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Abstract: The generalized mixed fractional Brownian motion (gmfBm) is a Gaussian process with
stationary increments that exhibits long-range dependence controlled by its Hurst indices. It is
defined by taking linear combinations of a finite number of independent fractional Brownian motions
with different Hurst indices. In this paper, we investigate the long-time behavior of gmfBm when it is
time-changed by a tempered stable subordinator or a gamma process. As a main result, we show
that the time-changed process exhibits a long-range dependence property under some conditions on
the Hurst indices. The time-changed gmfBm can be used to model natural phenomena that exhibit
long-range dependence, even when the underlying process is not itself long-range dependent.

Keywords: fractional Brownian motion; generalized mixed fractional Brownian motion; long-range
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1. Introduction

The fractional Brownian motion (fBm) BH = {BH
t , t ≥ 0} with parameter H, is a

centered Gaussian process with the covariance function

Cov(BH
t , BH

s ) =
1
2
[t2H + s2H − |t− s|2H ], s, t ≥ 0, (1)

where H is a real number in (0, 1), called the Hurst index. The case H = 1
2 corresponds to

the Brownian motion (Bm).
An extension of the fBm was introduced by Cheridito [1], called the mixed fractional

Brownian motion (mfBm), which is a linear combination of a Bm and an independent fBm
of Hurst index H, with stationary increments, that exhibit a long-range dependence for
H > 1

2 . A mfBm of parameters a1, a2 and H is a process MH(a1, a2) = {MH
t (a1, a2), t ≥ 0},

defined on some probability space (Ω,F , P) by

MH
t (a1, a2) = a1Bt + a2BH

t , t ≥ 0,

where B = {Bt, t ≥ 0} is a Bm and BH = {BH
t , t ≥ 0} is an independent fBm of Hurst

index H ∈ (0, 1). We refer also to [1–4] for further information on the mfBm process.
C. Elnouty [3] propose a generalization of the mfBm called fractional mixed fractional

Brownian motion (fmfBm) of parameters a1, a2 and H = (H1, H2). A fmfBm is a process
NH(a1, a2) = {NH

t (a1, a2), t ≥ 0}, defined on some probability space (Ω,F , P) by

NH
t (a1, a2) = a1BH1

t + a2BH2
t , t ≥ 0,

where BHi = {BHi
t , t ≥ 0} are independent fBms of Hurst indices Hi ∈ (0, 1) for i = 1, 2. In

addition, the fmfBm was studied by Miao, Y et al. [5].
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The fractional mixed fractional Brownian motion was further generalized by Thäle
in 2009 [6] to the generalized mixed fractional Brownian motion. Let a1, . . . , an, n ∈ N∗

reel numbers and not all ai equals zero. A generalized mixed fractional Brownian motion
(gmfBm) of parameters H = (H1, H2, . . . , Hn) and a = (a1, a2, . . . , an); Hi ∈ (0, 1), ai ∈ R,
n ∈ N∗ is a stochastic process ZH,a = {ZH,a

t , t ≥ 0} defined on some probability space
(Ω,F , P) by

ZH,a
t =

n

∑
i=1

aiB
Hi
t ,

where {BHi
t , t ≥ 0} for i = 1, 2, . . . , n are independent fBms of Hurst indices Hi ∈ (0, 1).

The gmfBm is a generalization of both fractional Brownian motion and subfractional
Brownian motion. The gmfBm is a centered Gaussian process with stationary increments
that exhibits long-range dependence if and only if there exists some k with Hk >

1
2 , it can be

used to model a wider range of natural phenomena than either fBm or sfBm. Internet traffic
can be modeled using the gmfBm, as seen in [7]. The gmfBm market is a useful model
for a variety of assets, including internet traffic. Internet traffic has been shown to exhibit
long-range dependence, and the gmfBm model can be used to capture this dependence.
The gmfBm market is a market where the underlying asset price satisfies the following
stochastic differential equation:

dSt = aStdt + bStdZt

where a and b stand for the standard deviation of the stock return and the volatility, see [8].
It should be noted that the gmfBm model is a generalization of all the fractional models

studied in the literature. This generalized model degenerates into a single fBm model with
n = 1, a Bm model with n = 1 and H1 = 1

2 , an mfBm model with n = 2 and H1 = 1
2

and a fmfBm with n = 2. For a detailed survey on the properties of the gmfBm, we refer
to [6,9,10].

The time-changed generalized mixed fractional Brownian motion is defined as

TH,a
β = {TH,a

βt
, t ≥ 0} = {ZH,a

βt
, t ≥ 0},

where the parent process TH,a is a gmfBm with parameters H = (H1, H2, . . . , Hn), a =
(a1, a2, . . . , an), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗ and the internal process is a subordinator
β = {βt, t ≥ 0} assumed to be independent of BHi

t , for i = 1, 2, . . . , n. If H = ( 1
2 , 0, . . . , 0)

and a = (1, 0, . . . , 0), the process TH,a
β is called subordinated Brownian motion. Also, the

process TH,α
β , for H = (H1, 0, . . . , 0) and a = (1, 0, . . . , 0) is called subordinated fractional

Brownian motion it was considered in [11,12].
A time-changed process is a stochastic process that is constructed by taking the

superposition of two independent stochastic systems. The first system is called the external
process, and the second system is called the subordinator. The evolution of time in the
external process is replaced by the subordinator, which is a non-decreasing stochastic
process. The resulting time-changed process often retains important properties of the
base process; however, certain characteristics may change. The idea of subordination was
introduced by Bochner in 1949 [13], and it has been explored in many papers since then
(e.g., [14–17]). Subordination is a versatile tool that can be used to construct a wide variety
of stochastic processes. It is a powerful tool for modeling real-world phenomena, and it
has been used in many different fields, including finance, insurance, and physics.

In the case that H = ( 1
2 , H2, 0 . . . , 0) and a = (a1, a2, 0, . . . , 0), the time-changed mixed

fractional Brownian motion was discussed in [18] to present a stochastic model of the
discounted stock price in some arbitrage-free and complete financial markets.

The time-changed processes have found many interesting applications, for
example [18–26].
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This study investigates the long-range dependency property of the time-changed
gmfBm. We describe two processes that make up gmfBm’s “operational time”. In the
first scenario, the internal process, which plays the role of time, is the tempered stable
subordinator, whereas, in the second situation, it is the gamma process. As an application,
we deduce the results concerned the long-range dependence property of the time-changed
fBm by tempered stable subordinator and gamma process proved by Kumar et al. in [11,12],
respectively.

2. Preliminaries

We define the tempered stable subordinator and gamma process in this section. Addi-
tionally, we quickly review the definitions of long-range dependence based on a process’s
correlation function.

A subordinator is a process with stationary and independent non-negative increments
starting at zero. Subordinators are a special class of Lévy processes taking values in [0, ∞)
and their sample paths are non-decreasing; this is a type of stochastic process that is
used to model random phenomena that have jumps (see [27,28] for more details). Let
β = {βt, t ≥ 0} be a subordinator. The infinite divisibility of the law of β implies that its
Laplace transform can be expressed in the form

E(e−λβt) = e−tΦ(λ), λ > 0,

where Φ : [0, ∞)→ [0, ∞), called the Laplace exponent, is a Bernstein function. Such that
the Laplace exponent Φ can be expressed as

Φ(λ) = a + bλ +
∫
(0,∞)

(1− e−λτ) σ(dτ) < ∞,

which is known as the Lévy-Khintchine formula for the subordinator β. Where a, b ≥ 0 and
σ are a measure on the positive real half-line such that∫

(0,∞)
(1∧ τ) σ(dτ) < ∞

2.1. Tempered Stable Subordinator

Tempered stable subordinator, where index α ∈ (0, 1) and tempering parameter λ > 0
(TSS) are the non-decreasing and non-negative Lévy process Sλ,α = {Sλ,α

t , t ≥ 0} with
density function:

fλ,α(x, t) = exp(−λx + λαt) fα(x, t), λ > 0, α ∈ (0, 1),

where

fα(x, t) =
1
π

∫ ∞

0
e−xye−tyα cos απ sin(tyα sin απ)dy.

More details about TSS can be found in [11].

Lemma 1. (see [11] for the proof)
For q > 0, the asymptotic behavior of q-th order moments of Sλ,α

t satisfies

E(Sλ,α
t )q ∼ (αλα−1t)q, as t→ ∞.
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2.2. Gamma Subordinator

Gamma subordinator Γ = {Γt, t ≥} is a stationary and independent increments
process with gamma distribution. More precisely, the increment Γt+s − Γs has the density
function

f (x, t) =
1

Γ(t/ν)
x(t/ν)−1e−x, x > 0, ν > 0.

More details about gamma subordinator can be found in [12].

Lemma 2. (see [12] for the proof)
For q > 0, the asymptotic behavior of q-th order moments of Γt satisfies

E(Γt)
q ∼

(
t
ν

)q
, as t→ ∞.

Lemma 3. (see [12] for the proof)
The covariance of Γt is

Cov(Γs, Γt) =
t
ν
+

t2 − s2

ν2 , where s < t.

Then for fixed s and t→ ∞, it follows that

Cov(Γs, Γt) ∼
t2

ν2 .

2.3. Long-Range Dependence

Notation 1. Let X and Y be two random variables defined on the same probability space (Ω,F , P).
We denote the correlation coefficient Corr(X, Y) by

Corr(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
. (2)

Definition 1. Please note that a finite variance stationary process {Xt, t ≥ 0} is said to have a
long-range dependence property (Cont and Tankov [29]), if ∑∞

k=0 γk = ∞, where

γk = Cov(Xt, Xt+k).

In the following definition, we give the equivalent definition for a non-stationary
process {Xt, t ≥ 0}.

Definition 2. Let s > 0 be fixed and t > s. The process {Xt, t ≥ 0} is said to have a long-range
dependence property if

Corr(Xt, Xs) ∼ c(s)t−d, as t→ ∞,

where c(s) is a constant depending on s and d ∈ (0, 1). An equivalent definition given in [30].
Let 0 < s < t and s be fixed. Assume a stochastic process {Xt, t ≥ 0} has the correlation

function Corr(X(s), X(t)) that satisfies c1(s)t−d ≤ Corr(Xs, Xt) ≤ c2(s)t−d for large t, d > 0,
c1(s) > 0 and c2(s) > 0., i.e.,

limt→∞
Corr(Xs, Xt)

t−d = c(s)

for some c(s) > 0 and d > 0. We say {Xt, t ≥ 0} has the long-range dependence property if
d ∈ (0, 1) and has the short-range dependence property if d ∈ (1, 2).
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Proposition 1. The TSS with index α ∈ (0, 1) and tempering parameter λ > 0 has LRD property.

Proof. First, we compute the covariance function using the subordinator’s independent
increment characteristic. For 0 < s < t, we have

Cov(Sλ,α
s , Sλ,α

t ) = Cov(Sλ,α
s , (Sλ,α

t − Sλ,α
s )+Sλ,α

s )

= Cov(Sλ,α
s , (Sλ,α

t − Sλ,α
s )) + Cov(Sλ,α

s , Sλ,α
s )

= Var(Sλ,α
s ).

Thus, the correlation function is given by

Corr(Sλ,α
s , Sλ,α

t ) =
Cov(Sλ,α

s , Sλ,α
t )

Var(Sλ,α
s )

1
2 Var(Sλ,α

t )
1
2

=
Var(Sλ,α

s )
1
2

Var(Sλ,α
t )

1
2

= s
1
2 t−

1
2

Hence,

limt→∞
Corr(Sλ,α

s , Sλ,α
t )

t−
1
2

= s
1
2

Therefore, the TSS {Sλ,α
t , t ≥ 0} has an LRD property.

Similar to the proof of Proposition 1, we obtain

Proposition 2. The gamma process has a long-range dependence property.

Definition 3. Let a1, . . . , an, reel numbers and not all ai equals zero. A generalized mixed frac-
tional Brownian motion (gmfBm) of parameters H = (H1, H2, . . . , Hn) and a = (a1, a2, . . . , an);
Hi ∈ (0, 1), ai ∈ R, n ∈ N∗ is a stochastic process ZH,a = {ZH,a

t , t ≥ 0} defined on some
probability space (Ω,F , P) by

ZH,a
t =

n

∑
i=1

aiB
Hi
t ,

where {BHi
t , t ≥ 0} for i = 1, 2, . . . , n are independent fractional Brownian motions of Hurst

indices Hi ∈ (0, 1).

Lemma 4. (see [6] for the proof) The gmfBm has stationary increments and exhibits a long-range
dependence property if, and only if , there exist some k ∈ {1, . . . , n} with Hk >

1
2 .

3. gmfBm Time-Changed by Tempered Stable Subordinator

In this section, we will investigate the gmfBm time-changed by tempered stable
subordinator.

Definition 4. Let n ∈ N∗. Let ZH,a = {ZH,a
t , t ≥ 0} be a gmfBm of parameters a =

(a1, a2, . . . , an) and H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗. Let Sλ,α = {Sλ,α
t , t ≥ 0}

be a TSS with index α ∈ (0, 1) and tempering parameter λ > 0. The time-changed process of TH,a

by means of Sλ,α is the process TH,a
Sλ,α = {TH,a

Sλ,α
t

, t ≥ 0} defined by:

TH,a
Sλ,α

t
=

n

∑
i=1

aiB
Hi

Sλ,α
t

, (3)
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where the subordinator Sλ,α
t is assumed to be independent of all BHi for i = 1, 2, . . . , n.

Proposition 3. Let TH,a = {TH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an), and

H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗. Let TH,a
Sλ,α be the gmfBm time-changed by Sλ,α.

Then by Taylor’s expansion we obtain, for fixed s and large t,

Cov(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) ∼

n

∑
i=1

ai
2His(αλα−1)2Hi t2Hi−1, as t→ ∞. (4)

Proof. Let s > 0 be fixed and let s ≤ t. The covariance function of TH,a
Sλ,α

t
and TH,a

Sλ,α
s

is

defined by

Cov(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) = E(TH,a

Sλ,α
t

TH,a
Sλ,α

s
)− E(TH,a

Sλ,α
t
)E(TH,a

Sλ,α
s
)

by observing that E[TH,a
Sλ,α

t
] = 0, t ≥ 0 and using ([11], p. 195), the process TH,a

Sλ,α
t

follows

Cov(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) = E[TH,a

Sλ,α
t

TH,a
Sλ,α

s
]

=
1
2

E[(TH,a
Sλ,α

t
)2 + (TH,a

Sλ,α
s
)2 − (TH,a

Sλ,α
t
− TH,a

Sλ,α
s
)2]

=
1
2

E[(ZH,a
Sλ,α

t
)2 + (ZH,a

Sλ,α
s
)2 − (ZH,a

Sλ,α
t
− ZH,a

Sλ,α
s
)2]

=
1
2

E[(
n

∑
i=1

aiB
Hi

Sλ,α
t
)2 + (

n

∑
i=1

aiB
Hi

Sλ,α
s
)2]

−1
2

E[(
n

∑
i=1

ai(BHi

Sλ,α
t
− BHi

Sλ,α
s
))2].

Since the fractional Brownian motion has stationary increments, then

Cov(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) =

1
2

E[(
n

∑
i=1

aiB
Hi

Sλ,α
t
)2 + (

n

∑
i=1

aiB
Hi

Sλ,α
s
)2 − (

n

∑
i=1

aiB
Hi

Sλ,α
t−s

)2]

=
1
2

E[
n

∑
i=1

(aiB
H1

Sλ,α
t
)2 + 2 ∑

i 6=j
aiajB

Hi

Sλ,α
t

B
Hj

Sλ,α
t
]

+
1
2

E[
n

∑
i=1

(aiB
Hi

Sλ,α
s
)2 + 2

n

∑
i 6=j

aibjB
Hi

Sλ,α
s

B
Hj

Sλ,α
s
]

−1
2

E[
n

∑
i=1

(aiB
Hi

Sλ,α
t−s

)2 + 2 ∑
i 6=j

aibjB
Hi

Sλ,α
t−s

B
Hj

Sλ,α
t−s

]. (5)

By the independence of the fBms’ BHi
t for i = 1, . . . , n and their independence of the

Sλ,α, we have

E[BHk

Sλ,α
t

BHl

Sλ,α
t
] = E[E(BHk

r BHl
r |Sλ,α

t )]

=
∫

E[BHk
r BHl

r ] fSλ,α
t
(dr)

= 0
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where fSλ,α
t
(.) is the distribution function of Sλ,α

t .
Thus, we obtain

Cov(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) =

n

∑
i=1

a2
i

2
[E(BHi

Sλ,α
t
)2 + E(BHi

Sλ,α
s
)2 − E(BHi

Sλ,α
t−s

)2]

=
n

∑
i=1

a2
i

2
E(BHi (1))2[E(Sλ,α

t )2Hi + E(Sλ,α
s )2Hi − E(Sλ,α

t−s)
2Hi ].

Hence for large t and using Lemma 1, we have

Cov(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) ∼

n

∑
i=1

a2
i

2
[(αλα−1)2Hi t2Hi + E(Sλ,α

s )2Hi − (αλα−1)2Hi (t− s)2Hi ]

=
n

∑
i=1

a2
i

2
(αλα−1)2Hi t2Hi (2Hi

s
t
+ E(Sλ,α

s )2Hi t−2Hi + O(t−2))

∼
n

∑
i=1

a2
i His(αλα−1)2Hi t2Hi−1.

Proposition 4. Let TH,a = {TH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an), and

H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗. Let Sλ,α = {Sλ,α
t , t ≥ 0} be the TSS with

index α ∈ (0, 1) and tempering parameter λ > 0 and let TH,a
Sλ,α be the gmfBm time-changed process

by means of Sλ,α. Then for fixed s > 0 and t→ ∞, we obtain

E[(TH,a
Sλ,α

t
− TH,a

Sλ,α
s
)2] ∼

n

∑
i=1

a2
i Hi(αλα−1)2Hi t2Hi −

n

∑
i=1

2a2
i His(αλα−1)2Hi t2Hi−1

+
n

∑
i=1

a2Hi(αλα−1)2Hi s2Hi .

Proof. Let s > 0 be fixed and t→ ∞. Then, using Equation (4), we have

E[(TH,a
Sλ,α

t
− TH,a

Sλ,α
s
)2] = E[(TH,a

Sλ,α
t
− TH,a

Sλ,α
s
)(TH,a

Sλ,α
t
− TH,a

Sλ,α
s
)]

= E[(TH,a
Sλ,α

t
)2 − TH,a

Sλ,α
t

TH,a
Sλ,α

s
− TH,a

Sλ,α
t

TH,a
Sλ,α

s
+ (TH,a

Sλ,α
s
)2]

= E[(TH
Sλ,α

t
)2 − 2TH,a

Sλ,α
t

TH,a
Sλ,α

s
+ (TH,a

Sλ,α
s
)2]

∼
n

∑
i=1

a2
i

2
[(αλα−1)2Hi t2Hi + E(Sλ,α

s )2Hi − (αλα−1)2Hi (t− s)2Hi ]

=
n

∑
i=1

a2
i

2
(αλα−1)2Hi t2Hi (2Hi

s
t
+ E(Sλ,α

s )2Hi t−2Hi + O(t−2))

∼
n

∑
i=1

a2
i His(αλα−1)2Hi t2Hi−1.

Now we discuss the long-range dependence behavior of TH,a
Sλ,α .

Theorem 1. Let TH,a = {TH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an) and

H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗ with Hi < Hn for i = 1, 2, . . . , n − 1.
Let Sλ,α = {Sλ,α

t , t ≥ 0} be the TSS with index α ∈ (0, 1) and tempering parameter λ > 0. Then
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the time-changed gmfBm by means of Sλ,α exhibits a long-range dependence property for all Hurst
indices satisfying 0 < 2Hi − Hn < 1.

Proof. Let n ∈ N∗. Let TH,a = {TH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an)

and H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗ with Hi < Hn for i = 1, 2, . . . , n− 1. Let
Sλ,α = {Sλ,α

t , t ≥ 0} be the TSS with index α ∈ (0, 1) and tempering parameter λ > 0. The
process TH,a

Sλ,α is not stationary, hence the Definition 2 will be used to establish the long-range
dependence property.

Using Equations (2), (4) and by Taylor’s expansion we obtain, as t→ ∞

Corr(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) ∼ ∑n

i=1 a2
i His(αλα−1)2Hi t2Hi−1√[

∑n
i=1 a2

i Hi(αλα−1)2Hi t2Hi
]√

E(TH,a
Sλ,α

s
)2

=
∑n

i=1 a2
i His(αλα−1)2Hi t2Hi−1√

a2
n Hn(αλα−1)2Hn σ2t2Hn

[
∑n−1

i=1 (
Hia2

i
a2

n Hn
(αλα−1)2Hi−2Hn t2Hi−2Hn) + 1

]
∼ ∑n

i=1 a2
i His(αλα−1)2Hi t2Hi−1√

a2
n Hnσ2(αλα−1)2Hn t2Hn

, since Hi < Hn,

=
∑n−1

i=1 a2
i Hi H

− 1
2

n s(αλα−1)Hn−2Hi t2Hi−Hn−1

|an|σ
+
|an|H

1
2
n s(αλα−1)Hn tHn−1

σ
.

where σ2 = E(TH,a
Sλ,α

s
)2. Then, for fixed s > 0 and t→ ∞. For Hi < Hn < 1 for i = 1, . . . , n− 1,

the correlation function is given by

Corr(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) ∼ c1t2Hi−Hn−1 + c2tHn−1.

Therefore, for 0 < 2Hi − Hn < 1 the correlation function of TH,a
Γt

decays like a t−(1−Hn)

for all 0 < Hn < 1. Then, in the sense of Definition 2, the time-changed process TH,a
Sλ,α

exhibits a long-range dependence property for all 0 < 2Hi − Hn < 1, i = 1, 2, . . . , n− 1.

Remark 1. When n = 1 in Equation (4) and using Equation (2) , we obtain

Cov(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) ∼ H1s(αλα−1)2H1 t2H1−1, as t→ ∞,

Corr(TH,a
Sλ,α

t
, TH,a

Sλ,α
s
) ∼ H1s1−H1 tH1−1, as t→ ∞.

Hence we obtain the following results, proven in [11].

Corollary 1. The fractional Brownian motion time-changed by TSS has long-range dependence for
every H ∈ (0, 1).

4. gmfBm Time-Changed by the Gamma Subordinator

This section looks into generalized mixed fractional Brownian motion time-changed
by the gamma process.

Definition 5. Let ZH,a = {ZH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an) and

H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗. Let Γ = {Γt, t ≥ 0} be a gamma process. The
time-changed process of ZH,a by means of Γ is the process TH,a

Γ = {TH,a
Γt

, t ≥ 0} defined by:

TH,a
Γt

=
n

∑
i=1

aiB
Hi
Γt

, (6)
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where the process Γt is assumed to be independent of BHi
t for i = 1, . . . , n.

Proposition 5. Let ZH,a = {ZH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an) and

H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗. Let TH,a
Γ be the gmfBm time-changed by Γ.

Then we have

1. For t > s, the covariance function for the process TH,a
Γt

follows

Cov(TH,a
Γt

, TH,a
Γs

) =
n

∑
i=1

a2
i

2

[
Γ(2Hi + t/ν)

Γ(t/ν)
+

Γ(2Hi + s/ν)

Γ(s/ν)
− Γ(2Hi + (t− s)/ν)

Γ((t− s)/ν)

]
2. For fixed s and large t, the process YH

Γt
follows

Cov(TH,a
Γt

, TH,a
Γs

) ∼
n

∑
i=1

2a2
i His

ν2Hi
t2Hi−1. (7)

Proof.

1. Let s fixed. Let s < t. We use a similar procedure as in the proof of Equation (5). By
the independence of the fBms’ BHi

t for i = 1, . . . , n and their independence of the Γt, we
obtain

Cov(TH,a
Γt

, TH,a
Γs

) = E(TH,a
Γt

TH,a
Γs

)

=
n

∑
i=1

ai
2

2

[
E(BHi

Γt
)2 + E(BHi

Γs
)2 − E(BHi

Γt−s
)2
]

=
n

∑
i=1

ai
2

2

[
Γ(2Hi + t/ν)

Γ(t/ν)
+

Γ(2Hi + s/ν)

Γ(s/ν)
− Γ(2Hi + (t− s)/ν)

Γ((t− s)/ν)

]
.

2. Let g(x) = Γ(x + 2Hi)/Γ(x) and f (x) = Γ(x + 1)/Γ(x). By Taylor expansion and [12]
we have

g(x + h)
g(x)

= 1 + 2Hi(h/x) + H(2Hi − 1)(h/x)2 + O(x−3), (8)

and

f (x + h)
f (x)

= 1 + (h/x) + O(x−2). (9)

For fixed s and large t, using Equations (7)–(9), TH
Γt

follows

Cov(TH,a
Γt

, TH,a
Γs

) = ∑n
i=1

ai
2

2 g(t/ν)
[
1 + g(s/ν)

g(t/ν)
− g((t−s)/ν)

g(t/ν)

]
= ∑n

i=1
ai

2

2 (t/ν)2Hi [1 + g(s/ν)
g(t/ν)

− (1− 2Hi
( s

t
)

+Hi(2Hi − 1)
(

s2

t2

)
+ O(t−3))]

∼ ∑n
i=1

2ai
2 His

ν2Hi
t2Hi−1.

Theorem 2. Let ZH,a = {ZH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an) and

H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R, n ∈ N∗ with Hi < Hn for i = 1, 2, . . . , n − 1. Let
Γ = {Γt, t ≥ 0} be a gamma process with parameter ν > 0. Let TH,a

Γ be the gmfBm time-changed
by Γ. Then, the time-changed gmfBm by means of Γ has la ong-range dependence property for all
Hurst indices satisfying 0 < 2Hi − Hn < 1.
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Proof. Let n ∈ N∗. Let ZH,a = {ZH,a
t , t ≥ 0} be a gmfBm of parameters a = (a1, . . . , an)

and H = (H1, . . . , Hn), Hi ∈ (0, 1), ai ∈ R with Hi < Hn for i = 1, 2, . . . , n − 1. Let
Γ = {Γt, t ≥ 0} be a gamma process with parameter ν > 0. The process TH,a

Γ is not
stationary, hence the Definition 2 will be used to establish the long-range dependence
property.

Using Equations (2), (7) and by Taylor’s expansion we obtain, as t→ ∞

Corr(TH,a
Γt

, TH,a
Γs

) ∼
∑n

i=1
2ai

2 His
ν2Hi

t2Hi−1√
(∑n

i=1
2ai

2 Hi
ν2Hi

t2Hi )
√

E(TH,a
Γs

)2

=
∑n

i=1
2ai

2 His
ν2Hi

t2Hi−1√
2a2

n Hnt2Hn

ν2Hn [∑n−1
i=1

2ai
2 Hi

ν2Hi
t2Hi−2Hn + 1]

√
E(TH,a

Γs
)2

∼
∑n

i=1
2ai

2 His
ν2Hi

t2Hi−1√
2an2 Hn

ν2Hn t2Hn

√
E(TH,a

Γs
)2

, since Hi < Hn

=
∑n−1

i=1
2ai

2 His
ν2Hi√

2an2 Hn
ν2Hn E(TH,a

Γs
)2

t2Hi−Hn−1 +
|an|(2Hn)

1
2 νHn s√

E(TH,a
Γs

)2
tHn−1.

Then, for fixed s > 0 and t→ ∞. For Hi < Hn < 1 for i = 1, . . . , n− 1, the correlation
function is given by

Corr(TH,a
Γt

, TH,a
Γs

) ∼ c1t2Hi−Hn−1 + c2tHn−1. (10)

Therefore, for 0 < 2Hi − Hn < 1 the correlation function of TH,a
Γt

decays like a t−(1−Hn)

for all 0 < Hn < 1. Then, in the sense of Definition 2 the time-changed process TH,a
Sλ,α exhibits

the long-range dependence property for all 0 < 2Hi − Hn < 1 for i = 1, 2, . . . , n− 1.

Hence we obtain the following results, proved in [12].

Corollary 2. The fractional Brownian motion time-changed by the gamma process has long-range
dependence for all H ∈ (0, 1).

5. Conclusions

The time-changed gmfBm is a versatile and powerful tool for modeling natural phe-
nomena that exhibit long-range dependence. The ability to control the long-range depen-
dence property through the Hurst indices is a key feature of this model, and it allows us to
tailor the model to the specific characteristics of the phenomenon we are trying to model.
In this paper, it is shown that the time-changed gmfBm exhibits a long-range dependence
property under some conditions on the Hurst indices when it is time-changed by a tem-
pered stable subordinator or a gamma process. This is a significant result, as it shows that
the time-changed gmfBm can be used to model a wide variety of natural phenomena that
exhibit long-range dependence, even when the underlying process is not itself long-range
dependent. We deduce that the fractional Brownian motion time-changed by tempered
stable subordinator or gamma process has long-range dependence for all H ∈ (0, 1).
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