Y) < ∞ and Xi : Z ×Ω −→ R+, (i = 1, 2, 3, 4, 5, 6) representing the
effect of random jumps, which are assumed to be bounded and continuous with respect to
ν and to be B(Y)× Ft-measurable.
With regard to the model (3), in the present work we are particularly interested in answering
the following questions:

Q1: Does the Lévy noise influence the dynamic properties of measles outbreaks?
Q2: How can contaminated vaccinations contribute to the spread of measles, and what

measures are in place to prevent such incidents?
Q3: What criterion is used to determine the extinction of a disease?
Q4: What are the criteria that indicate the persistence of the system?

3. The Existence of a Positive Solution and Its Uniqueness

In this section, we intend to apply the techniques from [16] to establish a proof of
the existence of a global and positive solution to the proposed stochastic model. To prove
the existence and uniqueness of a solution of model (3), it is important to consider the
following two conditions:

(C1). For every Q > 0 ∃ LQ > 0;∫
Y
|Ai(x1, y)− Ai(x2, y)|2v(dy) ≤ LQ|x1 − x2|2, i = 1, · · · , 6, (4)

for |y1| ∨ |y2| ≤M; here,

A1(x, y) = X1(y)x at x = S(t−),
A2(x, y) = X2(y)x at x = V(t−),
A3(x, y) = X3(y)x at x = E(t−),
A4(x, y) = X4(y)x at x = I(t−),
A5(x, y) = X5(y)x at x = H(t−),
A6(x, y) = X6(y)x at x = R(t−).

(C2). |log(Xi(x))| ≤ C for Xi(x) > −1, i = 1, · · · , 6, C is a positive constant.
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Theorem 1. For a given initial value (S,V,E, I,H,R)(0) ∈ R6
+, system (3) has one global root

(S,V,E, I,H,R)(t) ∈ R6
+ for all t ≥ 0 a.s.

Proof. Using (C1), the results due to drifted and the diffused terms are local Lipschitzian,
for every initial conditions (S,V,E, I,H,R)(0) ∈ R6

+, ∃ a unique localized root (S(t),V(t),
E(t), I(t),H(t),R(t)) on t ∈ [0, τe), τe is the explosion time. To show that the solution is
global, we have to prove that τe = ∞ a.s. In the first attempt, we prove the condition that
(S(t),V(t),E(t), I(t),H(t),R(t)) are not approaching infinity in a finite duration of time.
Let k0 > 0 is too much large such that (S(0),V(0),E(0), I(0),H(0),R(0)) lies in [ 1

k0
, k0]. For

every integer value k ≤ k0, consider the stopping time in the form of

τk = inf
{

t ∈ [0, τe)/(S(t),V(t),E(t), I(t),H(t),R(t)) /∈
(

1
k

, k
)}

. (5)

Let inf ∅ = ∞; from this, we can see that τ+ ≤ τe, which implies that τ+ = ∞ a.s
showing τe = +∞ a.s. Considering that τ+ is less than ∞, there must exist a number T > 0
such that 0 < P(τ+ < T).

Next, let us consider the operator F : R6
+ → R+ from the C2 set in the form of

F(S,V,E, I,H,R) = H+V+ S+ I+E+R− 6− (logS+ logV+ logE+ logI+ logH+ logR). (6)

Applying Itô formula to F for all t ∈ [0, τ+], we have

dF = LF(S,V,E, I,H,R)dt + ξ1(S− 1)dW1(t) + xi2(V− 1)dW2(t)

+ ξ3(E− 1)dW3(t) + ξ4(I− 1)dW4(t) + ξ5(H− 1)dW5(t) + ξ6(R− 1)dW6(t)

+
∫

Υ
[X1(y)S− log(X1(y) + 1)]Ñ(dχ) +

∫
Υ
[X2(y)V− log(1 +X2(y))]Ñ(dχ)

+
∫

Υ
[X3(y)E− log(1 +X3(y))]Ñ(dχ) +

∫
Υ
[X4(y)I− log(1 +X4(y))]Ñ(dχ),

+
∫

Υ
[X5(y)H− log(1 +X5(y))]Ñ(dχ) +

∫
Υ
[X6(y)R− log(1 +X6(y))]Ñ(dχ).

(7)

In Equation (7), LF : R6
+ → R+ is given by using the assumption C2; thus,

LF ≤ φ + 6µ + τ + ω + β + ρ + γ + 2δ +
ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4 + ξ2

5 + ξ2
6

2

+
∫

Y
[X1(y)− log(1 +X1(y))]ν(dy) +

∫
Y
[X2(y)− log(1 +X2(y))]ν(dy)

+
∫

Y
[X3(y)− log(1 +X3(y))]ν(dy) +

∫
Y
[X4(y)− log(1 +X4(y))]ν(dy)

+
∫

Y
[X5(y)− log(1 +X5(y))]ν(dy) +

∫
Y
[X6(y)− log(1 +X6(y))]ν(dy).

(8)

We can refer to Theorem 2.1 of Fatin et al. [16] for the remaining proof, and therefore
we skip it here.

4. Extinction for System (3)

Minimizing the infection effect on any community depends mostly on time and certain
useful conditions taken from analysis of the dynamics of the disease in question. In this
section, the investigation of the main condition for the vanishing of the infection is discussed
through stochastic modeling. To proceed further, we first define the threshold parameter
for the deterministic model (3) as follows:

RD
0 =

(µ + ω)φβα

(µ + β)(µ + δ + ρ)(µ + ω + τ)µ
. (9)
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Based on the standard techniques for stochastic systems, we are now ready to calculate
the threshold number for the stochastic model, which is provided by

Rs =
α[

(µ + β)(µ + δ + ρ) +
ξ2

3
2 +

ξ2
4

2 +
∫

y{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)
] . (10)

Subsequently, we introduce the following concept, which is beneficial for the forth-
coming discourse. 〈

X(t)
〉
=

1
t

∫ t

0
X(w)dw.

Lemma 1 ((Strong Law) [21,22]). If an operator fulfills the condition of continuity of process
Z = {Z}0≤t within a local Martingale as t→ 0, it vanishes; then,

lim
t→∞

〈
Z,Z

〉
t = ∞, a.s., ⇒ lim

t→∞

Zt〈
Z,Z

〉
t
= 0, a.s.

lim
t→∞

sup

〈
Z,Z

〉
t

t
< 0, a.s., ⇒ lim

t→∞

Zt

t
= 0, a.s.

(11)

Theorem 2. Consider a solution (S,V,E, I,H,R)(t) of model (3) with initial condition (S,V,E, I,H,

R)(0) ∈ R6. Next, for q >
(ξ2

1∨ξ2
2∨ξ2

3∨ξ2
4∨ξ2

5∨ξ2
6)

2 and Rs < 1, we have

lim
t→∞

log
〈
E(t)

〉
t

< 0, and lim
t→∞

log
〈
I(t)

〉
t

< 0, a.s.

The above inequality implies that the compartments E(t) and I(t) approaching 0 a.s., showing
the elimination of the disease with unit probability.

Furthermore,

lim
t→∞

〈
S(t)

〉
=

(µ + ω)φ

(µ + ω + τ)µ
,

lim
t→∞

〈
V(t)

〉
=

τφ

µ(τ + ω + µ)
,

lim
t→∞

〈
E(t)

〉
= 0,

lim
t→∞

〈
I(t)

〉
= 0,

lim
t→∞

〈
H(t)

〉
= 0,

lim
t→∞

〈
R(t)

〉
= 0.

(12)

Proof. Let us consider a solution (S,V,E, I,H,R)(t) of the proposed model (3) associ-
ated with the initial condition (S,V,E, I,H,R)(0) in the positive cone of R6

+. Further, let
us define

G1(t) = (β + µ)I(t) + βE(t). (13)

If we differentiate relation (13) and then follow the Ito’ formula, we have
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d(lnG1(t)) =
1

G1

[
αβSI
N − (β + µ)(ρ + δ + µ)I

]
−

β2E2ξ2
3 + (µ + β)2ξ2

4I2

2(G1)2

+
βξ3

[βE(t) + (µ + β)I]EdW3(t) +
(µ + β)ξ4

[E+ (µ + β)I] IdW4(t)

+
∫

y

{
ln
(

1 +
βX3(t)E+ (µ + β)X4(y)I

G1

)
− βX3(y)E+ (µ + β)X4(y)I

G1

}
ν(dy)

+
∫

y
ln
(

1 +
βX3(y)E(t−) + (µ + β)X4I(t−)

G1(t−)

)
Ñ(dχ)

≤ 1
G1

[
αβI− (β + µ)(ρ + δ + µ)I

]
−

β2E2ξ2
3

2(G1)2 −
(µ + β)2ξ2

4I2

2(G1)2

−
∫

y

{
βX3(y)E+ (µ + β)X4(y)I

G1
− ln

(
1 +

βX3(t)E+ (µ + β)X4(y)I
G1

)}
ν(dy)

+
βξ3

[βE(t) + (µ + β)I]EdW3(t) +
(µ + β)ξ4

[E+ (µ + β)I] IdW4(t)

+
∫

y
ln
(

1 +
βX3(y)E(t−) + (µ + β)X4I(t−)

G1(t−)

)
Ñ(dχ), [∵ S ≤ N]

≤ 1
(β + µ)

[
− (µ + ρ + δ)(β + µ) + α

]
−

ξ2
3

2
−

ξ2
4

2

−
∫

y
{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

+
βξ3

[βE(t) + (β + µ)I]EdW3(t) +
(µ + β)ξ4

[E+ (µ + β)I] IdW4(t)

+
∫

y
ln
(

1 +
βX3(y)E(t−) + (µ + β)X4I(t−)

G1(t−)

)
Ñ(dχ). [∵ I ≤ I+ βE

(µ + β)
]

(14)

We obtain the following result if we integrate both sides of the previous inequality
over the interval [0, t]:
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lnG1(t) ≤
1

(β + µ)

{
α−

[
(µ + β)(ρ + δ + µ) +

ξ2
3

2
+

ξ2
4

2

+
∫

y
{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]}
+
∫ t

0

Eξ3βdW3(t)
[(β + µ+)I+ βE(t)] +

∫ t

0

(β + µ)Iξ4dW4(t)
[(β + µ)I+E]

+
∫ t

0

∫
y

ln
(

1 +
βX3(y)E(t−) + (µ + β)X4I(t−)

G1(t−)

)
Ñ(dχ),

≤ 1
(β + µ)

{
α−

[
(µ + ρ + δ)(+β + µ) +

ξ2
3

2
+

ξ2
4

2

+
∫

y
{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]}
+
∫ t

0

Eξ3βdW3(t)
[(β + µ+)I+ βE(t)] +

∫ t

0

(β + µ)Iξ4dW4(t)
[(β + µ)I+E]

+
∫ t

0

∫
y

ln
(

1 +
βX3(y)E(t−) + (µ + β)X4I(t−)

G1(t−)

)
Ñ(dχ),

≤

[
(µ + β)(µ + ρ + δ) +

ξ2
3

2 +
ξ2

4
2 +

∫
y{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]
(µ + β)

[
Rs − 1

]
+
∫ t

0

Eξ3βdW3(t)
[(β + µ)I+ βE(t)] +

∫ t

0

(β + µ)Iξ4dW4(t)
[(β + µ)I+E]

+
∫ t

0

∫
y

ln
(

1 +
βX3(y)E(t−) + (µ + β)X4I(t−)

G1(t−)

)
Ñ(dχ).

(15)

By taking the superior limit as t → ∞ after dividing Equation (15) by t and using
Lemma 1, we obtain

lim sup
t→∞

(lnG1(t)) ≤[
(µ + ρ + δ)(β + µ) +

ξ2
3

2 +
ξ2

4
2 +

∫
y{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]
(µ + β)

[
Rs − 1

]
.

(16)

If 1 > Rs, then limt→∞ G1 = 0, a.s whenever Rs < 1. As µ+ β and β are both positive,
per relation (13) we have limt→∞[(β + µ)I(t) + βE(t)] = 0 =⇒ limt→∞ E = limt→∞ I = 0;
thus, we reach the conclusion.

5. Persistence in Mean

The purpose of this section is to perform an analysis of the persistence of the dis-
ease and examine the long-term behaviour of the infection. First, we present the mean
persistence, as can be seen in [16].

Definition 1 ([19]). Under the following assumption, model (3) shows the persistence of the infection

lim inf
t→∞

1
t

∫ t

0
F(r)dr > 0 a.s. (17)

For more details on disease persistence, interested readers are referred to the results
provided in [16,17].
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Lemma 2. Let g ∈ C(R≥0 ×Ω,R>0) and G ∈ C(R≥0 ×Ω,R) such that limt→∞
G(t)

t = 0 a.s.
If we assume the following relation to be true for all positive values of t

log g(t) ≥ λ0t +G(t)− λ
∫ t

0
g(s)ds, a.s.

then
lim inf

t→∞
〈g(t)〉 ≥ λ0

λ
a.s.,

where λ0 is non-negative and λ is a positive real number.

Next, we provide several mathematical assumptions for the mean persistency of
system (3), where the conclusion of the said part is provided by the following theorem.

Theorem 3. If Rs
0 > 1, then for initial approximations (S,V,E, I,H,R)(0) ∈ R6

+ the disease
class I(t) has the following property:

lim inf
t→∞

〈
I(t)

〉
≥

3φ

(√
Rs

0 − 1
)

C1α
, a.s., (18)

where C1 = φ

(τ+µ+
ξ2
1
2 +
∫

Y X1(y)+log(1+X1(y))ν(dy))
implies that infection is present in the community.

Let us now reproduce the threshold for the stochastic system as

Rs
0 =

αβ

abc
, (19)

where

a =

(
τ + µ +

ξ2
1

2
+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

)
,

b =

(
β + µ +

ξ2
3

2
+
∫

Y
X3(y) + log(1 +X3(y))ν(dy)

)
,

c =
(

µ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)

)
.

(20)

Proof. Let
G1 = −C1lnS−C2lnE−C3lnI, (21)

here, C1,C1 and C3 are constants, and will be calculated later. Using the Itô formula with
Equation (21), we obtain

dG1 = LG1 −C1ξ1dW1(t)−C2ξ3dW3(t)−C3ξ4dW4(t)

−
∫

Y
[log(1 +X1(y))]Ñ(dχ)−

∫
Y
[log(1 +X3(y))]Ñ(dχ)−

∫
Y
[log(1 +X4(y))]Ñ(dχ),

(22)

where
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LG1 =− C1φ

S +
C1αI
N − C1ωV

S +C1(τ + µ)−C2
αSI
E +C2(µ + β)−C3

βE
I +C3(µ + δ + ρ)

+
C1ξ2

1
2

+
C2ξ2

3
2

+
C3ξ2

4
2

+
∫

Y
C1X1(y) +C1 log(1 +X1(y))ν(dy) +

∫
Y
C2X3(y)

+C2 log(1 +X3(y))ν(dy) +
∫

Y
C3X4(y) +C2 log(1 +X4(y))ν(dy),

≤ −C1φ

S −C2
αSI
E −C3

βE
I +C1(τ + µ +

ξ2
1

2
+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

+C2(µ + β +
ξ2

3
2

+
∫

Y
X3(y) + log(1 +X3(y))ν(dy))

+C3(µ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)) +

C1αI
N .

(23)

Let

C1(τ + µ +
ξ2

1
2

+
∫

Y
X1(y) + log(1 +X1(y))ν(dy)) =φ,

C2(µ + β +
ξ2

3
2

+
∫

Y
X3(y) + log(1 +X3(y))ν(dy)) =φ,

C2(µ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)) =φ,

(24)

namely,

a =

(
τ + µ +

ξ2
1

2
+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

)
,

b =

(
µ + β +

ξ2
3

2
+
∫

Y
X3(y) + log(1 +X3(y))ν(dy)

)
,

c =
(

µ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)

)
.

Then, we can write inequality (23) in the form of

LG1 ≤ −3

√
C1φ

S × C3αSI
E × C3βE

I

+C1(τ + µ +
ξ2

1
2

+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

+C2(µ + β +
ξ2

3
2

+
∫

Y
X3(y) + log(1 +X3(y))ν(dy))

+C3(µ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)) +C1αI,

= −3

√
φ3αβ

abc
+ 3φ +C1αI,

= −3φ

(√
Rs

0 − 1
)
+C1αI.

(25)

By putting Equation (25) into Equation (21) and taking the integral of both sides of the
stochastic model (3), we have
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G1(S,E, I)(t)− G1(S,E, I)(0)
t

≤ −3φ

(√
Rs

0 − 1
)
+C1αI−C1ξ1dW1(t)

−C2ξ3dW3 −C3ξ4dW4 −
∫

Y
[log(1 +X1(y))]Ñ(dχ)

−
∫

Y
[log(1 +X3(y))]Ñ(dχ)−

∫
Y
[log(1 +X4(y))]Ñ(dχ).

(26)

If we define the notion Ψ(t) in the form of

Ψ(t) = −C1ξ1dW1(t)−C2ξ3dW3 −C3ξ4dW4 −
∫

Y
[log(1 +X1(y))]Ñ(dχ)

−
∫

Y
[log(1 +X3(y))]Ñ(dχ)−

∫
Y
[log(1 +X4(y))]Ñ(dχ).

(27)

Then, from Strong’s law as provided in Lemma 1, we have

lim
t→∞

Ψ(t) = 0. (28)

Further, from Equation (27), we have

C1α
〈
I(t)

〉
≥ 3φ

(√
Rs

0 − 1
)
−Ψ(t) +

G1(S(t),E(t), I(t))− G1(S(0),E(0), I(0))
t

,

〈
I(t)

〉
≥

3φ

(√
Rs

0 − 1
)

C1α
− Ψ(t)

C1α
− 1

C1α

(
G1(S(t),E(0), I(t))− G1(S(0),E(0), I(0))

t

)
.

(29)

From Lemma 1 and Equation (28), the superior limit of Equation (5) takes the form

lim inf
t→∞

〈
I(t)

〉
≥

3φ

(√
Rs

0 − 1
)

C1α
≥ 0, a.s., (30)

showing that lim inft→∞
〈
I(t)

〉
≥ 0.

Thus, the proof of Theorem 3 is concluded.

6. Estimation

Utilizing practical observations to obtain insights into certain missing epidemiological
factors is a widely used technique in biological systems analysis. The verification of
analytical results pertaining to the measles model (1) and determination of the parameters
were performed by considering the measles data presented in Table 1; accordingly, the
model was fitted against the data. From the WHO reports for 2018, the continuous rate
of fatality µ for a Pakistani individual is 66.5 years (1.253× 10−4 per month), and with a
population of 207,862,518, the inflow rate is estimated to be φ ≈ 25,983 individuals per
month. In [12], it is reported that the Measles vaccine has an efficacy rate of approximately
97%, indicating that the vaccination outcome, denoted by τ, is nearly 0.97. The effects of
the other parameters, such as the interactive rate β, the retrieval rate δ, the rate of clinically
tested symptoms α, and the rate of vaccine coverage ω, are presented in Table 2 in relation
to the calculated numbers. These parameters were estimated, and the modeled predictions
using real data are plotted in Figure 2 using the MATLAB software considering the data for
the first ten months of 2019. It can be seen from Figure 2 that model (1) provides a good fit,
and the actual measles data are almost covered by the curve predicted by model (1). Using

the result 1
10 ∑10

k=1

∣∣∣∣κreal
k −κapproximate

k
κreal

k

∣∣∣∣ ≈ 1.4685e−01, we can find the mean relative error of the

fitting procedure.
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Table 1. Reported measles cases in Pakistan during the first ten months of 2019 [12].

Jan Feb Mar Apr May June July Aug Sep Oct

238 253 398 398 277 169 71 29 24 18

Table 2. Justification and values of the parameters used for simulating the model (1).

Parameter Description Source

φ 260,479 Estimated
α 1.253133× 10−3 Estimated
ω 0.97 Estimated
τ 1.60056× 10−7 Fitted
µ 9.3408 Fitted
β 9.2373× 10−1 Fitted
δ 5.8306× 10−1 Fitted
ρ 0 Estimated
γ 5.8306× 10−1 Fitted

1 2 3 4 5 6 7 8 9 10

Time(Months)

0

50

100

150

200

250

300

350

400

450

I(
t)

Real Data

ODE

Figure 2. Fitting of the model (1) against reported measles cases from Table 1.

7. Numerical Results and Discussion

In this section, we present a graphical representation of the model dynamics using
the available numerical method(s) and values of the parameters discussed in the previous
section. For illustrative purposes, we provide the findings of our scheme and compute
the approximate paths for the stochastic model (3) and its deterministic counterpart. The
desired time interval is [0, 100] and the step size is ∆ = 0.3, whereas the initial size of the
population is provided by (S0,V0,E0, I0,H0,R0) = (0.5, 0.4, 0.3, 0.5, 0.2, 0.1).
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To simulate the model, we utilized two different types of hypothetical data. Initially,
we simulated the model by considering the intensity of the noise and the parameter values
from Example 1. The figure presented in Figure 3 demonstrates that as RD

0 < 1, the
solution of system (3) with L’evy jump approaches the disease-free equilibrium point of
the corresponding deterministic system, indicating that the disease is in the process of
disappearing. Theorem 2 provides the necessary conditions for the extinction of system (3).
The graphical representation verifies that the result of Theorem 2 is valid only if Rs < 1.

Example 1. In the present scenario, we have considered the parameter values as φ = 1.0, τ = 0.3,
α = 0.3, µ = 0.03, β = 0.005, δ = 0.4, γ = 0.02 , ρ = 0.01, ω = 0.02, and the intensities
of the white noise as ξ1 = 0.55, ξ2 = 0.40, ξ3 = 0.30, ξ4 = 0.20, ξ5 = 0.10, ξ6 = 0.20, and

Xi(y) =
−kiy2

1+y2 , with y = 0.5 and ki equal to 0.50, 0.50, 0.40, 0.20, 0.20, and 0.30, respectively,
for i = 1, · · · , 6. The simulations of the model indicate that the epidemic will become extinct, as
predicted by Theorem 2. The disappearance of the infection based on the predictions of the stochastic
system are depicted in Figure 3a–f.
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Figure 3. Cont.
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Figure 3. The plot shows the dynamics of the stochastic system (3) and the associated deterministic
system (1) subject to jumps and without jumps. (a) The plot shows the S(t)−curve with and without
jumps. (b) The plot shows the dynamics of V(t) with and without jumps. (c) Three different scenarios
for class I(t). (d) The dynamics of the exposed class with and without jumps. (e) Time evolution of
the number of hospitalized people with and without jumps. (f) Three different scenarios for class R(t).

The findings of Theorem 3 suggest that the disease will continue to exist in the
community with the dynamics predicted by model (3) if the value of RD

0 is greater than
1. The statement RD

0 > 1 indicates that Rs
0 will be greater than 1 even with low intensities

of the noise. This conclusion is supported by the numerical simulations presented in
Figures 3c,d and 4c,d, which validate the expected behavior of the epidemic model (3) as
per Theorem 3.

Example 2. In this example, the numerical values of the parameters are φ = 0.9, τ = 0.75, α = 0.5,
µ = 0.06, β = 0.05, δ = 0.4, γ = 0.2 , ρ = 0.1, and ω = 0.2, and the intensity of the white noise

is ξ1 = 0.45, ξ2 = 0.30, ξ3 = 0.10, ξ4 = 0.20, ξ5 = 0.15, ξ6 = 0.20, and Xi(y) =
−kiy2

1+y2 , with
y = 0.5 and where ki equal to 0.50, 0.35, 0.30, 0.35, 0.10, and 0.20, respectively, for i = 1, · · · , 6.

For this set of parameters, it is easy to verify that both the stochastic threshold Rs
0 and the basic

reproduction number RD
0 are greater than one. The simulation results of the mean shown in Figure 4

confirm the persistence of the disease, which supports the conclusion of Theorem 3. Additionally,
Figure 4a–f illustrates that the epidemic will continue to persist in the population in the meantime.
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Figure 4. Cont.



Fractal Fract. 2023, 7, 434 15 of 18

0 10 20 30 40 50 60 70 80 90 100

Time t (Days)

0

1

2

3

4

5

6

7

8

E
(t

)

0 10 20 30 40 50 60 70 80 90 100

Time t (Days)

0

2

4

6

8

10

12

14

I(
t)

(c) (d)

0 10 20 30 40 50 60 70 80 90 100

Time t (Days)

0

1

2

3

4

5

6

7

8

9

 H
(t

)

0 10 20 30 40 50 60 70 80 90 100

Time t (Days)

0

2

4

6

8

10

12

14

16

18

R
(t

)

(e) (f)

Figure 4. Simulation of the stochastic system (3) and deterministic system (1) with and without jumps
for the case when the respective thresholds are greater than one. (a) The dynamics of the susceptible
class with and without jumps. (b) Time evolution of the number of vaccinated people both with and
without jumps. (c) The plot shows the E(t)−curve with and without jumps. (d) The dynamics of the
infected class with and without jumps. (e) The plot shows the H(t)−curve with and without jumps.
(f) Time evolution of the number of recovered people when the threshold exceeds one.

The Impact of Lévy Noise on the I Class

The impact of the intensity of the white noise on class I corresponding to system (3) is
shown in Figure 5a–c. These figures suggest that increasing values of ξi for i = 1, · · · , 6
lead towards the extinction of the disease. This means that the size of the infected class
approaches zero as the intensity value of the noise increases. Further, this indicates that
for small values of the noise intensity the infected class oscillates around the endemic
steady state I?m which confirms the result of Theorem 3. However, if the intensity of the
white noise term is sufficiently high, the solution I may not exhibit oscillations near the
endemic equilibrium point. This demonstrates that continuous efforts to increase stochastic
disruptions through mass recovery of susceptible individuals and the effective treatment
and care of the infected persons can significantly lower the spread of the measles virus in
the population.
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Figure 5. Simulations of I(t) based on the stochastic and deterministic systems, showing the effect
of the intensities on class I when φ = 0.5, τ = 0.90, α = 0.5, µ = 0.06, β = 0.05, δ = 0.4, γ = 0.2 ,
ρ = 0.2, ω = 0.3, and the noise intensity is assumed as ξ1 = 0.50, ξ2 = 0.40, ξ3 = 0.10, ξ4 = 0.20,

ξ5 = 0.15, ξ6 = 0.20, and Xi(y) =
−kiy2

1+y2 , with y = 0.5 and where ki equals 0.60, 0.34, 0.30, 0.35,
0.10, 0.20, respectively, for i = 1, · · · , 6 and (S0,V0,E0, I0,H0,R0) = (0.5, 0.4, 0.5, 0.3, 0.2, 0.1). (a) The
dynamics of I(t) subject to sufficiently large values of noise intensity. (b) The plot shows the behavior
of the infected class subject to moderate values of noise intensity. (c) The dynamic behavior of the
infected class subject to low values of noise intensity.

8. Concluding Remarks and Future Directions

In this work, we have considered a stochastic SVEIHR epidemic model with Lévy
noise while considering the nonlinear incidence rate. Our study aimed to investigate the
impact of environmental noise on human society, and the results can shed light on the
crucial role of noise in disease persistence and extinction. The proposed model assumed six
different classes: a healthy class (S), vaccinated class (V), infected class (I), exposed class
(E), hospitalized class(H), and class of recovered individuals(R). After model formulation,
the study utilized the uniqueness and existence techniques to derive a positive solution
for the underlying stochastic model. The stability results of the model were investigated
using the Lyapunov function. The model’s dynamic characteristics were analyzed in the
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context of the infection-free and endemic states of the associated ODE model. The stochastic
threshold Rs was calculated to ensure disease extinction whenever Rs < 1. Using data
from Pakistan in 2019, we estimated the model parameters and conducted simulations to
forecast future disease behavior. The results were compared to actual data using standard
curve fitting tools. In our future research, we plan to investigate the impact of regime
switching and temporary immunity on system (3).
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