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Abstract: The block-centered finite-difference method has many advantages, and the time-fractional
fourth-order equation is widely used in physics and engineering science. In this paper, we con-
sider variable-coefficient fourth-order parabolic equations of fractional-order time derivatives with
Neumann boundary conditions. The fractional-order time derivatives are approximated by L1 inter-
polation. We propose the block-centered finite-difference scheme for fourth-order parabolic equations
with fractional-order time derivatives. We prove the stability of the block-centered finite-difference
scheme and the second-order convergence of the discrete L2 norms of the approximate solution and
its derivatives of every order. Numerical examples are provided to verify the effectiveness of the
block-centered finite-difference scheme.

Keywords: fourth-order parabolic equation; block-centered finite-difference methods; stability; error
estimates; numerical experiment; comparison of solutions

1. Introduction

The block-centered finite-difference method was first applied to the simulation of
oil reservoirs [1]. Russell and Wheeler [1] proved that the block-centered finite-difference
method is equivalent to the mixed finite-element method with a special numerical quadra-
ture formula. Based on this equivalence, it is easier to discuss the stability and convergence of
the block-centered finite-difference method. In addition, the block-centered finite-difference
method can simultaneously approximate the exact solution of the original problem and its
derivatives, thus preserving the local conservation of the problem. Moreover, for problems
with Neumann boundary conditions, the numerical solution of nodes near the boundary
does not need to be considered separately. On this basis, Weiser and Wheeler [2] introduced
the block-centered finite-difference method for linear self-adjoint and non-self-adjoint el-
liptic and parabolic problems with Neumann boundary conditions in a rectangular area.
They proved that the errors of the discrete L2 norms for the solution and the first derivative
are both of the second order. Refs. [3–5] considered the block-centered finite-difference
method for the nonlinear Darcy–Forchheimer equation. The block-centered finite-difference
method on non-uniform grids has been discussed in [6–11]. In [12], Ren and Zhang studied
the Crank–Nicolson block-centered difference method for solving linear parabolic equa-
tions in bounded domains. Li and Rui [13] introduced and analyzed the block-centered
finite-difference method for distributed-order time-fractional diffusion-wave equations with
Neumann boundary conditions. In addition, [14–18] discussed the two-grid and parallel
block-centered finite-difference schemes for parabolic equations and diffusion equations
with fractional-order time derivatives. The resulting schemes have a second-order accu-
racy in space and a (2− α)-order accuracy in time, and the unconditional stability and
convergence have been proved theoretically. In [19], Shi and Xie derived and analyzed the
fourth-order compact block-centered finite-difference schemes for one-dimensional and
two-dimensional variable-coefficient elliptic and parabolic problems. They demonstrated
the stability of the solution and flux and performed optimal fourth-order error estimation.
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The fourth-order parabolic problem has important practical significance in science
and engineering. It can be used to describe bistable phenomena encountered in various
fields [20], such as the competition and spatial sorting of biological populations, migration
of riverbeds, charge-density distribution of quantum semiconductors, etc. [21,22]. Since
the exact solution of the fourth-order equation is difficult to obtain, the numerical method
of the fourth-order parabolic equation has attracted extensive attention from researchers
in recent years. In [22], Jüngel studied the positivity-preserving numerical scheme for a
class of fourth-order nonlinear parabolic systems in quantum semiconductor modeling
and performed transient calculations using a macroscopic quantum model for the first
time. The time-fractional derivative is especially good at describing dynamic processes with
history dependence; therefore, the time-fractional differential equation can be used to depict
physical problems with time variables with great accuracy such as in [23,24]. Fractional
Caputo derivatives can be used to study the dynamics of plankton–fish models in the
presence of toxic compounds produced by harmful algal blooms [25]. The time-fractional
fourth-order parabolic equation can better describe the propagation of waves in intense laser
beams and the charge-density distribution of quantum semiconductors. Currently, many
researchers are dedicated to the study of fractional-order differential equations. Aziz [26]
studied two inverse source problems of fourth-order parabolic equations with fractional
time derivatives. Li and Liao [27] used a class of L1-Galerkin finite-element methods
to study the numerical solution of time-fractional nonlinear parabolic problems. They
provided the optimal error estimates of several fully discrete linearized Galerkin finite-
element methods for solving nonlinear problems. The authors of [28] established a fully
discrete weak Galerkin finite-element method for the initial boundary value problems of
two-dimensional sub-diffusion equations with Caputo fractional time derivatives. In [29],
Liu and Du proposed and discussed the finite-difference/finite-element method for solving
nonlinear time-fractional fourth-order reaction and diffusion problems. A new implicit
compact difference scheme for fourth-order fractional diffuse wave systems was constructed
in [30]. In addition, Ji and Sun [31] studied the compact algorithm for a class of fourth-order
fractional diffusion equations with first-order Dirichlet boundary conditions.

So far, no block-centered finite-difference methods for fourth-order parabolic equations
with fractional-order time derivatives have been published in the literature. For the Neu-
mann boundary conditions, which provide the boundary charge density, the time fractional
fourth-order parabolic equation is more suitable to be solved using the block-centered
finite-difference method, without separately considering the numerical solution of the nodes
near the boundary. Therefore, it is of great theoretical and practical significance to pro-
pose and develop a block-centered finite-difference method for time-fractional fourth-order
parabolic equations. This paper discusses the block-centered finite-difference method [30]
for variable-coefficient fourth-order parabolic equations of fractional-order time derivatives
with Neumann boundary conditions. In this method, the mixed finite-element method
is used for theoretical analysis, which gives the error analysis a certain regularity. The
fractional-order time derivatives are approximated by L1 interpolation. The block-centered
finite-difference scheme is established, and the error estimations of the discrete L2 norm
of the approximate solution and its derivatives are provided. Numerical examples are
presented to verify the effectiveness of the block-centered finite-difference scheme.

This paper is organized as follows. Section 2 introduces the notations used in this
paper. Section 3 presents the block-centered finite-difference scheme and error estimation
for fourth-order ordinary differential equations. Section 4 establishes the block-centered
finite-difference schemes for the fractional-order time derivatives and proves the stability
and convergence of the schemes. In Section 5, numerical examples are provided to verify
the convergence of the proposed schemes.

2. Notations

We first introduce some notations and definitions used in this paper, which will help
with the following analysis. We use notations similar to those in [2]. Define the partition Tx
of Ω = (xL, xR) as
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Tx : xL = x1/2 < x3/2 < · · · < xN−1/2 < xN+1/2 = xR.

For each i = 1 to N, define

xi =
1
2
(xi+1/2 + xi−1/2),

hi = xi+1/2 − xi−1/2,

h = max
i

hi,

hi+1/2 = xi+1 − xi =
1
2
(hi + hi+1),

Ωi = (xi−1/2, xi+1/2).

The block-centered dual partition grids are defined as T ∗x = {xi}.
Take a positive integer J, and let τ = T̂/J, tn = nτ (0 ≤ n ≤ J).
For any function g(x), let gi, gi+1/2, gn

i donate g(xi), g(xi+1/2), g(xi, tn).
Define the following notations

[dxg]i+1/2 =
gi+1 − gi

hi+1/2
,

[Dxg]i =
gi+1/2 − gi−1/2

hi
.

For functions F and G, define the midpoint quadrature formula and trapezoidal quadra-
ture formula on Ωi as

(F, G)M,Ωi = hiF(xi)G(xi),

and

(F, G)T,Ωi =
hi
2
[F(xi−1/2)G(xi−1/2) + F(xi+1/2)G(xi+1/2)].

Given functions f (x) and g(x), define the L2 inner product and norm

( f , g) =
∫

Ω
f (x)g(x)dx,

‖ f ‖2 = ( f , f ),

and the discrete L2 inner products and norms

( f , g)M =
N

∑
i=1

hi figi,

‖ f ‖2
M = ( f , f )M,

( f , g)T =
N

∑
i=1

hi+1/2 fi+1/2gi+1/2,

‖ f ‖2
T = ( f , f )T ,

‖ f ‖L∞(Ω) = max
1≤i≤N

| f (xi)|.

Define Sd
c (Tx) as the finite-dimensional space of one-dimensional functions that have

c continuous derivatives on (xL, xR) and are piecewise polynomials of degree d in each
interval Ωi. When c = −1, the functions themselves may be discontinuous.

The notation ‖g‖ = O(hk), k > 0 means that there exists a constant C such that
‖g(x)‖ ≤ Chk as h approaches zero.
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3. Fourth-Order Ordinary Differential Equation

In order to discuss the block-centered difference method for the time-fractional fourth-
order parabolic equation, we first consider the block-centered difference scheme for the
fourth-order ordinary differential equation.

We consider fourth-order variable-coefficient ordinary differential equations with
Neumann boundary conditions

(a(x)w′′)′′ = f (x), x ∈ (xL, xR),
w′|x=xL = 0, w′|x=xR = 0,
(a(x)w′′)′|x=xL = 0, (a(x)w′′)′|x=xR = 0.

(1)

where f (x) is a known smooth function.
Let

v(x) = −w′(x), p(x) = a(x)v′(x), u(x) = −p′(x),

then, we have

u′(x) = f (x), x ∈ (xL, xR),

u(x) =− p′(x),

a(x)v′(x) =p(x),

v(x) =− w′(x),

u(x) = 0, v(x) = 0, at x = xL, x = xR. (2)

The block-centered finite-difference approximations Ui+1/2, Vi+1/2, Wi, and Pi to
u(xi+1/2), v(xi+1/2), w(xi), and p(xi)(i = 1, 2, · · · , N), respectively, satisfy the following

[DxU]i = fi, U1/2 = 0, UN+1/2 = 0, (3)

Ui+1/2 =[−dxP]i+1/2, (4)

[DxV]i =
Pi
ai

, V1/2 = 0, VN+1/2 = 0, (5)

Vi+1/2 = [−dxW]i+1/2, (6)

which approximate the original Equation (2). The above block-centered finite-difference
scheme can be written as a mixed finite-element scheme with approximate integration

((U)′, 1)Ωi = ( f , 1)M,Ωi , (7)

(U, χ)T − (P, χ′) = 0, χ ∈ S̃, (8)

((V)′, 1)Ωi = (
P
a

, 1)M,Ωi , (9)

(V, χ)T − (W, χ′) = 0, χ ∈ S̃. (10)

where S̃ = S1
0(Tx)

⋂{χ : χ(xL) = χ(xR) = 0}, U and V are in S̃, and P and W are in
S0
−1(Tx).

Lemma 1 ([2]). If w(5)(x) is continuous and f ′′′(x) is in L1(Ωi) for all i,

‖U − u‖T = O(h2), ‖P− p‖M = O(h2),

‖V − v‖T = O(h2), ‖W − w‖M = O(h2). (11)
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Proof. By using Equations (2)–(6) and the Taylor expansion, we can obtain

ui+1/2 −Ui+1/2 =
∫ xi+1/2

x1/2

(u′ −U′)dx =
∫ xi+1/2

x1/2

( f (x)− f (xi))dx =
i

∑
j=1

∫
Ωj

( f (x)− f (xj))dx

=
i

∑
j=1

∫
Ωj

((x− xj) f ′j +
(x− xj)

2

2
f ′′j +

∫ x

xj

(x− s)2

2
f ′′′(s)ds)dx

=
i

∑
j=1

(
1
24

h3
j f ′′j +

∫
Ωj

∫ x

xj

(x− s)2

2
f ′′′(s)dsdx)

≤ 1
24

i

∑
j=1

h3
j f ′′j + |

i

∑
j=1

∫
Ωj

∫ x

xj

(x− s)2

2
f ′′′(s)dsdx|

≤ 1
24

i

∑
j=1

h3
j f ′′j +

i

∑
j=1

h3
j

8

∫
Ωj

| f ′′′|dx. (12)

Then, we have

|ui+1/2 −Ui+1/2| ≤
i

∑
j=1

h2
j

2
‖ f ′′‖L1 .

pi+1 − Pi+1 = −
i

∑
j=1

∫ xj+1

xj

(u−Uj+1/2)dx−
∫ x1

0
udx

= −
∫ x1

0
udx +

i

∑
j=1

∫ xj+1

xj

(U − u)j+1/2dx +
i

∑
j=1

∫ xj+1

xj

(uj+1/2 − u)dx.

According to Equation (12), the first two terms on the right side of the equation are
O(h2). Now, we estimate the third term on the right side.

i

∑
j=1

∫ xj+1

xj

(p′j+1/2 − p′)dx = −
i

∑
j=1

∫ xj+1

xj

((x− xj+1/2)p′′j+1/2 +
∫ x

xj+1/2

(x− s)p′′′(s)ds)dx

≤ |
i

∑
j=2

h2
j

8
|p′′j+1/2 − p′′j−1/2|+

h2
1

8
|p′′3/2|+

h2
i+1
8
|p′′i+1/2|

+
i

∑
j=1

h2
j

2

∫ xj+1

xj

|p′′′|ds

= O(h2).

We can obtain
|pi+1 − Pi+1| = O(h2).

Similarly, we can reach the same conclusion for V and W by employing the Taylor
expansion.

The second-order error estimation for a block-centered difference scheme applied to
fourth-order ordinary differential equations has been derived.

4. Time-Fractional Fourth-Order Parabolic Equation

In this section, we consider the block-centered finite-difference method for a time-
fractional fourth-order parabolic equation when 0 < α < 1.

We consider the following variable-coefficient fractional fourth-order parabolic prob-
lem with initial and boundary value conditions
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c
0Dα

t w(x, t) + µ ∂2

∂x2 (a(x) ∂2w(x,t)
∂x2 ) = f (x, t), x ∈ (xL, xR), t ∈ (0, T̂],

w(x, 0) = ϕ(x), x ∈ (xL, xR), t ∈ (0, T̂],
∂w(x,t)

∂x |x=xL= 0, ∂w(x,t)
∂x |x=xR= 0, t ∈ (0, T̂],

∂
∂x (a(x) ∂2w(x,t)

∂x2 )|x=xL= 0, ∂
∂x (a(x) ∂2w(x,t)

∂x2 )|x=xR= 0, t ∈ (0, T̂].

(13)

where µ is a constant; a(x), f (x, t), and ϕ(x) are known smooth functions; and it is assumed
that 0 < a0 ≤ a(x) ≤ a1.

We consider the case 0 < α < 1. c
0Dα

t w in (13) is defined as the Caputo fractional
derivative of α, which is given by

c
0Dα

t w(x, t) =
1

Γ(1− α)

∫ t

0
(t− τ)−α ∂w(x, τ)

∂τ
dτ.

4.1. Block-Centered Finite-Difference Scheme

In this subsection, we provide the block-centered difference scheme for a time-fractional
fourth-order parabolic equation.

Lemma 2 ([32]). Suppose f (t) ∈ C2[0, T̂], 0 < α < 1,

c
0Dα

t f (tn) = Dα
τ f (tn) + R( f (tn)) =

τ−α

Γ(2− α)
[a(α)0 f (tn)−

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k) f (tk)− a(α)n−1 f (t0)]

+R( f (tn)),

where
a(α)k = (k + 1)1−α − k1−α,

|R( f (tn))| ≤
1

2Γ(1− α)
[
1
4
+

α

(1− α)(2− α)
] max

t0≤t≤tn
| f ′′(t)|τ2−α.

Lemma 3 ([32]). Given that 0 < α < 1, we have lim
l→+∞

al = 0,

1 = a(α)0 > a(α)1 > a(α)2 > · · · > a(α)l > 0.

The block-centered finite-difference method (13) defines {Un
i+1/2}

M
n=1, {Vn

i+1/2}
M
n=1,

{Wn
i }M

n=1 and {Pn
i }M

n=1(i = 1, 2, · · · , N), satisfying

[Dα
τW]ni + µ[DxU]ni = f n

i , α ∈ (0, 1), Un
1/2 = 0, Un

N+1/2 = 0, (14)

Un
i+1/2 = [−dxP]ni+1/2, (15)

[DxV]ni =
Pn

i
ai

, Vn
1/2 = 0, Vn

N+1/2 = 0, (16)

Vn
i+1/2 = [−dxW]ni+1/2, (17)

where U0 = Ehu0, P0 = Eh p0, V0 = Ehv0, and W0 = Ehw0. Here, Un
i+1/2, Pn

i , Vn
i+1/2, and

Wn
i are approximations to un

i+1/2, pn
i , vn

i+1/2, and wn
i , respectively, and Ehun, Eh pn, Ehvn,

and Ehwn are their corresponding elliptic projections.
The above block-centered finite-difference scheme can be written as a mixed finite-

element scheme with approximate integration

(Dα
τWn, 1)Ωi + µ((Un)′, 1)Ωi = ( f n, 1)M,Ωi , α ∈ (0, 1), (18)

(Un, χ)T − (Pn, χ′) = 0, χ ∈ S̃, (19)

((Vn)′, 1)Ωi = (
Pn

a
, 1)M,Ωi , (20)

(Vn, χ)T − (Wn, χ′) = 0, χ ∈ S̃. (21)
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4.2. Stability Analysis

In this subsection, we prove the stability of the scheme (14)–(17) when 0 < α < 1.

Theorem 1. For the block-centered difference scheme, the following stable inequality holds uncon-
ditionally for sufficiently small τ

‖Wn‖M ≤ C1‖W0‖M + C2 max
1≤k≤J

‖ f k‖M.

Proof. For n = 1, by multiplying (14) by hiW1
i and summing on i from 1 to N, we obtain

(Dα
τW1, W1)M + µ(W1

xx, W1
xx)M = ( f 1, W1)M. So,

(a(α)0 W1, W1)M ≤ (a(α)0 W0, W1)M + ρ( f 1, W1)M,

where ρ = ταΓ(2− α). Using the Cauchy–Schwarz inequality and Young inequality, we
can obtain

(1− ρ

2
)‖W1‖2

M ≤ ‖W0‖2
M + 2ρ‖ f 1‖2

M.

So, we have

‖W1‖2
M ≤

2
2− ρ

‖W0‖2
M +

4ρ

2− ρ
‖ f 1‖2

M.

Thus, we can obtain

‖W1‖M ≤ C1‖W0‖M + C2‖ f 1‖M.

For n ≥ 2, we suppose that the stability conclusion of the difference scheme is valid
when k ≤ n− 1.

Then, by multiplying (14) by hiWn
i and summing on i from 1 to N, we can obtain

(Dα
τWn, Wn)M ≤ ( f n, Wn)M. So,

(a(α)0 Wn, Wn)M ≤ (
n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)W
k, Wn)M + (a(α)n−1W0, Wn)M + ρ( f n, Wn)M.

Using the Cauchy–Schwarz inequality and Young inequality, we obtain

‖Wn‖2
M ≤

2
2− ρ

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)‖W
k‖2

M +
2

2− ρ
a(α)n−1‖W

0‖2
M +

4ρ

2− ρ
‖ f n‖2

M.

Through mathematical induction and using the relation of coefficient ak, we have

‖Wn‖2
M ≤

2
2− ρ

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)(C
′
1‖W0‖2

M + C′2 max
1≤k≤J

‖ f k‖2
M) +

2
2− ρ

a(α)n−1‖W
0‖2

M

+
4ρ

2− ρ
‖ f n‖2

M

≤ 2
2− ρ

[(C′1(a(α)0 − a(α)n−1) + a(α)n−1)‖W
0‖2

M + (C′2(a(α)0 − a(α)n−1) + 2ρ) max
1≤k≤J

‖ f k‖2
M].

There are constants C3 and C4 that make

‖Wn‖2
M ≤ C3‖W0‖2

M + C4 max
1≤k≤J

‖ f k‖2
M.

So, we can obtain

‖Wn‖M ≤ C1‖W0‖M + C2 max
1≤k≤J

‖ f k‖M.
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We complete the proof.

4.3. Error Analysis

The error analysis of the block-centered difference scheme for the time-fractional
parabolic equation is performed.

Error estimates for the finite-difference scheme of (14)–(17) are derived using a tech-
nique of mixed finite-element methods for parabolic partial differential equations.

µ
∂2

∂x2 (a(x)
∂2wn

∂x2 ) = φ = f n −c
0 Dα

t wn, α ∈ (0, 1), x ∈ (xL, xR), (22)

∂wn

∂x
|x=xL = 0,

∂wn

∂x
|x=xR = 0, (23)

∂

∂x
(a(x)

∂2wn

∂x2 )|x=xL = 0,
∂

∂x
(a(x)

∂2wn

∂x2 )|x=xR = 0. (24)

For fixed n, let Ehun
i+1/2, Ehvn

i+1/2, Ehwn
i , and Eh pn

i be defined by

µ[DxEhu]ni = f n
i − (c

0Dα
t w)n

i , Ehun
1/2 = 0, Ehun

N+1/2 = 0, (25)

Ehun
i+1/2 = [−dxEh p]ni+1/2, (26)

[DxEhv]ni =
Eh pn

i
ai

, Ehvn
1/2 = 0, Ehvn

N+1/2 = 0, (27)

Ehvn
i+1/2 = [−dxEhw]ni+1/2, (28)

where Ehu0 = (a(x)ϕ′′(x))′, Eh p0 = −a(x)ϕ′′(x), Ehv0 = −ϕ′(x), and Ehw0 = ϕ(x).
Equations (25)–(28) can be written as a mixed finite-element method with approximate

integration

µ((Ehun)′, 1)Ωi = ( f n, 1)M,Ωi − (c
0Dα

t wn, 1)M,Ωi , (29)

(Ehun, χ)T − (Eh pn, χ′) = 0, χ ∈ S̃, (30)

((Ehvn)′, 1)Ωi = (
Eh pn

a
, 1)M,Ωi , (31)

(Ehvn, χ)T − (Ehwn, χ′) = 0, χ ∈ S̃. (32)

By the error of the ellipse projection, we have

‖Ehun − un‖T = O(h2), ‖Eh pn − pn‖M = O(h2),

‖Ehvn − vn‖T = O(h2), ‖Ehwn − wn‖M = O(h2), (33)

which hold for sufficiently smooth w.
By differentiating t in Equations (25)–(28), we can obtain the following estimation

‖Ehwn
t − wn

t ‖M = O(h2). (34)

Set ξn
i+1/2 = Un

i+1/2 − Ehun
i+1/2, ηn

i = Pn
i − Eh pn

i , θn
i+1/2 = Vn

i+1/2 − Ehvn
i+1/2, ζn

i = Wn
i −

Ehwn
i , and σn

i = Ehwn
i − wn

i .
By subtracting (25) from (14), we obtain

Dα
τζn

i + µ[Dxξ]ni = R(wn
i )− Dα

τσn
i , α ∈ (0, 1), ξn

1/2 = 0, ξn
N+1/2 = 0. (35)
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By subtracting (26), (27) and (28) from (15), (16) and (17), respectively, we obtain

ξn
i+1/2 = [−dxη]ni+1/2, (36)

ηn
i = ai[Dxθ]ni , θn

1/2 = 0, θn
N+1/2 = 0, (37)

θn
i+1/2 = [−dxζ]ni+1/2. (38)

By multiplying (35) by hiζ
n
i and summing on i from 1 to N, we deduce that

(Dα
τζn, ζn)M + µ(Dxξn, ζn)M = (R(wn), ζn)M − (Dα

τσn, ζn)M. (39)

By (36)–(38), and Lemma 2, we have

(Dxξn, ζn)M = (Dx(−dxηn), ζn)M

= (dxηn, dxζn)T

= (ηn, Dxθn)M

=
1
a
(ηn, ηn)M. (40)

Now,

(Dα
τζn, ζn)M =

τ−α

Γ(2− α)
[a(α)0 (ζn, ζn)M −

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)(ζ
k, ζn)M − a(α)n−1(ζ

0, ζn)M]. (41)

Let ρ = ταΓ(2− α), and (39) can be written as

‖ζn‖2
M +

µρ

a1
‖ηn‖2

M ≤
n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)(ζ
k, ζn)M + a(α)n−1(ζ

0, ζn)M

+ρ|(R(wn), ζn)M|+ ρ|(Dα
τσn, ζn)M|. (42)

By the Cauchy–Schwarz inequality and Young inequality, we have

(1− ρ

2
)‖ζn‖2

M +
2
a1

µρ‖ηn‖2
M ≤

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)‖ζ
k‖2

M + a(α)n−1‖ζ
0‖2

M

+4ρ‖Dα
τσn‖2

M + 4ρ‖R(wn)‖2
M. (43)

According to the definition of the fractional derivative and Equation (34),

‖Dα
τσn‖M =

1
Γ(1− α)

‖
n

∑
k=1

σk − σk−1

τ

∫ tk

tk−1

(tn − t)−αdt‖M

=
1

Γ(1− α)
‖

n

∑
k=1

1
τ

∫ tk

tk−1

σtdt
∫ tk

tk−1

(tn − t)−αdt‖M

≤ 1
Γ(1− α)

max
0≤t≤tn

‖σt‖M

n

∑
k=1

∫ tk

tk−1

(tn − t)−αdt

≤ T1−α

Γ(2− α)
max

0≤t≤tn
‖σt‖M

≤ Ch2. (44)

Notice that ζ0 = 0. Using Theorem 1 and the inductive hypothesis, we deduce that

(1− ρ

2
)‖ζn‖2

M +
2
a1

µρ‖ηn‖2
M ≤ C(τ4−2α + h4). (45)
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Thus, we have

‖ζn‖2
M ≤ C(τ4−2α + h4), (46)

‖ηn‖2
M ≤ C(τ4−2α + h4). (47)

By multiplying (35) by hiη
n
i and summing on i from 1 to N, we can obtain

(Dα
τζn, ηn)M + µ(Dxξn, ηn)M = (R(wn), ηn)M − (Dα

τσn, ηn)M. (48)

Now,

(Dα
τζn, ηn)M =

τ−α

Γ(2− α)
[a(α)0 (ζn, ηn)M −

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)(ζ
k, ηn)M − a(α)n−1(ζ

0, ηn)M]. (49)

By using (36)–(38), and Lemma 2, we derive

(ζn, ηn)M = a(θn, θn)T , (50)

(Dxξn, ηn)M = (ξn, ξn)T . (51)

By substituting (49)–(51) into (48), (48) can be deformable to

a0‖θn‖2
T + µρ‖ξn‖2

T ≤ a1

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)(θ
k, θn)T + a1a(α)n−1(θ

0, θn)T

+ρ|(R(wn), ηn)M|+ ρ|(Dα
τσn, ηn)M|. (52)

By the Cauchy–Schwarz inequality, we derive

(2a0 − a1)‖θn‖2
T + 2µρ‖ξn‖2

T ≤ a1

n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)‖θ
k‖2

T + a1a(α)n−1‖θ
0‖2

T + 2ρ‖ηn‖2
M+

ρ‖Dα
τσn‖2

M + ρ‖R(wn)‖2
M. (53)

Similarly, when 2a0 > a1, using the above mathematical induction and substituting
(44) and (47) into (53), we can obtain

(2a0 − a1)‖θn‖2
T + 2µρ‖ξn‖2

T ≤ C(τ4−2α + h4). (54)

So, we can obtain
‖θn‖2

T ≤ C(τ4−2α + h4),

‖ξn‖2
T ≤ C(τ4−2α + h4).

By (33) and the triangle inequality,

‖Un − un‖2
T ≤ C(τ4−2α + h4), ‖Pn − pn‖2

M ≤ C(τ4−2α + h4),

‖Vn − vn‖2
T ≤ C(τ4−2α + h4), ‖Wn − wn‖2

M ≤ C(τ4−2α + h4),

which hold for sufficiently smooth w.
We can draw the following conclusion.

Theorem 2. Let w be sufficiently smooth and satisfy (13). If U, P, V, and W satisfy (14)–(17), for
all n, n = 1, 2, · · · , J,

‖Un − un‖T = O(τ2−α + h2), ‖Pn − pn‖M = O(τ2−α + h2),
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‖Vn − vn‖T = O(τ2−α + h2), ‖Wn − wn‖M = O(τ2−α + h2).

5. Numerical Experiments

In this section, we present three numerical examples to verify the effectiveness and
convergence of the block-centered finite-difference method.

Example 1. Consider the following fourth-order ordinary differential equation
w′′′′ = f (x), x ∈ (0, 1),
w′|x=0 = 0, w′|x=1 = 0, x ∈ (0, 1),
w′′′|x=0 = 0, w′′′|x=1 = 0, x ∈ (0, 1).

(55)

We provide the exact solution to the problem w(x) = cos(πx) and a source term f (x) =
π4 cos(πx).

The original equation is discretized by the block-centered difference scheme, resulting in Equa-
tions (3)–(6). Equations (4)–(6) are substituted into Equation (3) to form a system of linear equations
about the unknown function W. The approximate solution of W is obtained using MATLAB software,
whereas the approximate solutions of V, P, and U are obtained using Equations (4)–(6).

Take the spatial step h = 1/N. The space errors and convergence orders of W, V, P, and U are
shown in Tables 1–4, respectively. The second and fourth columns in Tables 1–4 show the maximum
norm error and discrete L2 norm error, respectively, whereas the third and fifth columns show their
corresponding spatial convergence orders, respectively. It can be seen from the table that the order
of spatial convergence reaches the second order for both the maximum norm and discrete L2 error,
which verifies the convergence of the block-centered finite-difference scheme.

Table 1. The computational errors and convergence orders of W in space.

h l∞ − Error Order l2 − Error Order

1/8 2.5567× 10−2 - 1.8434× 10−2 -
1/16 6.4172× 10−3 1.9943 4.5596× 10−3 2.0154
1/32 1.6059× 10−3 1.9986 1.1369× 10−3 2.0038
1/64 4.0156× 10−4 1.9997 2.8403× 10−4 2.0001

Table 2. The computational errors and convergence orders of V in space.

h l∞ − Error Order l2 − Error Order

1/8 6.1226× 10−2 - 4.3293× 10−2 -
1/16 1.5181× 10−2 2.0119 1.0735× 10−2 2.0019
1/32 3.7875× 10−3 2.0030 2.6782× 10−3 2.0030
1/64 9.4640× 10−4 2.0007 6.6920× 10−4 2.0007

Table 3. The computational errors and convergence orders of P in space.

h l∞ − Error Order l2 − Error Order

1/8 1.2536× 10−1 - 9.0382× 10−2 -
1/16 3.1617× 10−2 1.9873 2.2465× 10−2 2.0084
1/32 7.9214× 10−3 1.9969 5.6081× 10−3 2.0021
1/64 1.9814× 10−3 1.9992 1.4015× 10−3 2.0005
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Table 4. The computational errors and convergence orders of U in space.

h l∞ − Error Order l2 − Error Order

1/8 2.0013× 10−1 - 1.4151× 10−1 -
1/16 4.9864× 10−2 2.0049 3.5260× 10−2 2.0049
1/32 1.2455× 10−2 2.0012 8.8074× 10−3 2.0012
1/64 3.1132× 10−3 2.0003 2.2014× 10−3 2.0003

For the functions S(x) and s(x), L∞ − Error and L2 − Error, as defined below, are used

‖S− s‖L∞(Ω) = max
1≤i≤N

|S(xi)− s(xi)|,

‖S− s‖L2(Ω) = (
N

∑
i=1
|S(xi)− s(xi)|2h)1/2.

Figure 1 illustrates the numerical solution and the exact solution when L = 3. It can be seen
that the numerical solution can accurately fit the exact solution.

Figure 1. Comparison of the numerical solution and the exact solution when L = 2, h = 1
32 .

Example 2. In Equation (13), let T̂ and a(x) be equal to 1 and µ equal to 10. Consider the following
initial boundary value problem

c
0Dα

t w(x, t) + 10 ∂4w(x,t)
∂x4 = f (x, t), x ∈ (0, 1), t ∈ (0, 1],

w(x, 0) = 0, x ∈ (0, 1),
∂w(x,t)

∂x |x=0= 0, ∂w(x,t)
∂x |x=1= 0, x ∈ (0, 1), t ∈ (0, 1],

∂3w(x,t)
∂x3 |x=0= 0, ∂3w(x,t)

∂x3 |x=1= 0, x ∈ (0, 1), t ∈ (0, 1].

(56)

The exact solution is w(x, t) = t2 cos(πx). The spatial step is h = 1/N and the time step
is τ = 1/J. Tables 5–12 show the time and space errors, as well as the convergence orders of W,
V, P, and U, when α is 0.4, 0.6, and 0.8. Tables 5–8 show the maximum norm errors, discrete L2
norm errors, and convergence orders of W, V, P, and U as the mesh size h is reduced with a fixed
τ = 1/210. Tables 9–12 show the maximum norm errors, discrete L2 norm errors, and convergence
orders of W, V, P, and U as the mesh size τ is reduced with a fixed h = 1/210. It can be seen from
the tables that for the maximum norm and discrete L2 norm errors, the space convergence order has
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reached the second order and the time convergence order has reached the 2− α order. Therefore, the
validity of the block-centered finite-difference scheme is verified.

Table 5. The computational errors and convergence orders of W in space.

α h l∞ − Error Order l2 − Error Order

0.4

1/4 8.7432× 10−2 - 4.3716× 10−2 -
1/8 2.2442× 10−2 1.9619 7.9346× 10−3 2.4619

1/16 5.6459× 10−3 1.9909 1.4115× 10−3 2.4909
1/32 1.4138× 10−3 1.9976 2.4993× 10−4 2.4976

0.6

1/4 8.4477× 10−2 - 4.2238× 10−2 -
1/8 2.1739× 10−2 1.9583 7.6860× 10−3 2.4583

1/16 5.4745× 10−3 1.9895 1.3686× 10−3 2.4895
1/32 1.3734× 10−3 1.9950 2.4279× 10−3 2.4950

0.8

1/4 8.2380× 10−2 - 4.1190× 10−2 -
1/8 2.1252× 10−2 1.9547 7.5139× 10−3 2.4547

1/16 5.3659× 10−3 1.9857 1.3415× 10−3 2.4857
1/32 1.3578× 10−3 1.9825 2.4003× 10−3 2.4825

Table 6. The computational errors and convergence orders of V in space.

α h l∞ − Error Order l2 − Error Order

0.4

1/4 2.0975× 10−1 - 1.4832× 10−1 -
1/8 5.1317× 10−2 2.0312 3.6287× 10−2 2.0312

1/16 1.2760× 10−2 2.0078 9.0228× 10−3 2.0078
1/32 3.1862× 10−3 2.0017 2.2530× 10−3 2.0017

0.6

1/4 1.9996× 10−1 - 1.4139× 10−1 -
1/8 2.9079× 10−2 2.0265 3.4704× 10−2 2.0265

1/16 1.2220× 10−2 2.0059 8.6407× 10−3 2.0059
1/32 3.0592× 10−3 1.9980 2.1632× 10−3 1.9980

0.8

1/4 1.9302× 10−1 - 1.3648× 10−1 -
1/8 4.7530× 10−2 2.0218 3.3609× 10−2 2.0218

1/16 1.1878× 10−2 2.0006 8.3987× 10−3 2.0006
1/32 3.0101× 10−3 1.9803 2.1285× 10−3 1.9803

Table 7. The computational errors and convergence orders of P in space.

α h l∞ − Error Order l2 − Error Order

0.4

1/4 3.6117× 10−1 - 2.7643× 10−1 -
1/8 9.5148× 10−2 1.9244 6.8598× 10−2 2.0107

1/16 2.4090× 10−2 1.9817 1.7117× 10−2 2.0027
1/32 6.0431× 10−3 1.9951 4.2782× 10−3 2.0003

0.6

1/4 3.3347× 10−1 - 2.5523× 10−1 -
1/8 8.8296× 10−2 1.9171 6.3658× 10−2 2.0034

1/16 2.2404× 10−2 1.9786 1.5919× 10−2 1.9996
1/32 5.6446× 10−3 1.9888 3.9962× 10−3 1.9940

0.8

1/4 3.1382× 10−1 - 2.4019× 10−1 -
1/8 8.3554× 10−2 1.9092 6.0239× 10−2 1.9954

1/16 2.1336× 10−2 1.9694 1.5160× 10−2 1.9905
1/32 5.4909× 10−3 1.9582 3.8873× 10−3 1.9634
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Table 8. The computational errors and convergence orders of U in space.

α h l∞ − Error Order l2 − Error Order

0.4

1/4 4.0755× 10−1 - 2.8818× 10−1 -
1/8 1.0436× 10−1 1.9654 7.3792× 10−2 1.9654

1/16 2.6240× 10−2 1.9917 1.8554× 10−2 1.9917
1/32 6.5740× 10−3 1.9969 4.6485× 10−3 1.9969

0.6

1/4 3.1577× 10−1 - 2.2328× 10−1 -
1/8 8.2550× 10−2 1.9355 5.8372× 10−2 1.9355

1/16 2.0924× 10−2 1.9801 1.4796× 10−2 1.9801
1/32 5.3212× 10−3 1.9754 3.7626× 10−3 1.9754

0.8

1/4 2.5066× 10−1 - 1.7724× 10−1 -
1/8 6.7458× 10−2 1.8937 4.7700× 10−2 1.8937

1/16 1.7557× 10−2 1.9419 1.2415× 10−2 1.9419
1/32 4.8378× 10−3 1.8596 3.4208× 10−3 1.8596

Table 9. The computational errors and convergence orders of W in time.

α τ l∞ − Error Order l2 − Error Order

0.4

1/8 1.1526× 10−3 - 3.6020× 10−5 -
1/16 3.9529× 10−4 1.5440 1.2353× 10−5 1.5440
1/32 1.3445× 10−4 1.5558 4.2017× 10−6 1.5558
1/64 4.4648× 10−5 1.5904 1.3953× 10−6 1.5904

0.6

1/8 2.7928× 10−3 - 8.7275× 10−5 -
1/16 1.0864× 10−3 1.3621 3.3950× 10−5 1.3621
1/32 4.1776× 10−4 1.3788 1.3055× 10−5 1.3788
1/64 1.5565× 10−4 1.4244 4.8640× 10−6 1.4244

0.8

1/8 6.1370× 10−3 - 1.9178× 10−4 -
1/16 2.7131× 10−3 1.1776 8.4783× 10−5 1.1776
1/32 1.1895× 10−3 1.1896 3.7171× 10−5 1.1895
1/64 5.2209× 10−4 1.1879 1.6315× 10−5 1.1879

Table 10. The computational errors and convergence orders of V in time.

α τ l∞ − Error Order l2 − Error Order

0.4

1/8 3.6206× 10−3 - 2.5601× 10−3 -
1/16 1.2416× 10−3 1.5440 8.7793× 10−4 1.5440
1/32 4.2024× 10−4 1.5629 2.9716× 10−4 1.5629
1/64 1.3963× 10−4 1.5896 9.8734× 10−5 1.5896

0.6

1/8 8.7728× 10−3 - 6.2033× 10−3 -
1/16 3.4129× 10−3 1.3620 2.4133× 10−3 1.3620
1/32 1.3117× 10−3 1.3795 9.2756× 10−4 1.3795
1/64 4.8812× 10−4 1.4262 3.4515× 10−4 1.4262

0.8

1/8 1.9279× 10−2 - 1.3632× 10−2 -
1/16 8.5226× 10−3 1.1776 6.0264× 10−3 1.1776
1/32 3.7346× 10−3 1.1903 2.6408× 10−3 1.1903
1/64 1.6400× 10−3 1.1873 1.1596× 10−3 1.1873
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Table 11. The computational errors and convergence orders of P in time.

α τ l∞ − Error Order l2 − Error Order

0.4

1/8 1.1372× 10−2 - 8.0408× 10−3 -
1/16 3.8972× 10−3 1.5449 2.7557× 10−3 1.5449
1/32 1.3166× 10−3 1.5656 9.3098× 10−4 1.5656
1/64 4.3497× 10−4 1.5979 3.0753× 10−4 1.5980

0.6

1/8 2.7558× 10−2 - 1.9486× 10−2 -
1/16 1.0719× 10−2 1.3623 7.5792× 10−3 1.3623
1/32 4.1174× 10−3 1.3804 2.9114× 10−3 1.3803
1/64 1.5301× 10−3 1.4281 1.0817× 10−3 1.4285

0.8

1/8 6.0563× 10−2 - 4.2825× 10−2 -
1/16 2.6771× 10−2 1.1778 1.8930× 10−2 1.1778
1/32 1.1729× 10−2 1.1906 8.2936× 10−3 1.1906
1/64 5.1483× 10−3 1.1879 3.6405× 10−3 1.1879

Table 12. The computational errors and convergence orders of U in time.

α τ l∞ − Error Order l2 − Error Order

0.4

1/8 3.5715× 10−2 - 2.5254× 10−2 -
1/16 1.2232× 10−2 1.5458 8.6497× 10−3 1.5458
1/32 4.1246× 10−3 1.5684 2.9167× 10−3 1.5683
1/64 1.3548× 10−3 1.6061 9.5780× 10−4 1.6065

0.6

1/8 8.6565× 10−2 - 6.1211× 10−2 -
1/16 3.3662× 10−2 1.3626 2.3803× 10−2 1.3626
1/32 1.2924× 10−2 1.3811 9.1385× 10−3 1.3811
1/64 4.7941× 10−3 1.4308 3.3898× 10−3 1.4307

0.8

1/8 1.9026× 10−1 - 1.3453× 10−1 -
1/16 8.4093× 10−2 1.1779 5.9463× 10−2 1.1779
1/32 3.6837× 10−2 1.1908 2.6047× 10−2 1.1908
1/64 1.6163× 10−2 1.1885 1.1429× 10−2 1.1885

Figures 2 and 3 show time and space images of the numerical solution W and the analytic
solution w when the mesh is divided into N = J2 = 28. Figures 4–6 illustrate comparisons of the
numerical solution W and the analytic solution w when α is 0.4, 0.6, and 0.8, respectively. It can be
seen that the numerical solution W closely matches the analytic solution w.

Figure 2. The numerical solution W when α = 0.4, h = 1
16 .
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Figure 3. The exact solution w when α = 0.4, h = 1
16 .

Figure 4. Comparison of the numerical solution and the exact solution when α = 0.4, L = 3, T = 3,
h = 1

32 .

Figure 5. Comparison of the numerical solution and the exact solution when α = 0.6, L = 3, T = 3,
h = 1

32 .
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Figure 6. Comparison of the numerical solution and the exact solution when α = 0.8, L = 3, T = 3,
h = 1

32 .

6. Conclusions

This paper discusses the block-centered finite-difference method for solving fourth-
order parabolic equations of fractional-order time derivatives. By introducing intermediate
variables, the fourth-order differential equation is transformed into a system of first-order
differential equations. Based on the equivalence of the block-centered finite-difference
scheme and the mixed finite-element method with a special numerical quadrature formula,
the stability and convergence of the block-centered finite-difference scheme have been proved.
The effectiveness of the block-centered finite-difference scheme is verified through numerical
examples. The block-centered difference method can be extended to other fourth-order
differential equations with Neumann boundary conditions. In future work, we will study the
solutions of other types of fourth-order partial differential equations using the block-centered
finite-difference method and numerical examples on non-uniform grids.
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