Numerical Analysis of Direct and Inverse Problems for a Fractional Parabolic Integro-Differential Equation
Abstract
:1. Introduction
A System of a Parabolic and a Ordinary Differential Equation
2. Well-Posedness of the Direct Problem
2.1. Notations and Preliminaries
2.2. Solution of the Direct Problem
3. Numerical Solution of the Direct Problem
3.1. Difference Scheme
3.2. Solvability and Convergence
4. Quasi Solution of the IP
5. Conjugate Gradient Steepest Descent Method
6. Numerically Solving the Inverse Problem
6.1. Discretization of the Adjoint Problem
6.2. Discretization of the Sensitivity Problem
6.3. Discretization of the Gradient of the Functional and
6.4. Realization
Algorithm 1 Inverse problem |
7. Computational Results
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaimo, G.; Piccolo, V.; Cutolo, A.; Deseri, L.; Fraldi, M.; Zingales, M. A fractional order theory of poroelasticity. Mech. Res. Commun. 2019, 100, 103395. [Google Scholar] [CrossRef]
- Alifanov, O.M.; Artioukhine, E.A.; Rumyantsev, S.V. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems; Begell House: Danbury, CT, USA, 1995. [Google Scholar]
- Armstrong, J.E.; Frind, E.O.; McClellan, R.D. Nonequilibrium mass transfer between the vapor, aqueous, and solid phases in unsaturated soils during vapor extraction. Water Resour. Res. 1994, 30, 355–368. [Google Scholar] [CrossRef]
- Burqan, A.; Shqair, M.; El-Ajou, A.; Ismaeel, S.M.E.; AlZhour, Z. Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method. AIMS Math. 2023, 8, 19297–19312. [Google Scholar] [CrossRef]
- Gao, G.; Zhan, H.; Feng, S.; Fu, B.; Ma, Y.; Huang, G. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion. Water Resour. Res. 2010, 46, 1–16. [Google Scholar] [CrossRef]
- Goulart, A.G.; Lazo, M.J.; Suarez, J.M.S. A new parameterization for the concentration flux using the fractional calculus to model the dispersion of contaminants in the planetary boundary layer. Phys. A Stat. Mech. Appl. 2019, 518, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wen, Z.; Zhu, Q.; Jakada, H. A mobile-immobile model for reactive solute transport in a radial two-zone confined aquifer. J. Hydrol. 2020, 580, 124347. [Google Scholar] [CrossRef]
- Mahiudin, M.; Godhani, D.; Feng, L.; Liu, F.; Langrish, T.; Karim, M. Application of Caputo fractional rheological model to determine the viscoelastic and mechanical properties of fruit and vegetables. J. Postharvest Biol. Technol. 2020, 163, 111147. [Google Scholar] [CrossRef]
- Vougalter, V. Inverse problems for some systems of parabolic equations with coefficient depending on time. In Mathematical Methods in Modern Complexity Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 189–197. [Google Scholar]
- Zhou, H.; Yang, S.; Zhang, S. Modeling non-darcian flow and solute transport in porous media with the caputo–fabrizio derivative. Appl. Math. Model. 2019, 68, 603–615. [Google Scholar] [CrossRef]
- Gyulov, T.B.; Vulkov, L.G. Reconstruction of the lumped water-to-air mass transfer coefficient from final time or time-averaged concentration measurement in a model porous media. In Proceedings of the 16th Annual Meeting of the Bulgarian Section of SIAM, Sofia, Bulgaria, 21–23 December 2021. [Google Scholar]
- Georgiev, S.; Vulkov, L. Numerical coefficient reconstruction of time-depending integer- and fractional-order SIR models for economic analysis of COVID-19. Mathematics 2022, 10, 4247. [Google Scholar] [CrossRef]
- Caputo, M.; Plastino, W. Diffusion in porous layers with memory. Geophys. J. Int. 2004, 158, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Koleva, M.N.; Vulkov, L.G. Parameters Estimation in a Time-Fractiona Parabolic System of Porous Media. Fractal Fract. 2023, 7, 443. [Google Scholar] [CrossRef]
- Shen, S.; Weizhong Dai, W.; Cheng, J. Fractional parabolic two-step model and its accurate numerical scheme for nanoscale heat conduction. J. Comput. Appl. Math. 2020, 375, 112812. [Google Scholar] [CrossRef]
- Georgiev, S.; Vulkov, L. Parameters identification and numerical simulation for a fractional model of honeybee population dynamics. Fractal Fract. 2023, 7, 311. [Google Scholar] [CrossRef]
- Koleva, M.N.; Vulkov, L.G. Fast Positivity Preserving Numerical Method for Time-Fractional Regime-Switching Option Pricing Problem. In Advanced Computing in Industrial Mathematics. BGSIAM 2020; Studies 295 in Computational Intelligence; Georgiev, I., Kostadinov, H., Lilkova, E., Eds.; Springer: Cham, Switzerland, 2023; Volume 1076. [Google Scholar]
- Tarasov, V.E. (Ed.) Special Issue “Fractional Calculus in Economics and Finance”. Fractal Fract. 2018. Available online: https://www.mdpi.com/journal/fractalfract/special_issues/Fractional_Calculus_Economics_Finance (accessed on 26 June 2023).
- Kandilarov, J.; Vulkov, L. Determination of concentration source in a fractional derivative model of atmospheric pollution. AIP Conf. Proc. 2021, 2333, 090014. [Google Scholar] [CrossRef]
- Liu, W.; Li, G.; Jia, X. Numerical simulation for a fractal MIM model for solute transport in porous media. J. Math. Res. 2021, 13, 31–44. [Google Scholar] [CrossRef]
- Jovanović, B.S.; Vulkov, L.G.; Delić, A. Boundary value problems for fractional PDE and their numerical approximation. In Numerical Analysis and Its Applications; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8236, pp. 38–49. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Rquations; Academic Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Gyulov, T.; Vulkov, L. Gradient Optimization in Reconstruction of the Diffusion Coefficient in a Time Fractional Integro-Differential Equation of Pollution in Porous Media. In Modelling and Development of Intelligent Systems MDIS; Communications in Computer and Information Science; Simian, D., Stoica, L.F., Eds.; Springer: Cham, Switzerland, 2022; Volume 1761. [Google Scholar]
- Wei, T.; Xian, J. Variational method for a backward problem for a time-fractional diffusion equation. ESAIM M2AN 2019, 53, 1223–1244. [Google Scholar] [CrossRef] [Green Version]
- Alikhanov, A.A. A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 2010, 46, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Hasanov, A.H.; Romanov, V.G. Introduction to Inverse Problems for Differential Equations; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Samarskii, A.A. The Theory of Difference Schemes; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liao, H.-L.; Sun, W.; Wang, J.; Zhang, J. Analysis of L1 Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 2018, 24, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Chavent, G. Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications; Scientific Computation; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef] [Green Version]
- Hanke, M. Conjugate Gradient Type Methods for Ill-Posed Problems, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 1995. [Google Scholar]
- Vabishchevich, P.N.; Denisenko, A.Y. Numerical methods for solving the coefficient inverse problem. Comput. Math. Model. 1992, 3, 261–267. [Google Scholar] [CrossRef]
- Fletcher, R.; Reeves, C.M. Function minimization by conjugate gradients. Comput. J. 1964, 7, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Fakhraie, M.; Shidfar, A.; Garshasbi, M. A computational procedure for estimation of an unknown coefficient in an inverse boundary value problem. Appl. Math. Comput. 2007, 187, 1120–1125. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Vabishchevich, P.N. Numerical Methods for Solving Inverse Problems in Mathematical Physics; De Gruyter: Berlin, Germany, 2007; 438p. [Google Scholar]
- Durdiev, D.K.; Zhumaev, Z.Z. One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain. Ukr. Math. J. 2022, 73, 1723–1740. [Google Scholar] [CrossRef]
- Li, Z.; Yamamoto, M. Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equations. Appl. Anal. 2015, 94, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, X.; Yamamoto, M. A stability result for the determination of order in time-fractional diffusion equations. J. Inverse -Ill-Posed Probl. 2020, 28, 379–388. [Google Scholar] [CrossRef]
- Sun, L.; Wei, T. Identification of the zeroth-order coefficient in a time fractional diffusion equation. Appl. Numer. Math. 2017, 111, 160–180. [Google Scholar] [CrossRef]
- Tikhonov, A.; Arsenin, V. Solutions of Ill-Posed Problems; V. H. Winston: Winston, WA, USA, 1977. [Google Scholar]
- Li, Z.; Yamamoto, M. Inverse Problems of Determining Coefficients of the Fractional Partial Differential Equations; Kochubei, A., Luchko, Y., Eds.; Volume 2 Fractional Differential Equations; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 443–464. [Google Scholar]
0.25 | 1.536 × 10 | 3.916 × 10 | 9.886 × 10 | 2.4838 × 10 | 6.221 × 10 | 1.557 × 10 | |
1.972 | 1.986 | 1.993 | 1.997 | 1.999 | |||
0.5 | 5.351 × 10 | 1.398 × 10 | 3.507 × 10 | 8.739 × 10 | 2.191 × 10 | 5.489 × 10 | |
1.936 | 1.995 | 2.005 | 1.996 | 1.997 | |||
0.85 | 9.656 × 10 | 2.559 × 10 | 6.393 × 10 | 1.586 × 10 | 3.974 × 10 | 9.969 × 10 | |
1.916 | 2.001 | 2.012 | 1.997 | 1.997 | |||
1 | 1.086 × 10 | 2.891 × 10 | 7.226 × 10 | 1.792 × 10 | 4.498 × 10 | 1.129 × 10 | |
1.909 | 2.000 | 2.011 | 1.995 | 1.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koleva, M.N.; Vulkov, L.G. Numerical Analysis of Direct and Inverse Problems for a Fractional Parabolic Integro-Differential Equation. Fractal Fract. 2023, 7, 601. https://doi.org/10.3390/fractalfract7080601
Koleva MN, Vulkov LG. Numerical Analysis of Direct and Inverse Problems for a Fractional Parabolic Integro-Differential Equation. Fractal and Fractional. 2023; 7(8):601. https://doi.org/10.3390/fractalfract7080601
Chicago/Turabian StyleKoleva, Miglena N., and Lubin G. Vulkov. 2023. "Numerical Analysis of Direct and Inverse Problems for a Fractional Parabolic Integro-Differential Equation" Fractal and Fractional 7, no. 8: 601. https://doi.org/10.3390/fractalfract7080601
APA StyleKoleva, M. N., & Vulkov, L. G. (2023). Numerical Analysis of Direct and Inverse Problems for a Fractional Parabolic Integro-Differential Equation. Fractal and Fractional, 7(8), 601. https://doi.org/10.3390/fractalfract7080601