New Classifier Ensemble and Fuzzy Community Detection Methods Using POP Choquet-like Integrals
Abstract
:1. Introduction
1.1. Classifier Ensembles and Choquet Integrals
- (1)
- the CQO integral did not map to the [0,1] interval, similarly to many fusion functions, but rather to the [0,n] interval;
- (2)
- the CQO integral used the same O before and after replacing the product in the Choquet integral, which may lead to inconspicuous results for different inputs.
1.2. Community Network Detection and Choquet Integrals
1.3. Organizational Structure of This Paper
2. Preliminaries
3. POP Choquet-like Integral
- (1)
- ;
- (2)
- and .
- (1)
- and , so .
- (2)
- , satisfying the (2) of Proposition 3.
4. Ensemble Algorithm Based on POP Choquet-like Integrals
4.1. Algorithmic Framework
Algorithm 1: Pseudo-code for our proposed ensemble model |
Input: A pseudo overlap function pair , classifier set . Output: F. |
4.2. Experimental Framework
- Step 1. Selection of data sets
- Step 2. Experimental preprocessing
- Step 3. Base algorithms and experiment details
4.3. Experimental Results and Analysis
5. Community Network Detection Algorithm Based on POP Choquet-like Integrals
5.1. Modularity
5.2. Experimental Framework
Algorithm 2: Pseudo-code for our proposed network community detection model |
Input: An upper bound K and an adjacent matrix for the number of clusters in a given network. Output: The largest and its corresponding k. |
5.3. Experimental Results and Analysis
- (1)
- Network of Karate Club.
- (2)
- The Les Miserables network
6. Conclusions
- The pseudo overlap function pair is introduced to replace products in discrete Choquet integral. So, the POP Choquet-like integral is obtained.
- Two new algorithms using the POP Choquet-like integral are designed. One is the ensemble algorithm, a branch of the classification algorithm. We use the defined as the fusion operator and the classification results of the base algorithms as inputs into the fusion operator to obtain a clear classification result. Another is the network community detection algorithm, a typical clustering algorithm. We use the defined to act on the results after each node’s soft clustering, improving the classical modularity. Theoretically, our algorithm considers the non-average node membership degree in fuzzy community networks, which is more practical.
- Many experiments were conducted on multiple datasets, proving the advantages of the two algorithms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adankon, M.; Cheriet, M.; Biem, A. Semisupervised learning using Bayesian interpretation: Application to LS-SVM. IEEE Trans. Neural Netw. 2011, 22, 513–524. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY, USA, 1999. [Google Scholar]
- Swaney, D.; McAlister, G.; Coon, J. Decision tree–driven tandem mass spectrometry for shotgun proteomics. Nat. Methods 2008, 5, 959–964. [Google Scholar] [CrossRef]
- Valova, I.; Harris, C.; Mai, T. Optimization of convolutional neural networks for imbalanced set classification. Procedia Comput. Sci. 2020, 176, 660–669. [Google Scholar] [CrossRef]
- Denoeux, T. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 1995, 25, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Tarus, J.; Ogada, K.; Mwalili, T. An Ensemble Based Model for Detecting Genetically Inherited Disorder. In Proceedings of the 2022 12th International Conference on Advanced Computer Information Technologies (ACIT), Ruzomberok, Slovakia, 26–28 September 2022; IEEE: New York, NY, USA, 2022; pp. 121–125. [Google Scholar]
- AminiMotlagh, M.; Shahhoseini, H.; Fatehi, N. A reliable sentiment analysis for classification of tweets in social networks. Soc. Netw. Anal. Min. 2023, 13, 1–11. [Google Scholar] [CrossRef]
- Qiu, H.; Su, P.; Jiang, S. Learning from Human Uncertainty by Choquet Integral for Optic Disc Segmentation. In Proceedings of the 2021 4th International Conference on Control and Computer Vision, Macau, China, 13–15 August 2021; pp. 7–12. [Google Scholar]
- Tripathi, D.; Edla, D.; Cheruku, R. A novel hybrid credit scoring model based on ensemble feature selection and multilayer ensemble classification. Comput. Intell. 2019, 35, 371–394. [Google Scholar] [CrossRef]
- Taha, A.; Barukab, O.; Malebary, S. Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification. Mathematics 2021, 9, 2880. [Google Scholar] [CrossRef]
- Batista, T.; Bedregal, B.; Moraes, R. Constructing multi-layer classifier ensembles using the Choquet integral based on overlap and quasi-overlap functions. Neurocomputing 2022, 500, 413–421. [Google Scholar] [CrossRef]
- Jain, A.; Murty, M.; Flynn, P. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Sharma, K.; Seal, A. Spectral embedded generalized mean based k-nearest neighbors clustering with s-distance. Expert Syst. Appl. 2021, 169, 114326. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Chen, N. Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation. Pattern Recognit. 2022, 121, 108–201. [Google Scholar] [CrossRef]
- Esfandian, N.; Hosseinpour, K. A clustering-based approach for features extraction in spectro-temporal domain using artificial neural network. Int. J. Eng. 2021, 34, 452–457. [Google Scholar]
- Liu, M.; Qi, X.; Pan, H. Construction of network topology and geographical vulnerability for telecommunication network. Comput. Netw. 2022, 205, 108764. [Google Scholar] [CrossRef]
- Ouyang, X.; Huo, J.; Xia, L. Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia. IEEE Trans. Med. Imaging 2020, 39, 2595–2605. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Hu, X.; Ma, L. Vulnerability assessment for coupled network consisting of power grid and EV traffic network. IEEE Trans. Smart Grid 2021, 13, 589–598. [Google Scholar] [CrossRef]
- Liu, X.; Maiorino, E.; Halu, A. Robustness and lethality in multilayer biological molecular networks. Nat. Commun. 2020, 11, 6043. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, R.; Zhang, X. Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys. A Stat. Mech. Appl. 2007, 374, 483–490. [Google Scholar] [CrossRef]
- Nepusz, T.; Petróczi, A.; Négyessy, L. Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 2008, 77, 016107. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.; Rodríguez, J.; Yanez, J. A new modularity measure for fuzzy community detection problems based on overlap and grouping functions. Int. J. Approx. Reason. 2016, 74, 88–107. [Google Scholar] [CrossRef] [Green Version]
- Lucca, G.; Dimuro, G.; Fernández, J. Improving the Performance of Fuzzy Rule-Based Classification Systems Based on a Nonaveraging Generalization of CC-Integrals Named CF1F2-Integrals. IEEE Trans. Fuzzy Syst. 2018, 27, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, R.; Bustince, H. Pseudo overlap functions, fuzzy implications and pseudo grouping functions with applications. Axioms 2022, 11, 593. [Google Scholar] [CrossRef]
- Choquet, G. Theory of capacities. Ann. Inst. Fourier 1954, 5, 131–295. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, F.; Chen, X. Support vector machine ensemble based on Choquet integral for financial distress prediction. Int. J. Pattern Recognit. Artif. Intell. 2015, 29, 1550016. [Google Scholar] [CrossRef]
- Qiao, J.; Hu, B. On homogeneous, quasi-homogeneous and pseudo-homogeneous overlap and grouping functions. Fuzzy Sets Syst. 2019, 357, 58–90. [Google Scholar] [CrossRef]
- Costa, V.; Farias, A.; Bedregal, B. Combining multiple algorithms in classifier ensembles using generalized mixture functions. Neurocomputing 2018, 313, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Cruz, R.; Sabourin, R.; Cavalcanti, G. META-DES: A dynamic ensemble selection framework using meta-learning. Pattern Recognit. 2015, 48, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- Ke, G.; Meng, Q.; Finley, T. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Woloszynski, T.; Kurzynski, M. A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognit. 2011, 44, 2656–2668. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 6639–6649. [Google Scholar]
- Girvan, M.; Newman, M. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Bezdek, J.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Pal, N.; Bezdek, J. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 1995, 3, 370–379. [Google Scholar] [CrossRef]
- Franklin, J. Matrix Theory; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Gomez, D.; Zarrazola, E.; Yanez, J. A divide-and-link algorithm for hierarchical clustering in networks. Inf. Sci. 2015, 316, 308–328. [Google Scholar] [CrossRef]
- Roy, U.; Muhuri, P.; Biswas, S. NeSiFC: Neighbors’ similarity-based fuzzy community detection using modified local random walk. IEEE Trans. Cybern. 2021, 52, 10014–10026. [Google Scholar] [CrossRef]
- Zachary, W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, X. A novel multi-criteria decision-making method based on rough sets and fuzzy measures. Axioms 2022, 11, 275. [Google Scholar] [CrossRef]
- Zhang, X.; Sheng, N.; Borzooei, R.A. Partial residuated implications induced by partial triangular norms and partial residuated lattices. Axioms 2023, 12, 63. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Liu, H. Overlap Functions-Based Fuzzy Mathematical Morphological Operators and Their Applications in Image Edge Extraction. Fractal Fract. 2023, 7, 465. [Google Scholar] [CrossRef]
- Jing, M.; Zhang, X. Pseudo-Quasi Overlap Functions and Related Fuzzy Inference Methods. Axioms 2023, 12, 217. [Google Scholar] [CrossRef]
Sequence Number | Nomenclature | Definition |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 |
Sequence Number | Pseudo Overlap Function Pair | Expression |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 |
Sequence Number | POP Integral | Expression |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 |
Name of Dataset | Instances Number | Attributes Number | Classes Number |
---|---|---|---|
Iris (IR) | 150 | 4 | 3 |
Balance Scale (BS) | 625 | 4 | 3 |
Winequality-red (WR) | 1599 | 11 | 6 |
Waveform (WF) | 5000 | 21 | 3 |
Optical recognition (OR) | 5620 | 64 | 10 |
Cnae-9 (C9) | 1080 | 857 | 9 |
Wireless indoor locatization (WI) | 2000 | 7 | 4 |
Splice junction Gene sequences (SG) | 2552 | 61 | 3 |
Car evaluation (CE) | 1728 | 6 | 4 |
Maternal health risk (MH) | 1014 | 6 | 6 |
Winequality-white (WW) | 4898 | 11 | 7 |
Page-blocks (PB) | 5472 | 10 | 5 |
Dataset Integral | IR | BS | WR | WF | OR | C9 | WI | SG | CE | MH | WW | PB | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95.97 | 85.73 | 45.52 | 84.13 | 95.51 | 93.92 | 97.53 | 99.19 | 84.35 | 67.40 | 42.46 | 94.62 | 82.19 | |
95.97 | 85.73 | 48.36 | 84.30 | 95.19 | 93.64 | 97.43 | 99.00 | 83.75 | 70.36 | 43.96 | 94.52 | 82.68 | |
95.97 | 85.73 | 50.42 | 84.10 | 95.15 | 93.87 | 97.12 | 99.38 | 84.07 | 72.71 | 44.11 | 94.45 | 83.09 | |
96.64 | 85.73 | 43.52 | 84.06 | 95.31 | 93.34 | 97.43 | 98.97 | 85.03 | 67.86 | 43.08 | 94.21 | 82.10 | |
97.31 | 86.65 | 44.53 | 83.23 | 96.21 | 94.03 | 97.51 | 99.72 | 88.47 | 72.00 | 42.88 | 94.62 | 83.10 | |
95.97 | 86.65 | 43.16 | 84.28 | 96.53 | 94.04 | 97.74 | 99.41 | 86.25 | 70.22 | 42.72 | 94.74 | 82.64 | |
95.97 | 86.65 | 41.21 | 82.70 | 95.22 | 94.14 | 97.52 | 99.03 | 82.88 | 68.90 | 41.14 | 94.40 | 80.81 | |
95.97 | 85.62 | 47.55 | 84.57 | 95.59 | 94.01 | 97.58 | 99.62 | 85.69 | 73.63 | 43.69 | 94.43 | 83.16 | |
95.97 | 86.65 | 40.66 | 83.98 | 96.24 | 93.67 | 97.74 | 99.31 | 85.72 | 65.61 | 42.05 | 94.69 | 81.86 | |
95.97 | 85.62 | 48.36 | 84.30 | 95.19 | 93.54 | 97.43 | 99.00 | 83.75 | 70.36 | 43.96 | 94.52 | 82.67 | |
95.97 | 85.62 | 48.21 | 84.33 | 95.41 | 94.10 | 97.43 | 99.31 | 85.46 | 71.25 | 43.53 | 94.40 | 82.92 | |
95.97 | 85.62 | 42.31 | 83.92 | 95.34 | 93.58 | 97.12 | 99.05 | 82.98 | 70.12 | 42.36 | 94.42 | 81.90 | |
95.97 | 85.62 | 40.58 | 83.98 | 95.18 | 93.66 | 97.52 | 89.72 | 83.57 | 71.25 | 41.54 | 94.21 | 81.07 | |
96.64 | 85.43 | 43.62 | 82.70 | 95.20 | 93.97 | 97.43 | 99.03 | 83.75 | 69.36 | 42.31 | 94.20 | 81.97 | |
95.97 | 85.43 | 42.31 | 82.65 | 95.23 | 93.48 | 97.53 | 99.21 | 84.85 | 70.24 | 41.85 | 94.35 | 81.93 |
Dataset Integral | IR | BS | WR | WF | OR | C9 | WI | SG | CE | MH | WW | PB | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.31 | 82.82 | 49.50 | 84.88 | 95.67 | 95.89 | 97.94 | 98.63 | 87.99 | 50.38 | 45.59 | 95.08 | 81.81 | |
97.31 | 82.77 | 50.00 | 85.00 | 94.49 | 95.98 | 97.84 | 90.44 | 87.70 | 44.19 | 45.23 | 94.08 | 80.42 | |
95.92 | 83.04 | 49.97 | 84.74 | 95.49 | 95.90 | 98.04 | 97.50 | 87.94 | 51.29 | 45.56 | 95.27 | 81.72 | |
95.26 | 83.03 | 49.81 | 84.56 | 95.90 | 96.18 | 97.94 | 95.87 | 88.12 | 64.28 | 45.41 | 95.39 | 82.65 | |
95.27 | 82.78 | 49.88 | 84.98 | 95.54 | 96.09 | 98.94 | 98.63 | 87.72 | 51.08 | 45.53 | 95.00 | 81.79 | |
95.97 | 86.34 | 46.94 | 83.70 | 96.71 | 94.98 | 97.59 | 98.34 | 86.85 | 65.48 | 41.89 | 95.25 | 82.50 | |
95.97 | 86.35 | 44.67 | 84.38 | 96.74 | 93.85 | 97.64 | 99.37 | 87.04 | 72.51 | 42.27 | 94.84 | 82.97 | |
95.97 | 86.35 | 41.48 | 83.75 | 96.47 | 93.56 | 97.64 | 98.90 | 86.33 | 62.81 | 40.71 | 94.75 | 81.56 | |
96.64 | 81.13 | 48.60 | 85.15 | 96.00 | 95.47 | 97.04 | 99.59 | 88.03 | 66.99 | 42.68 | 94.46 | 82.65 | |
93.23 | 60.78 | 50.50 | 81.54 | 92.48 | 95.55 | 98.97 | 90.46 | 85.04 | 35.86 | 43.67 | 95.08 | 76.93 | |
91.81 | 60.54 | 51.60 | 81.06 | 92.67 | 95.83 | 98.04 | 91.54 | 85.34 | 35.67 | 46.16 | 95.14 | 77.12 | |
97.31 | 82.97 | 49.17 | 85.36 | 95.67 | 95.61 | 84.04 | 98.63 | 87.84 | 66.02 | 45.34 | 95.31 | 81.94 | |
98.66 | 82.97 | 49.40 | 85.23 | 95.95 | 95.89 | 98.04 | 98.78 | 87.84 | 65.82 | 45.18 | 95.44 | 83.27 | |
96.64 | 82.70 | 49.02 | 85.34 | 96.04 | 95.80 | 98.04 | 99.25 | 87.94 | 66.42 | 45.47 | 94.86 | 83.13 | |
95.97 | 86.34 | 47.81 | 84.06 | 96.69 | 93.78 | 97.74 | 98.59 | 86.80 | 64.67 | 42.08 | 95.06 | 82.47 |
Algorithm Dataset | CQO | GM | RT | XGB | META | LGBM | RRC | CAT | |
---|---|---|---|---|---|---|---|---|---|
IR | 98.66 | 95.31 | 95.98 | 96.65 | 95.98 | 95.98 | 94.64 | 95.31 | 95.31 |
BS | 82.97 | 61.08 | 55.87 | 45.56 | 51.61 | 55.21 | 48.92 | 56.00 | 56.14 |
WR | 49.40 | 29.07 | 29.70 | 25.65 | 29.74 | 27.47 | 29.81 | 28.39 | 26.37 |
WF | 85.23 | 84.93 | 84.00 | 81.29 | 84.86 | 77.53 | 84.62 | 76.93 | 85.28 |
OR | 95.95 | 98.53 | 98.37 | 95.53 | 97.48 | 98.40 | 97.68 | 98.37 | 95.19 |
C9 | 95.89 | 95.08 | 93.88 | 90.42 | 90.82 | 93.81 | 84.34 | 94.19 | 87.62 |
WI | 98.04 | 97.54 | 98.37 | 95.63 | 96.89 | 97.32 | 94.32 | 95.47 | 96.54 |
SG | 98.78 | 94.84 | 94.87 | 91.31 | 95.37 | 94.71 | 95.46 | 94.53 | 95.15 |
CE | 87.84 | 58.43 | 55.99 | 52.21 | 55.05 | 51.41 | 59.18 | 51.75 | 46.38 |
MH | 65.82 | 35.99 | 32.45 | 30.68 | 33.57 | 31.47 | 37.87 | 31.29 | 29.84 |
WW | 45.18 | 25.71 | 24.55 | 23.18 | 25.45 | 22.54 | 25.01 | 22.43 | 22.15 |
PB | 95.44 | 95.21 | 95.33 | 94.89 | 94.54 | 95.42 | 95.36 | 94.07 | 93.52 |
Average | 83.27 | 72.64 | 71.61 | 68.58 | 70.59 | 70.11 | 70.55 | 69.89 | 69.12 |
Win-loss | 9–3 | 1–11 | 1–11 | 0–12 | 0–12 | 0–12 | 0–12 | 0–12 | 1–11 |
p-value | - | 0.0013 | 0.014 | 0.006 | 0.010 | 0.009 | 0.006 | 0.007 | 0.008 |
Nodes | Soft Clustering Results | Crisp C |
---|---|---|
0 | [0.9951, 0.0026, 0.0023] | [1, 0, 0] |
1 | [0.9804, 0.0108, 0.0088] | [1, 0, 0] |
2 | [0.9984, 0.0008, 0.0008] | [1, 0, 0] |
3 | [0.9984, 0.0008, 0.0008] | [1, 0, 0] |
4 | [0.4327, 0.1133, 0.4540] | [1, 0, 1] |
5 | [0.0039, 0.0037, 0.9924] | [0, 0, 1] |
6 | [0.0039, 0.0037, 0.9924] | [0, 0, 1] |
7 | [0.0012, 0.0013, 0.9975] | [0, 0, 1] |
8 | [0.0715, 0.1519, 0.7766] | [0, 1, 1] |
9 | [0.0020, 0.9959, 0.0022] | [0, 1, 0] |
10 | [0.0012, 0.9976, 0.0011] | [0, 1, 0] |
11 | [0.0020, 0.9959, 0.0022] | [0, 1, 0] |
12 | [0.0054, 0.9899, 0.0047] | [0, 1, 0] |
Choquet-like POP Integers Clasess | ||||
---|---|---|---|---|
2 | 0.387 | 0.367 | 0.368 | 0.376 |
3 | 0.462 | 0.460 | 0.457 | 0.448 |
4 | 0.461 | 0.457 | 0.457 | 0.446 |
5 | 0.417 | 0.389 | 0.385 | 0.402 |
6 | 0.147 | 0.031 | 0.024 | 0.074 |
7 | 0.100 | 0.028 | 0.037 | 0.070 |
8 | 0.104 | 0.021 | 0.010 | 0.061 |
9 | 0.122 | 0.019 | 0.035 | 0.065 |
10 | 0.100 | 0.020 | 0.031 | 0.060 |
11 | 0.107 | 0.017 | 0.035 | 0.066 |
12 | 0.091 | 0.014 | 0.034 | 0.056 |
13 | 0.073 | 0.012 | 0.029 | 0.051 |
14 | 0.051 | 0.010 | 0.014 | 0.048 |
15 | 0.044 | 0.007 | 0.012 | 0.026 |
16 | 0.042 | 0.004 | 0.006 | 0.008 |
17 | 0.007 | 0.001 | 0.002 | 0.004 |
Clasess | GN | D&L | OCD | NeSiFC | |
---|---|---|---|---|---|
2 | 0.360 | 0.315 | 0.340 | 0.387 | |
3 | 0.349 | 0.385 | 0.400 | 0.462 | |
4 | 0.363 | 0.416 | 0.437 | 0.461 | |
5 | 0.385 | 0.413 | 0.434 | 0.417 | |
6 | 0.352 | 0.406 | 0.405 | 0.147 | |
7 | 0.376 | 0.398 | 0.310 | Best: 0.372 | 0.100 |
8 | 0.358 | 0.389 | 0.215 | 0.104 | |
9 | 0.342 | 0.377 | 0.213 | 0.122 | |
10 | 0.325 | 0.362 | 0.318 | 0.100 | |
11 | 0.316 | 0.351 | 0.230 | 0.107 | |
12 | 0.299 | 0.334 | 0.120 | 0.091 | |
13 | 0.280 | 0.317 | 0.221 | 0.073 | |
14 | 0.263 | 0.300 | 0.251 | 0.051 | |
15 | 0.248 | 0.282 | 0.346 | 0.044 | |
16 | 0.227 | 0.252 | 0.208 | 0.042 | |
17 | 0.209 | 0.231 | 0.172 | 0.007 |
Choquet-like POP Integers Clasess | ||||
---|---|---|---|---|
2 | 0.374 | 0.244 | 0.388 | 0.324 |
3 | 0.493 | 0.412 | 0.466 | 0.417 |
4 | 0.534 | 0.529 | 0.532 | 0.517 |
5 | 0.585 | 0.568 | 0.574 | 0.561 |
6 | 0.178 | 0.110 | 0.021 | 0.104 |
7 | 0.175 | 0.084 | 0.015 | 0.087 |
8 | 0.132 | 0.071 | 0.012 | 0.074 |
9 | 0.120 | 0.062 | 0.010 | 0.066 |
10 | 0.109 | 0.056 | 0.010 | 0.060 |
11 | 0.094 | 0.049 | 0.010 | 0.051 |
12 | 0.087 | 0.045 | 0.010 | 0.047 |
13 | 0.074 | 0.040 | 0.004 | 0.041 |
14 | 0.067 | 0.047 | 0.026 | 0.036 |
15 | 0.033 | 0.047 | 0.026 | 0.130 |
16 | 0.030 | 0.022 | 0.014 | 0.004 |
17 | 0.011 | 0.006 | 0.003 | 0.001 |
Clasess | GN | D&L | OCD | NeSiFC | |
---|---|---|---|---|---|
2 | 0.075 | 0.372 | 0.233 | 0.374 | |
3 | 0.260 | 0.464 | 0.264 | 0.493 | |
4 | 0.267 | 0.511 | 0.494 | 0.534 | |
5 | 0.416 | 0.552 | 0.553 | 0.585 | |
6 | 0.459 | 0.554 | 0.556 | 0.178 | |
7 | 0.456 | 0.556 | 0.564 | 0.175 | |
8 | 0.454 | 0.556 | 0.276 | Best: 0.573 | 0.132 |
9 | 0.452 | 0.553 | 0.260 | 0.120 | |
10 | 0.452 | 0.551 | 0.113 | 0.109 | |
11 | 0.538 | 0.548 | 0.233 | 0.094 | |
12 | 0.535 | 0.546 | 0.174 | 0.087 | |
13 | 0.531 | 0.543 | 0.115 | 0.074 | |
14 | 0.528 | 0.540 | 0.061 | 0.067 | |
15 | 0.525 | 0.537 | 0.041 | 0.033 | |
16 | 0.523 | 0.525 | 0.026 | 0.030 | |
17 | 0.520 | 0.520 | 0.041 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Jiang, H.; Wang, J. New Classifier Ensemble and Fuzzy Community Detection Methods Using POP Choquet-like Integrals. Fractal Fract. 2023, 7, 588. https://doi.org/10.3390/fractalfract7080588
Zhang X, Jiang H, Wang J. New Classifier Ensemble and Fuzzy Community Detection Methods Using POP Choquet-like Integrals. Fractal and Fractional. 2023; 7(8):588. https://doi.org/10.3390/fractalfract7080588
Chicago/Turabian StyleZhang, Xiaohong, Haojie Jiang, and Jingqian Wang. 2023. "New Classifier Ensemble and Fuzzy Community Detection Methods Using POP Choquet-like Integrals" Fractal and Fractional 7, no. 8: 588. https://doi.org/10.3390/fractalfract7080588
APA StyleZhang, X., Jiang, H., & Wang, J. (2023). New Classifier Ensemble and Fuzzy Community Detection Methods Using POP Choquet-like Integrals. Fractal and Fractional, 7(8), 588. https://doi.org/10.3390/fractalfract7080588