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Abstract: System identification is an important methodology used in control theory and constitutes
the first step of control design. It is known that many real systems can be better characterized by
fractional-order models. However, it is often quite complex and difficult to apply classical control
theory methods analytically for fractional-order models. For this reason, integer-order models
are generally considered in classical control theory. In this study, an alternative approximation
method is proposed for fractional-order models. The proposed method converts a fractional-order
transfer function directly into an integer-order transfer function. The proposed method is based
on curve fitting that uses a quadratic system model and Equilibrium Optimizer (EO) algorithm.
The curve fitting is implemented based on the unit step response signal. The EO algorithm aims to
determine the optimal coefficients of integer-order transfer functions by minimizing the error between
general parametric quadratic model and objective data. The objective data are unit step response
of fractional-order transfer functions and obtained by using the Grünwald-Letnikov (GL) method
in the Fractional-Order Modeling and Control (FOMCON) toolbox. Thus, the coefficients of an
integer-order transfer function most properly can be determined. Some examples are provided based
on different fractional-order transfer functions to evaluate the performance of the proposed method.
The proposed method is compared with studies from the literature in terms of time and frequency
responses. It is seen that the proposed method exhibits better model approximation performance and
provides a lower order model.

Keywords: fractional-order models; integer-order approximation methods; quadratic systems;
Grünwald-Letnikov; equilibrium optimizer algorithm

1. Introduction

A physical system where the orders of the derivatives are any real number in its
differential equation is called a fractional-order system. In recent years, there has been a
strong interest in control systems whose mathematical models are expressed by fractional
differential equations [1]. Such control systems are called fractional-order control systems.
In practice, models of many systems can be described using fractional-order differential
equations because systems that are defined by fractional-order describe the real-world
more accurately [2]. Therefore, modeling a real-world system in fractional-order yields
better results than classical integer-order modeling [3]. For example, viscoelastic materials,
electromechanical processes, long transmission lines, dielectric polarizations, colored noise,
cardiac behavior, bioengineering problems, and chaos are modelled by fractional-order
differential equations [4–9]. However, many calculations in fractional-order control systems
are quite complex and difficult due to the long memory effect [10]. For example, analytical
time responses of fractional-order transfer functions are not possible, except in special
cases, such as half derivatives [11]. Moreover, some classical control theory computations,
such as State-Space form, Root-Locus and Routh-Hurwitz analysis, are not suitable for
fractional-order systems. Classical control theory calculations are based on integer-order
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systems. Therefore, studies of the integer-order approximation of a fractional process are
very important, provided the approximation is accurate [12].

In the absence of analytical solutions, approximations or numerical methods are used
for the above-mentioned computations. Many methods have been developed for the
approximate time response computation. Some of the numerical based methods are the
Grünwald-Letnikov (GL) method in the FOMCON toolbox [13], the Fourier Series Method
(FSM), the Inverse Fourier Transform Method (IFTM), and Mittag-Leffler and Gamma
functions [14–16]. Integer-order approximation-based methods are Continuous Fraction
Expansion (CFE), Oustaloup’s, Carlson’s, Matsuda’s, and Chareff’s methods [16–23]. In
addition to these methods, Stabilty Boundary Locus (SBL) fitting and its modified version,
M-SBL fitting, and time response-based curve fitting, have been used in recent years [24–27].
Although there are many numerical methods, integer-order approximation methods are
frequently preferred because they produce an integer-order transfer function. Thus, all
control theory computation can be directly applied to the approximate integer-order transfer
function. However, integer-order approximation methods mentioned above are operator-
based methods (sα, α ∈ R), and it is necessary to use higher-order approximations to
increase accuracy. Namely, the methods produce higher order approximate integer-order
transfer functions for higher accuracy. Calculations with very high order transfer function
structures can cause computational errors in control system analysis and are not preferred.
The differences between the proposed method and the literature are delineated in the
examples. In the literature, there are operator-based approximations that give rise to
undesirable higher order approximate transfer functions, which complicate calculation.
However, the proposed method results in maximum fifth order transfer functions due
to direct approximation. Additionally, error margins are much smaller in time response
analysis of the proposed method compared to the existing literature.

Casagrande et al. proposed an integer-order approximation using the interpolation
technique in the Loewner framework [28]. An approximation procedure by means of
integer-order state-space models is presented in [29]. R. Mansouri proposed a method,
which deals with the fractional approximation of systems by integer reduced models [30].
Two other methods for simulating a fractional dynamical system in state space form are
presented in [31]. Mohammed Saleh suggested a technique, which is related to the use of
rational approaches in fractional-order systems and practical applications of controllers [32].
In [33], researchers proposed and offered an algorithm for a method of approximation
useful in robust controller synthesis. Abdelaziz et al. contributed to the literature by
presenting a stable approximation method for fractional-order systems based on the Gray
Wolf Optimizer hybridized with the Cuckoo Search Algorithm (GWO-CS) in [34]. Apart
from these studies, to overcome difficulties induced by operator-based approximations,
some direct approximation methods have been proposed by the researchers. The studies
are generally based on model reduction, optimization, and algorithms. Some of the most
common studies include Particle Swarm Optimization (PSO) [35], the Genetic Algorithm
(GA) [36], and Colliding Bodies Optimization (CBO) [37].

The main purpose of this study is to calculate the direct integer-order approximation of
a fractional-order transfer function without using operator-based approximation methods.
The contributions of this study to the literature are listed below.

• This study is the first to use a curve fitting method in the time domain using a
quadratic standard model structure and EO optimizer. The proposed method allows
us to achieve integer approximations with a lower order model and smaller margin of
error. Thus, using the proposed method, classical control theory computations, such as
State-Space form, Root-Locus and Routh-Hurwitz analysis, can be easily implemented.

• Using the proposed direct method, an integer-order approximate transfer function is
achieved with a maximum of five orders. Additionally, lower-order approximation is
obtained compared to operator-based methods.

• It has been shown that the proposed method is more accurate than operator-based
methods in terms of frequency and time response performances.
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• These are applicable to closed-loop fractional-order systems.

The remainder of the study is organized as follows. In Section 2, the EO optimizer is
described. In Section 3, the curve fitting algorithm and determination of the approximate
transfer function for proposed direct integer-order approximation method is explained.
Some illustrative numerical examples using the proposed method are given in Section 4,
as well as the calculation of direct approximations of fractional-order transfer functions
and their comparison with the methods in the literature are presented. Results are given in
Section 5.

2. Equilibrium Optimizer Algorithm

The Equilibrium Optimizer (EO) is a physics-based meta-heuristic optimization al-
gorithm introduced to the literature in 2020 [38]. The idea of this algorithm is based on
mimicking the dynamic mass balance on a control volume. EO optimization can be used to
solve problems in many studies, such as feature selection, photovoltaic models, medical
data and image classification, image segmentation, scheduling, sentiment analysis, and
technical problems. In the study, Farmrazzi et al. explained the superiority of the EO algo-
rithm over other optimization methods, such as the Genetic Algorithm (GA), Gravity Search
Algorithm (GSA), Grey Wolf Optimizer (GWO), and Particle Swarm Optimization (PSO).

The EO algorithm tries to determine the equilibrium state of the volume on a mass–
balance model. The mass–balance equation [39], which is described in the form of the
first-order ordinary differential equation, is written as in Equation (1).

V
dC
dt

= QCeq −QC + G (1)

In Equation (1), the mass change rate in the control volume is defined as VdC/dt,
and Q indicates the volume flow rate into or out of the control volume, Ceq denotes the
concentration at equilibrium, C is the concentration in the control volume (V), and G
denotes the mass generated in this system in the control volume. Here, Equation (2) is
obtained when Equation (1) is rearranged by writing λ instead of Q/V.

dC
λCeq − λC + G/V

= dt (2)

For the solution of the ordinary differential equation, Equation (3) is obtained by
integrating both sides of the Equation (2).

C∫
C0

dC
λCeq − λC + G/V

=

t∫
t0

dt (3)

As a result, Equation (4) is obtained by solving the ordinary differential equation.

C = Ceq + (C0 − Ceq)F +
G

λV
(1− F) (4)

where; C0 denotes to the concentration values of the control volume at the initial start time
t0. λ means flow rate. C represents the solution obtained at the current iteration, and Ceq
indicates the best solution found so far. The structure given in Equation (4) forms the basis
of the EO algorithm, and the EO algorithm performs iterative optimization search, as in the
PSO algorithm.

F is the exponential term, and it is computed, as given in Equation (8).
The early step of EO is the random initiation of concentration, as expressed in

Equation (5):

Cd
i = Cmin + randd

i (Cmax − Cmin) i = 1, 2, 3, . . . N and d = 1, 2, 3, . . . D (5)
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where; N is the number of particles in the population, D is the number of dimensions,
Cd

i is the initial concentration vector for each particle, Cmax and Cmin represent the upper
and lower bound of the optimization variables, respectively, and randi

d is a random vector
between [0 , 1].

→
Ceq, pool is called equilibrium pool. It consists of five elements and is shown in

Equation (6). The value
→
Ceq(ave) is the average of four best-so-far candidates.

→
Ceq, pool =

{→
Ceq(1),

→
Ceq(2),

→
Ceq(3),

→
Ceq(4),

→
Ceq(ave)

}
(6)

→
Ceq(ave) =

→
Ceq(1) +

→
Ceq(2) +

→
Ceq(3) +

→
Ceq(4)

4
(7)

When the optimization is finished, all particles are updated with the same number
of updates relative to all candidate solutions. The main concentration values are updated
using Equation (8):

→
F = exp

[
−
→
λ(t− t0)

]
(8)

where; λ in Equation (8) denotes a random vector between [0 , 1], t denotes the time
and decreases, depending on the number of iterations [40]. t and t0 are computed by
Equations (10) and (11), respectively.

t =
(

1− Iter
Max_Iter

)(α Iter
Max_Iter )

(9)

t0 =
1
→
λ

ln
(
−βsign

(→
r − 0.5

)[
1− e−

→
λ t
])

+ t (10)

Equation (11) is determined by substituting t0 in Equation (8), and it is the equation
that enables the algorithm to reach the optimal value.

→
F = βsign

(→
r − 0.5

)[
e−
→
λ t − 1

]
(11)

The generation rate,
→
G, is one of the important roles in EO, and it improves the

algorithm’s ability to work or to use. The mathematical model of
→
G is given in Equation (12).

→
G =

→
G0e−

→
k (t−t0) (12)

where; k represents the attenuation constant, and
→
G0 is the initial value. For restricting

the random variables, suppose that k = λ, and utilize the formerly derived exponential

expression. Generation rate
→
G is calculated by using Equation (13).

→
G =

→
G0e−

→
λ (t−t0) =

→
G0
→
F (13)

where;
→
G0 is computed by Equation (14).

→
G0 =

→
GCP

(→
Ceq −

→
λ
→
C
)

→
GCP =

{
0.5r1 r2 ≥ GP
0 r2 < GP

(14)
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The GCP is the generation rate control parameter that contains the potential of the
generation expression assistance for the update procedure. r1 and r2 are random numbers
in [0 , 1]. GP is a specified value, which is called the generation probability. The updating
of the individual solution of the EO is given in Equation (15). The flowchart of the EO is
presented in Figure 1.

→
C =

→
Ceq +

(→
C −

→
Ceq

)→
F +

→
G
→
λV

(
1−

→
F
)

(15)
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3. The Methodology of the Proposed Direct Integer-Order Approximation Method

In this section, the block diagram of the proposed direct approximation method and
the integral performance criteria that we frequently encounter in optimization calculations
will be introduced.



Fractal Fract. 2023, 7, 460 6 of 21

3.1. Block Scheme for Curve Fitting Computation with the EO

The block diagram of the proposed direct approximation method and the integral per-
formance criteria that we frequently encounter in optimization calculations are as follows.

In the diagram, a unit step signal, u(t), is applied to the inputs of the fractional-order
transfer function and proposed model transfer function. The unit step time response data
of the fractional transfer function defined in the form of Equation (16) are calculated with
the GL method in the time step interval ∆t = 0.01. Thus, the output y f (t) is obtained.

G f (s) =
bmsβm+bm−1sβm−1+...+b0sβ0

ansαn+an−1sαn−1+...+a0sα0{
αi, β j

}
∈ R+{

ai, bj
}
∈ R

α0 < α1 < . . . < αn, β0 < β1 < . . . < βm, i = 0, 1, 2 . . . n and j = 0, 1, 2 . . . m

(16)

The standard quadratic systems are common in practice and are the simplest type of
dynamical systems to exhibit oscillations. Mass spring damper systems and RLC circuits
can be given as examples for these type systems [41]. In fact, many higher-order systems
may be approximated as second-order systems [42].

The canonical form of the second-order differential equation is defined, as in Equation (17).

..
y + 2ζωn

.
y + ω2

ny = ω2
nu (17)

The canonical second-order transfer function has the following form in Equation (18),
in which it has two poles and no zeros.

Y(s)
U(s)

=
ω2

n
s2 + 2ζωns + ω2

n
(18)

In Equation (17), u denotes the input, y denotes the output, ζ is the damping ratio,
and ωn is the natural frequency. The unit step response of a standard quadratic transfer
function is written in the time domain, as in Equation (19).

y(t) = 1− e(−ςωnt)(cos(ωn

√
(1− ζ2)t) + (ζ/

√
(1− ζ2)) sin(ωn

√
(1− ζ2)t)) (19)

Equation (19) can be written in generalized form as Equation (20), and it is proposed
as a model transfer function for the curve-fitting computation. Thus, the error function is
written as e(t) = [yf(t) − ym(t)], and it is used as a fitness function in the EO optimizer.

ym(t) = 1− e−q1t cos(q2t)− q3e−q4tsin(q5t) (20)

The Laplace transform of Equation (20) is given in Equation (21), where q1, q2, q3, q4,
and q5 are the unknown coefficients. Equation (21) is an integer-order approximate transfer
function to be obtained after using the EO curve fitting.

Ym(s) =
1
s
− s + q1

(s + q1)
2 + q22

− q3q5

(s + q4)
2 + q52

(21)

The structure of the transfer function with integer-order given in Equation (23) can be
obtained from Equation (21). Depending on the structure of the fractional-order transfer
function, the order of Gm(s) can be 5 or less at the maximum.

Gm(s) = sYm(s) (22)

Gm(s) = n4s4+n3s3+n2s2+n1s+n0
s5+m4s4+m3s3+m2s2+m1s+m0

{mi, ni} ∈ R, i = 0, 1, 2 . . . n
(23)
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3.2. Determination of the Proposed Model-Transfer-Function Parameters

The coefficients of optimal model transfer function can be obtained by minimizing the
error signal by using integral performance criteria. Integral performance criteria are defined
as cost functions in optimization algorithms and provide minimization. First, the integral
of the square of the error (ISE) and the integral of the absolute value of the error (IAE)
performance criteria were used by Graham and Lathrop [43] in 1953. Then, the absolute
value of the time-weighted error (ITAE) and the integral of the square of the time-weighted
error (ITSE) were developed by [44]. Some performance criteria and their mathematical
expressions in the literature are given in Equations (25)–(30) [45].

• The Integral of Error (IE) is defined as:

IE =

t∫
0

e(t)dt (24)

• The Mean Square Error (MSE) is defined as:

MSE =

t∫
0

e2(t)dt

t
(25)

• The Integral Squared Error (ISE) is defined as:

ISE =

t∫
0

e2(t)dt (26)

• The Integral Absolute Error (IAE) is defined as:

IAE =

t∫
0

|e(t)|dt (27)

• The Integral of the Square of the Time-Weighted Error (ITSE) is defined as:

ITSE =

t∫
0

te2(t)dt (28)

• The Integral of the Absolute of the Time-Weighted Error (ITAE) is defined as:

ITAE =

t∫
0

t|e(t)|dt (29)

In the diagram in Figure 2, the cost function is defined as the square of the difference
between the unit step responses of fractional-order and the model transfer function. This
definition of the cost function (30) is the ISE performance criterion.

J =
t∫

0

e2(t)dt (30)

In the optimization, various initial values, such as the lower and upper bounds of the
model transfer function parameters, the maximum number of iterations, and the number
of particles, are entered. Then, the algorithm is run for the cost function adapted to the EO
algorithm. In this paper, the particle number is selected as 30, and the maximum iteration
number is selected as 200. The lower and upper bounds of the transfer function coefficients
are considered in the range of [−5, 5]. The error signal is obtained by subtracting the
parametric unit step response of the model transfer function from the unit step response
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of the fractional-order transfer function. Then, the error is updated according to the new
values, and the cost function gradually decreases. Thus, the cycle continues until the
desired criterion is met. Optimal model transfer function parameters (q1, q2, q3, q4, q5)
are obtained when the desired criterion is met. Thus, the proposed direct integer-order
approximation of the fractional-order transfer function is calculated, as in the form of
Equation (23).
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4. Numerical Examples

In this section, numerical examples are given, and the advantages of the proposed
method over classical integer-order approximations are presented, as well as the use of the
proposed method in closed-loop fractional-order control systems, and the comparison of
two articles in the literature on direct integer-order approximation is given.

4.1. Examining the Proposed Method in Various Transfer Function Forms

Example 1: Let us obtain the integer-order approximation of the fractional-order transfer function
given in (31).

G(s) =
0.6s1.24 + 0.7

0.5s4.16 + 3.2s3.28 + 4.4s2.12 + 5.5s1.57 + 1.2s0.94 + 1
(31)

The fractional-order transfer function given in Equation (31) includes the terms of
fractional derivative operators s0.12, s0.16, s0.24, s0.28, s0.57, and s0.94. Approximations of each
fractional derivative term can be easily calculated by using Continuous Fraction Expansion
(CFE), Oustaloup’s method, and Matsuda’s method, which are very common in the litera-
ture, as well as M-SBL methods, which were developed using the SBL technique. Finally, by
substituting these approximations in Equation (31), the integer-order approximation of the
G(s) is obtained. Since Oustaloup can produce odd-order approximations, comparisons are
made on odd-order approximations. The integer-order approximations of G(s) calculated
using the 3rd order approximations of the CFE, Oustaloup, Matsuda, and M-SBL methods
are given in Equations (32)–(35), respectively. It can be seen from Equations (32)–(35) that
G(s) is obtained from 22 degrees for the 3rd order operator-based approximation. If we use
fifth order approximations for each fractional derivative term, the order of the approximate
transfer function will be 34. As observed, higher order approximations of the fractional
derivative terms result in much higher orders in the total transfer function.
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GCFE(s) =

1.463s19 + 387.1s18 + 2.298× 104s17 + 6.228× 105s16 + 9.441× 106s15

+8.774× 107s14 + 5.264× 108s13 + 2.116× 109s12 + 5.881× 109s12 + 1.158× 1010s10

+1.642× 1010s9 + 1.691× 1010s8 + 1.261× 1010s7 + 6.753× 109s6 + 2.551× 109s5

+6.653× 108s4 + 1.161× 108s3 + 1.287× 107s2 + 8.161× 105s + 2.249× 104

0.9019s22 + 249.3s21 + 1.695× 104s20 + 5.442× 105s19 + 1.001× 107s18 + 1.154× 108s17

+8.814× 108s16 + 4.64× 109s15 + 1.747× 1010s14 + 4.853× 1010s13 + 1.016× 1011s12

+1.619× 1011s11 + 1.958× 1011s10 + 1.788× 1011s9 + 1.223× 1011s8 + 6.245× 1010s7

+2.379× 1010s6 + 6.744× 109s5 + 1.405× 109s4 + 2.085× 108s3 + 2.071× 107s2

+1.225× 106s + 3.235× 104

(32)

GOus(s) =

1.812s19 + 465s18 + 4.719× 104s17 + 2.493× 106s16 + 7.534× 107s15

+1.341× 109s14 + 1.403× 1010s13 + 8.601× 1010s12 + 3.208× 1011s11 + 7.619× 1011s10

+1.193× 1012s9 + 1.251× 1012s8 + 8.708× 1011s7 + 3.856× 1011s6 + 1.02× 1011s5

+1.598× 1010s4 + 1.492× 109s3 + 8.13× 107s2 + 2.388× 106s + 2.918× 104

1.045s22 + 285.3s21 + 3.148× 104s20 + 1.849× 106s19 + 6.385× 107s18 + 1.346× 109s17

+1.75× 1010s16 + 1.416× 1011s15 + 7.353× 1011s14 + 2.566× 1012s13 + 6.305× 1012s12

+1.118× 1013s11 + 1.429× 1013s10 + 1.288× 1013s9 + 8.016× 1012s8 + 3.429× 1012s7

+1.022× 1012s6 + 2.08× 1011s5 + 2.794× 1010s4 + 2.389× 109s3 + 1.238× 108s2

+3.529× 106s + 4.235× 104

(33)

GMat(s) =

2.341s19 + 3780s18 + 1.045× 106s17 + 1.173× 108s16 + 6.564× 109s15

+1.935× 1011s14 + 2.967× 1012s13 + 2.314× 1013s12 + 9.979× 1013s11 + 2.58× 1014s10

+4.229× 1014s9 + 4.509× 1014s8 + 3.096× 1014s7 + 1.289× 1014s6 + 2.919× 1013s5

+3.654× 1012s4 + 2.608× 1011s3 + 1.058× 1010s2 + 2.271× 108s + 2.004× 106

1.234s22 + 2024s21 + 6.002× 105s20 + 7.458× 107s19 + 4.751× 109s18 + 1.654× 1011s17

+3.168× 1012s16 + 3.332× 1013s15 + 2.05× 1014s14 + 7.963× 1014s13 + 2.096× 1015s12

+3.892× 1015s11 + 5.107× 1015s10 + 4.614× 1015s9 + 2.787× 1015s8 + 1.119× 1015s7

+3.062× 1014s6 + 5.431× 1013s5 + 5.986× 1012s4 + 3.999× 1011s3 + 1.565× 1010s2

+3.29× 108s + 2.866× 106

(34)

GM−SBL(s) =

2.197s19 + 3729s18 + 1.318× 106s17 + 1.957× 108s16 + 1.454× 1010s15

+5.583× 1011s14 + 1.054× 1013s13 + 8.936× 1013s12 + 3.939× 1014s11 + 1.013× 1015s10

+1.623× 1015s9 + 1.664× 1015s8 + 1.075× 1015s7 + 4.067× 1014s6 + 7.86× 1013s5

+7.903× 1012s4 + 4.348× 1011s3 + 1.323× 1010s2 + 2.094× 108s + 1.345× 106

1.182s22 + 2040s21 + 7.659× 105s20 + 1.239× 108s19 + 1.029× 1010s18 + 4.577× 1011s17

+1.064× 1013s16 + 1.231× 1014s15 + 7.873× 1014s14 + 3.084× 1015s13 + 8.085× 1015s12

+1.485× 1016s11 + 1.912× 1016s10 + 1.678× 1016s9 + 9.733× 1015s8 + 3.683× 1015s7

+9.189× 1014s6 + 1.406× 1014s5 + 1.262× 1013s4 + 6.57× 1011s3 + 1.943× 1010s2

+3.024× 108s + 1.923× 106

(35)

The integer-order approximation of G(s), calculated by the proposed direct approximation
method, is obtained as a 4th order approximation, as seen in Equation (36).

Gm(s) =
0.0027s3 + 0.1923s2 + 0.1691s + 0.0481

s4 + 2.05s3 + 1.391s2 + 0.3591s + 0.0687
(36)

The GL method gives near-accurate results at low step intervals in time response
calculations [46]. In this example, the comparisons are based on the GL method, and the
step time interval for GL computations is chosen as 0.01. In operator-based approximation
methods, the frequency range [0.01, 100] rad/s is preferred. The unit step response of the
transfer functions in Equations (32)–(36) and unit step response of G(s) calculated using the
GL method are given in Figure 3.
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It can be seen, from Figure 3, that, although the transfer function calculated by the
proposed direct approximation method is of the 4th order, it gives quite close results to the
time response calculated by the GL method. To compare the operator-based approximation
and the proposed method, approximations of different orders were obtained, and their
errors were calculated. The mean squared errors (MSE) of these approximations, which
derived from different orders, are presented in Table 1. Since operator-based approxima-
tions are calculated from odd orders in the Oustaloup method, approximations of the first-,
third-, and fifth-orders are considered for the Oustaloup method. For the other methods,
first-, second-, and third-order operator approximation are considered. The transfer func-
tion, Gm(s), calculated with the proposed method, has lower error than the 28th order
G(s) obtained by CFE, Matsuda, and M-SBL methods. However, Table 1 shows that these
methods have better results than the proposed direct approximation method for 34th-order
approximation, except for Oustaloup.

Table 1. Errors based on time response for different methods and approximations of different orders.

Method Order of Approximation MSE (10−5)

CFE
22 2.5229
28 0.7592
34 0.2811

Oustaloup
22 13.9400
34 11.5180
48 11.6350

Matsuda
22 3.5524
28 0.6710
34 0.0852

M-SBL
22 13.5050
28 0.4819
34 0.2716

Proposed 4 0.3864

Table 2 shows the time response performance specifications, such as rise time, settling
time, peak time, peak value, overshoot, and steady state error of Equations (31)–(36). The unit
step response of Equation (31) is directly plotted numerically by the GL method. Unit step
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responses are plotted using the approximate transfer functions given in Equations (32)–(36).
Here, the approximation methods are compared with the GL method. The first thing to
notice is that the steady-state error of the proposed direct approximation method is zero.
It is observed that the method with the farthest performance specifications is Oustaloup.
CFE, one of the operator-based methods, gives the closest result to the performance of the
GL method. The transfer function calculated from the 4th degree with the proposed direct
approximation method shows acceptable performance compared to the operator-based
methods calculated from the 22nd order.

Table 2. Performance specifications for unit step responses of Equations (31)–(36).

Methods Rise Time
(s)

Settling
Time (5%)

(s)
Peak Time

(s) Peak Value Overshoot
(%)

Steady
State Error

GL Method 4.4106 16.9845 10.5200 0.8711 24.4432 0
GProposed(s) 4.4276 23.3043 10.6000 0.8667 23.8176 0

GCFE(s) 4.4009 25.0050 10.5300 0.8720 24.5749 0.0048
GOus(s) 4.3822 15.9932 10.0800 0.8444 20.6241 0.0110
GMat(s) 4.3098 16.4427 10.0400 0.8575 22.4929 0.0008

GM−SBL(s) 4.5750 17.2698 10.4400 0.8191 17.0191 0.0006

Example 2: Let us consider an open loop unstable and stable fractional model given in (37) and
(39), respectively.

G f (s) =
1

0.75s2.42 + 1.47s0.8 + 3.2
(37)

Equation (37) shows an open loop unstable model structure with two fractional-orders.
When approximations are calculated with operator-based methods for this unstable model,
an 8th-order transfer function is obtained. When the proposed method is used, a 5th-order
approximation, such as Equation (38), is calculated. The unit step response performance of
the operator-based approximations and the proposed method are given in Figure 4.

Gm(s) =
0.2980s3 + 5.5703s2 + 40.1592s + 182.3607

s5 + 10.6963s4 + 60.4775s3 + 167.3740s2 + 251.5915s + 583.2891
(38)
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Figure 4. Unit step responses of unstable transfer function for operator-based, GL, and
proposed methods.

The proposed method gives very robust approximations for open loop unstable trans-
fer functions. It is observed from Figure 4 that the proposed method gives the same results
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as the GL method. Although operator-based methods have 8th-order approximations, it is
seen that they have different oscillations. For this example, it was seen that the Oustaloup
and M-SBL method gave the closest result among the operator-based methods.

A stable model was obtained by changing the fractional-order term in the middle
in the denominator in Equation (37) to 1.35. The approximation calculated with the pro-
posed method for the open loop stable fractional-order model is given in Equation (40).
Bode and Nyquist curves for frequency response analysis of this model are given in
Figures 5 and 6, respectively.

G f (s) =
1

0.75s2.42 + 1.47s1.35 + 3.2
(39)

Gm(s) =
0.1671s3 + 6.4425s2 + 4.5125s + 22.2325

s5 + 9.0625s4 + 14.8300s3 + 53.8000s2 + 34.4750s + 71.1500
(40)
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The phase margin and gain margin values are important points on the bode diagram
in control systems. It is seen in Figure 5 that, although the proposed method offers a
5th-degree approximation, it gives near-accurate results in data, such as phase margin
and gain margin, compared to operator-based methods. The data measured on the Bode
diagram are presented in Table 3. The proposed method is the best result in the phase
margin. In the gain margin, it is the second-best result.

Table 3. Performance data of Bode and Nyquist diagrams.

Methods Order of
Approximation

Gain Margin
(dB)

Phase Margin
(Degree) Critical Point

CFE 8 14.533 68.9600 −0.1877
Oustaloup 8 17.489 58.3900 −0.1337
Matsuda 8 17.100 51.9000 −0.1398
M-SBL 8 23.200 None −0.0693

Proposed 5 15.713 99.4540 −0.1641
Exact - 14.406 109.8400 −0.1904
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Nyquist diagrams of operator-based approximation methods, for the Exact and the
Proposed method, are shown in Figure 6. Here, the critical points where the curves intersect
the real axis are examined. These points are also given in Table 3. As can be seen, the critical
gain value of the CFE method is closer to the exact value. However, the CFE approximation
is 8th-order. The proposed approximation is 5th-order, and it is the best result after CFE.
Although the proposed method is of low order, it has an acceptable frequency characteristic
compared to the other methods.

Example 3: Examination of the unity feedback control system with the fractional-order controller
and the plant. Consider the fractional-order control system given in Figure 7.
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In this example, it is shown how to compute integer-order approximation of a closed
loop fractional-order control system by using the proposed method. Here, the fractional-
order PI controller and plant transfer function are given in Equation (41). Additionally, the
open loop transfer function is written, as shown in Equation (42). Thus, the closed loop
transfer function can be computed, as shown in Equation (43).

G(s) =
1.2s0.72 + 1.42

2s0.72 and G(s) =
0.64s1.17 + 3

1.8s1.62 + 0.4s1.21 + 2s0.58 + 0.42
(41)

L(s) = C(s)G(s) =
0.768s1.89 + 0.9088s1.17 + 3.6s0.72 + 4.26

3.6s2.34 + 0.8s1.93 + 4s1.3 + 0.840.72 (42)

T(s) =
L(s)

1 + L(s)
=

0.768s1.89 + 0.9088s1.17 + 3.6s0.72 + 4.26
3.6s2.34 + 0.8s1.93 + 0.768s1.89 + 4s1.3 + 0.9088s1.17 + 4.440.72 + 4.26

(43)
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As seen in (43), T(s) has many fractional-orders, such as 0.89, 0.17, 0.72, 0.34, 0.93, and
0.30. When we use the 3rd-order operator-based approximation methods in this transfer
function, the 29th-order integer approximation is obtained. Furthermore, when the 4th-
order approximation methods are used, the 38th-order integer approximation is obtained.
Namely, operator-based integer-order approximation methods produce very high-order
transfer functions. Such higher order transfer functions cannot be suitable for real-world
applications. However, when the proposed direct approximation method is used for T(s),
4th-order integer approximation is obtained, as shown in (44).

Tm(s) =
0.624s3 + 1.933s2 + 1.697s + 0.571

s4 + 2.611s3 + 3.362s2 + 2.115s + 0.571
(44)

The unit step response and error plot of T(s) and Tm(s) are plotted in Figure 8 for the
performance analysis of the proposed method. The error curve was obtained, according to
the GL method. As is seen in Figure 8, the error margin of the proposed method is almost
zero. Only at the first moment there is a maximum error margin of 0.034. It is shown that a
low-order integer approximation is obtained due to the use of the proposed method. It also
has a very low margin of error. This example also shows that very complex fractional-order
transfer functions, such as T(s), can be directly converted as a low-order integer-order
transfer function by using the proposed method. The proposed method is also a helpful
tool for applying classical control theory techniques to fractional-order control systems.
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4.2. Comparison with Direct Approximation Methods in the Literature

Example 4: Equation (45) is used widely in the literature for integer-order approximation. Tech-
niques, such as PSO algorithm [35], block pulse functions and generalized operational matrices [47],
Oustaloup approximation [48], and integer-order-approximation calculations using different model
reduction [49] are often used.
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G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
(45)

Integer-order approximations of Equation (45) are computed by above methods [35,47–49]
and are given in Equations (46)–(51), respectively.

GPSO(s) =
1

0.1772s3 + 0.7329s2 + 0.4463s + 1.0265
(46)

GBlock_Pulse1(s) =
1

s2 + 0.327s + 1.048
(47)

GBlock_Pulse2(s) =
−0.3213s + 1.525

s2 + 0.3255s + 1.571
(48)

GBT(s) =
−0.2121s + 1.409

s2 + 0.1838s + 1.41
(49)

GSPA(s) =
0.1777s2 − 0.2739s + 1.437

s2 + 0.1932s + 1.438
(50)

GHNA(s) =
−0.1072s2 − 0.3346s + 1.421

s2 + 0.1876s + 1.422
(51)

The integer-order approximate transfer function is computed by the proposed method,
and the approximate transfer function is shown in Equation (52). Unit step response of the
transfer functions is computed by the literature [35,47–49], and the proposed methods are
superimposed in Figure 9.

GProposed(s) =
0.8844s3 + 1.8085s2 + 1.6777s + 2.1596

s5 + 1.5691s4 + 3.4532s3 + 3.8213s2 + 2.7957s + 2.1596
(52)
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As shown in Figure 9, the proposed method follows the actual system response more
accurately than the others. Furthermore, performance characteristics (rise time, settling
time, peak time, peak value, overshoot, and integral square error (ISE)) are compared
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among the methods in Table 4. The proposed method has the closest response to the
GL method when compared to transfer functions with positive coefficients. The steady-
state error of the transfer function obtained by the proposed method is exact compared to
other methods. Three fundamental properties of the proposed method can be observed in
Figure 9 and Table 4: it can compute the positive coefficient approximate transfer function,
it gives nearly exact results in time response performance characteristics, and it results in
the same steady-state-error as GL.

Table 4. Time response performance characteristics of Equations (45)–(52).

Methods Rise Time
(s)

Settling
Time (5%)

(s)

Peak Time
(s)

Peak
Value

Overshoot
(%)

Steady
State Error

GL
Method 1.0630 21.9606 2.8400 1.5658 56.5764 0

GProposed (s) 1.0719 24.0946 2.8500 1.5799 57.9923 0
GPSO(s) 0.9951 26.6459 2.8400 1.6332 63.3222 0.0258

GBlock_Pulse1(s) 1.1777 31.8859 3.1100 1.5282 52.8180 0.0458
GBlock_Pulse2(s) 0.8756 21.1973 2.7300 1.6351 63.5147 0.0293

GBT(s) 0.8883 32.3321 2.8000 1.7945 79.4513 0.0007
GSPA(s) 0.8388 29.6601 2.8800 1.6662 66.6186 0.0007
GHNA(s) 0.8679 32.1206 2.8400 1.8865 88.6464 0.0007

Example 5: In another study, Oustaloup’s recursive filter and a refined Outsaloup’s filter, examined
in [46,48], are considered for integer-order approximations. Integer-order transfer functions are
obtained by using the filters. Then, using some model reduction techniques, lower-order transfer
functions are obtained by preserving the dominant behavior of higher-order integer transfer functions.
One of the applications in [48] is given in Equation (53), and the equation is considered in this
paper, also.

G(s) =
5

s2.3 + 1.3s0.9 + 1.25
(53)

The proposed method offers a 5th-order approximation. For the accuracy of the
comparison, the transfer function of order 5 or more is chosen in [48], which is given in
Equation (54).

Gpade46(s) =
4.334s4 + 3.488s3 + 0.6366s2 + 0.03234s + 0.0004762

s6 + 1.504s5 + 2.152s4 + 1.091s3 + 0.173s2 + 0.008392s + 0.000121
(54)

The fractional-order transfer function in Equation (53) results an integer-order transfer
function given in Equation (55) obtained by the proposed method.

Gproposed(s) =
1.2751s3 + 15.5456s2 + 13.9474s + 4.7263

s5 + 3.6807s4 + 6.5421s3 + 8.0526s2 + 5.0702s + 1.1816
(55)

The unit-step-responses of the proposed method, reduced order method, and GL
method are superimposed in Figure 10. The proposed method follows the exact method
more accurately than the other as shown in Figure 10. Moreover, the order of the approximate-
integer-order transfer function computed by the proposed method is less than the order of
the approximate-integer-order transfer function in [48].

In Table 5, it is seen that the proposed method is more accurate than the reduced order
model given in [48] in terms of performance characteristics, such as rise time, peak time,
peak value, overshoot, and steady-state error.
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Table 5. Time response performance characteristics of Equations (53)–(55).

Methods Rise Time
(s)

Settling
Time (5%)

(s)

Peak Time
(s)

Peak
Value

Overshoot
(%)

Steady
State Error

GL
Method 1.2786 10.0216 2.7800 4.7386 18.4639 0

GProposed(s) 1.2342 6.3591 2.7500 4.7723 19.3085 0
Gpade46(s) 1.4545 7.1269 2.9600 4.4537 11.3415 0.07

Design of a PID controller for the fractional-order transfer function as in Equation (53)
is as follows: Routh-Hurwitz stability criterion cannot be applied for fractional-order
transfer functions. However, the Routh-Hurwitz criterion can be successfully applied to
the integer-order approximate transfer function Gproposed(s) derived by using the proposed
method. Additionally, PID controller design can be done easily using Ziegler-Nichols
method. For the design method, the process is taken to closed-loop proportional control
(K), as in Figure 11, and the closed-loop transfer function of the system is written as
Equation (56).

H(s) =
KGproposed(s)

1+KGproposed(s)

H(s) = 1.2751Ks3+15.5456Ks2+13.9474Ks+4.7263K
s5 + 3.6807s4 + (6.5421 + 1.2751K)s3 + (8.0526 + 15.5456K)s2

+(5.0702 + 13.9474K)s + (1.1816 + 4.7263K)

(56)

∆(s) = s5 + 3.6807s4 + (6.5421 + 1.2751K)s3 + (8.0526 + 15.5456K)s2

+(5.0702 + 13.9474K)s + (1.1816 + 4.7263K)
(57)
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For the characteristic equation given in Equation (57), the Routh-Hurwitz stability
criterion method is applied as given in Equation (58). The critical gain Kcr and critical
frequency ωcr and critical period Tcr of the system are easily calculated using the Routh-
Hurwitz method.

s5

s4

s3

s2

s1

s0

∣∣∣∣∣∣∣∣∣∣∣∣

1
3.6807
A
C
E
F

(6.5421 + 1.2751K)
(8.0526 + 15.5456K)
B
D
0
0

(5.0702 + 13.9474K)
(1.1816 + 4.7263K)
0
0
0
0

A = 4.3543− 2.9484K
B = 12.6633K+4.7491

C =
[(45.8353K2+2.6621K−17.5832)]

[(2.9484K−4.3543)]

D =
[ (47,263 K+ 11,816)(2.9484×10−4K−4.3543×10−4)]

[(2.9484 K−4.3543)]

E = − [(2.9484K−4.3543)(−3.1076×1034K3−7.0154×1033K2+7.5374×1033K+3.0551×1033)]
[(1.4742×1032K−2.1772×1032)(45.8353K2+2.6621K−17.5832)]

F =

[
(47, 263K + 11, 816)(1.4742× 1065K− 2.1772× 1065)(45.8353K2 + 2.6621K− 17.5832)
(−1.5537× 1033K3 − 3.5077× 1032K2 + 3.7687× 1032K + 1.5276× 1032)

]
[

(2.9484K− 4.3543)(2.2917× 1033K2 + 1.3311× 1032K− 8.7916× 1032)
(−1.5537× 1070K3 − 3.5076× 1069K2 + 3.7687× 1069K + 1.5275× 1069)

]

(58)

In order to calculate the critical gain of the system, it is determined as
Kcr = K = 0.5467 by using the Matlab fminsearch command at E = 0 in Equation (58).
Using the K gain value, the equations C and D are calculated as 0.8855 and 3.7654, respec-
tively. Thus, from the auxiliary equation 0.8855s2 + 3.7654 = 0, the critical frequency is
obtained as ωcr = 2.0621 rad/s. In this case, the period of the oscillating signal is calculated
as Tcr = 3.0470 s. According to the Ziegler-Nichols Method, the parameters of the PID
controller are calculated using Equation (59).

C(s) = Kp

(
1 + 1

τis
+ τds

)
Kp = 0.5882Kcr
τi = 0.5 ∗ Tcr
τd = 0.125Tcr

(59)

When the critical gain and critical period values are substituted in Equation (59), the
PID controller parameters are calculated as Kp = 0.3216, τi = 1.5235, and τd = 0.3809.
Thus, the PID controller transfer function is obtained as Equation (60). Closed-loop unit
step responses of Gproposed(s), Gpade(s), and G(s), using the PID controller, are presented
in Figure 12. The closed-loop unit step response of the fractional transfer function G(s)
is obtained using the IFTM method. In Figure 12, it is seen that the closed loop unit
step response of Gproposed(s) successfully tracks of G(s). This shows that Gproposed(s) is a
successful integer-order approximation. It is seen that Gpade(s), which is the approximation
obtained using the Pade method, obviously has higher error.

C(s) = 0.3216 +
0.2111

s
+ 0.1225s (60)
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5. Conclusions

Integer-order approximations are very important for applying classical control theory
rules and simulations on fractional-order transfer functions. In this study, an alternative
method has been developed to directly obtain the integer-order approximation of fractional-
order transfer functions. The proposed method applied to perform an approximation
in both open-loop stable and unstable fractional-order transfer functions. The method
is based on curve fitting with the EO algorithm, which has been developed in recent
years. Operator-based integer-order approximation methods, such as Oustaloup, Matsuda,
Carlson, Chareff, etc. can produce very large order transfer functions. The proposed
method not only provides a low order transfer function approximation, but also has a
lower error margin compared to existing methods with higher order transfer function
approximation. It has been shown, in examples, that the proposed method can easily
transform a fractional-order transfer function directly to approximate integer-order transfer
function. The proposed method produces a maximum 5th-order approximate transfer
function. In this way, the computations, such as time response, frequency response, stability
analysis, controller design, etc. can be easily performed in control theory. In addition,
analytical controller designs can be made by converting the approximate transfer function to
standard forms by using model reduction methods. The Routh-Hurwitz stability criterion
can be easily applied. In this way, the P/PI/PID controller can be designed using the
Ziegler-Nichols method. In addition, the proposed method can be used successfully in
closed loop control systems which include both fractional controller and plant. Thus,
fractional-order closed-loop control systems can be investigated as an integer-order transfer
function. Comparisons with other methods are presented on widely used applications in the
literature. In Example 4, among the positive coefficient approximate transfer functions, it is
seen that the proposed method is closest to the GL method in performance characteristics,
such as rise time, settling time, peak value, overshoot, and steady-state error. In Example
5, a 6th-order integer approximation presented in the literature is compared with the 5th-
order integer-order approximation, which was computed using the proposed method. It
is seen that the proposed method is closest to the GL method in terms of rise time, peak
time, peak value, over-shoot, and steady-state error performance characteristics. In both
examples, five of the six performance criteria are very close to the performance criteria
of the GL method, which give accurate results. In addition, Example 5, a successful PID
controller design has been made using the Routh-Hurwitz stability criterion. It has been
understood that the proposed method gives more efficient and accurate results than the
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methods presented in Examples 4 and 5. This study can be used widely as a more efficient
tool in fractional control systems calculations. In addition, the transfer function structure
obtained by the proposed method is suitable for electronic circuit implementations, such as
fractional-order filter circuit. In the future, the study of the electronic implementations of
filters with two fractional-orders on these results can be considered.
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