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Abstract: This paper aims to solve general fractional Lane-Emden-Fowler differential equations using
the Haar wavelet collocation method. This method transforms the fractional differential equation into
a nonlinear system of equations, which is further solved for Haar coefficients using Newton’s method.
We have constructed the higher-order Lane-Emden-Fowler equations. We have also discussed the
convergence rate and stability analysis of our technique. We have explained the applications and
numerically simulated the examples graphically and in tabular format to elaborate on the accuracy
and efficiency of this approach.
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1. Introduction

In the past few decades, the study of singular initial value problems has attracted the
attention of many physicists and mathematicians. Lane-Emden-Fowler equations are these
types of equations. Lane [1] introduced the equation in 1870, and Emden and Fowler [2]
generalized the equation further. Lane explained the gravitation potential of a spherically
symmetric Newtonian self-gravitating star [3] using these equations. These equations have
a vast amount of applications in modeling many problems in physics and dynamics. The
general Lane-Emden-Fowler equation is as follows:

ξ−η Dβ(ξη Dγ)q = ω(ξ, q(ξ)), (1)

where η > 0 is a positive real number called a shape factor, D = d
dξ is the differential

operator, ω is linear or nonlinear function, and β + γ gives the order of the equation. These
equations are used in magnetic field models [4], classical and quantum mechanics [5],
biological systems, geometry [6], and fluid mechanics problems [7,8].

Several forms of fractional initial value problems have been proposed in standard
models, and there has been a significant interest in developing numerical schemes for
their solutions. Fractional calculus is a generalized form of integer order calculus. There
are many applications of fractional calculus. Fractional calculus has been deployed to
model the oscillation of earthquakes [9], neural networks [10,11], signal processing [12],
economics [13], bioengineering [14], and electromagnetism [15].

Many researchers, such as Riemann, Liouville, Caputo, Hadamard, Grunwald, and oth-
ers, have published extensively about the applications of fractional calculus. Mathematical
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models with fractional order derivatives provide more insight because they posses the mem-
ory effect. Many techniques have been developed to solve fractional problems, such as de-
composition methods [16], collocation methods [17], residual power series methods [18,19],
finite differences methods [20], perturbation methods, variational iteration methods [21].
Zhang and Han [22] proposed a quasi wavelet method to solve time-dependent fractional
partial differential equations. Jiang et al. [23] presented a predictor–corrector difference
scheme for nonlinear fractional differential equations. Yang and Zhang [24] proposed a
spectral sinc-collocation method for fourth-order heat models.

Wavelet theory has made distinguished contributions to mathematical studies. It is
a powerful tool for engineering. Wavelets are used in signal processing, optimal control,
and time-frequency analysis [25]. There are many wavelets, such as Daubechies [26], B-
spline [4], Legendre [27], and Haar [28]. The Haar wavelet is an orthonormal wavelet
with compact support, introduced by a Hungarian mathematician, Alfred Haar, in 1910.
The Haar wavelet gives accurate results for small grid points. It contains members of the
Daubechies family, so it is very good for computer implementations and is easily expressed
in the programming language. Chen and Hsiao [29] derived a Haar operational matrix
of the integrals of Haar functions. They made a great contribution to the use of Haar
wavelets in applications of dynamic systems. Lepik [30] solved the differential equations
using the Haar wavelet. Islam et al. [31] solved the integro-differential equations using the
Haar wavelet. Bujurke et al. [32] compute the eigenvalues and solutions of regular Sturm–
Liouville problems using Haar wavelets. Chang et al. [33] describe the designation of Haar
wavelet matrices in the numerical solution of ODEs. This article aims to solve general
fractional Emden-Fowler-type equations using the Haar wavelet collocation method. We
write the highest derivative in linear combinations of Haar functions and calculate other
derivatives using the integration of Haar functions. This method transforms the fractional
differential equation into a nonlinear system of equations, which is further solved for Haar
coefficients using the Newton method. After calculating the Haar coefficients, we can easily
determine the solution.

The present study is structured as follows: Section 2 defines the Haar wavelet and
recalls the basic definitions of fractional calculus. In Section 3, we discuss the construction
of the general equation of the Caputo-type fractional Lane-Emden-Fowler differential
equation. In Section 4, we discuss the Haar wavelet method. In Section 5, we discuss the
convergence rate, stability and error analysis of the technique. In Section 6, we discuss the
examples and in Section 7 we discuss the numerical simulation of all of these examples
graphically and in tabular format. In the end, we conclude our results.

2. Preliminaries

This section will recall some necessary definitions of fractional calculus and Haar
wavelets. These definitions will assist us in the next sections.

Definition 1. The Riemann-Liouville fractional integral operator Iσ of order σ on L2[0, 1] is
given by

Iσ(q(ξ)) = 1
Γ(σ)

ξ∫
0

q(κ)
(ξ−κ)1−σ dκ,

I0(q(ξ)) = (q(ξ)),

where Γ(λ) =
∞∫
0

κλ−1e−κdκ is gamma function and

Iσξυ =
Γ(υ + 1)

Γ(σ + υ + 1)
ξσ+υ.



Fractal Fract. 2023, 7, 628 3 of 28

Definition 2. The Caputo fractional derivative of order σ is given by

Dσ(q(ξ)) = In−σDn(q(ξ)) =
1

Γ(n− σ)

ξ∫
0

q(n)(κ)

(ξ − κ)−n+1+σ
dκ

provided the integral exists, where n is the smallest integer such that n− 1 < σ ≤ n. It satisfies the
following properties:

IσDσ(q(ξ)) = q(ξ)−
n−1

∑
ε=0

q(ε)(0+)
ξε

ε!

and

Dσξυ =
Γ(υ + 1)

Γ(υ− σ + 1)
ξυ−σ.

Haar Wavelet and Function Approximations

The family of Haar wavelets consists of piecewise constant functions over the real line.
They contain only values −1, 0, 1. They are discontinuous, and therefore not differentiable.

hj(ς) =


1, θ1(j) ≤ ς < θ2(j)
−1, θ2(j) ≤ ς < θ3(j)
0, otherwise.

where θ1(j) = r
2α , θ2(j) = r+0.5

2α , θ3(j) = r+1
2α , α = 0, 1, 2, . . . J and r = 0, 1, 2, . . . 2α − 1.

We manipulate the wavelet by translating and dilating it. α here represents the level
of wavelet or dilation parameter level and ς represents the translation parameter. J is
the maximum level of resolution and the relationship between 2α and r is j = 2α + r + 1.
For j = 1

h1(ξ) =

{
1, ξ ∈ [0, 1]
0, otherwise.

h2(ξ) =


1, ξ ∈

[
0, 1

2

)
−1, ξ ∈

[
1
2 , 1
)

0, otherwise.

In particular, the Haar wavelet is an orthogonal square wave family, generally writ-
ten as

hj(ξ) = h2

(
2αξ − r

2α

)
for j ≥ 3, j = 2α + r + 1, α ≥ 0, 0 ≤ r ≤ 2α − 1 and

1∫
0

hj(ξ)hl(ξ)dξ =

{
2−α; j = l
0; j 6= l

If g(ξ) is a function defined on interval [0, 1], then the function is approximated using
Haar functions, such as

g(ξ) =
∞

∑
τ=1

λτhτ ,

where λτ are the Haar coefficients.
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The generalized fractional integration can be calculated analytically as

ρτ,σ(ξ) =


0, ξ ∈ [0, ς1)

1
Γ(σ+1) (ξ − ς1)

σ, ξ ∈ [ς1, ς2)
1

Γ(σ+1)

[
(ξ − ς1)

σ − 2(ξ − ς2)
σ], ξ ∈ [ς2, ς3)

1
Γ(σ+1)

[
(ξ − ς1)

σ − 2(ξ − ς2)
σ + (ξ − ς3)

σ], ξ ∈ [ς3, 1)

,

where σ is a positive real number.

3. Construction of Lane-Emden-Fowler Equation

Consider the general form of the Lane-Emden-Fowler equation

ξ−η Dβ(ξη Dγ)q = ω(ξ, q(ξ)). (2)

We can obtain higher-order equations of fourth-, fifth- and sixth-order by taking

β + γ = 4,

β + γ = 5,

β + γ = 6,

respectively. There are three possible choices of fourth-order equations, four possibilities for
fifth-order equations and five possible choices for sixth-order Lane-Emden-Fowler equations.

3.1. For Fourth-Order Equations

Case 1: When β = 3, γ = 1, the equation will be

ξ−η D3
(

ξη D1
)

q + ω(ξ, q(ξ)) = 0. (3)

After simplification, Equation (3) will be

D4q(ξ) +
3η

ξ
D3q(ξ) +

3η(η − 1)
ξ2 D2q(ξ) +

η(η − 1)(η − 2)
ξ3 Dq(ξ) + ω(ξ, q(ξ)) = 0. (4)

The Equation (4) in fractional order is taken as

D4σq(ξ) + 3η
ξσ D3σq(ξ) + 3η(η−1)

ξ2σ D2σq(ξ) + η(η−1)(η−2)
ξ3σ Dσq(ξ) + ω(ξ, q(ξ)) = 0, (5)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, where
q(σ), q(2σ), q(3σ) denotes the Caputo derivative of order σ, 2σ, 3σ, respectively.

Case 2: When β = 2, γ = 2, the equation will be

ξ−η D2
(

ξη D2
)

q + ω(ξ, q(ξ)) = 0. (6)

After simplification, Equation (6) will be

D4q(ξ) +
2η

ξ
D3q(ξ) +

η(η − 1)
ξ2 D2q(ξ) + ω(ξ, q(ξ)) = 0. (7)

The Equation (7) in fractional order is taken as

D4σq(ξ) +
2η

ξσ
D3σq(ξ) +

η(η − 1)
ξ2σ

D2σq(ξ) + ω(ξ, q(ξ)) = 0. (8)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, where
q(σ), q(2σ), q(3σ) denotes the Caputo derivative of order σ, 2σ, 3σ, respectively.
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Case 3: When β = 1, γ = 3, the equation will be

ξ−η D1
(

ξη D3
)

q + ω(ξ, q(ξ)) = 0. (9)

After simplification, Equation (9) will be

D4q(ξ) +
η

ξ
D3q(ξ) + ω(ξ, q(ξ)) = 0. (10)

The Equation (10) in fractional order is taken as

D4σq(ξ) +
η

ξσ
D3σq(ξ) + ω(ξ, q(ξ)) = 0. (11)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, where
q(σ), q(2σ), q(3σ) denotes the Caputo derivative of order σ, 2σ, 3σ, respectively.

3.2. For Fifth-Order Equations

Case 1: When β = 4, γ = 1, the equation will be

ξ−η D4
(

ξη D1
)

q + ω(ξ, q(ξ)) = 0. (12)

After simplification, Equation (12) will be

D5q(ξ) + 4η
ξ D4q(ξ) + 6η(η−1)

ξ2 D3q(ξ) + 4η(η−1)(η−2)
ξ3 D2q(ξ)

+ η(η−1)(η−2)(η−3)
ξ4 Dq(ξ) + ω(ξ, q(ξ)) = 0.

(13)

The Equation (13) in fractional order is taken as

D5σq(ξ) + 4η
ξσ D4σq(ξ) + 6η(η−1)

ξ2σ D3σq(ξ) + 4η(η−1)(η−2)
ξ3σ D2σq(ξ)

+ η(η−1)(η−2)(η−3)
ξ4σ Dσq(ξ) + ω(ξ, q(ξ)) = 0,

(14)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
where q(σ), q(2σ), q(3σ), q(4σ) denotes the Caputo derivative of order σ, 2σ, 3σ, 4σ, respectively.

Case 2: When β = 3, γ = 2, the equation will be

ξ−η D3
(

ξη D2
)

q + ω(ξ, q(ξ)) = 0. (15)

After simplification, Equation (15) will be

D5q(ξ) +
3η

ξ
D4q(ξ) +

3η(η − 1)
ξ2 D3q(ξ) +

η(η − 1)(η − 2)
ξ3 D2q(ξ) + ω(ξ, q(ξ)) = 0. (16)

The Equation (16) in fractional order is taken as

D5σq(ξ) + 3η
ξσ D4σq(ξ) + 3η(η−1)

ξ2σ D3σq(ξ) + η(η−1)(η−2)
ξ3σ D2σq(ξ) + ω(ξ, q(ξ)) = 0. (17)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
where q(σ), q(2σ), q(3σ), q(4σ) denotes the Caputo derivative of order σ, 2σ, 3σ, 4σ, respec-
tively.

Case 3: When β = 2, γ = 3, the equation will be

ξ−η D2
(

ξη D3
)

q + ω(ξ, q(ξ)) = 0. (18)
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After simplification, Equation (18) will be

D5q(ξ) +
2η

ξ
D4q(ξ) +

η(η − 1)
ξ2 D3q(ξ) + ω(ξ, q(ξ)) = 0. (19)

The Equation (19) in fractional order is taken as

D5σq(ξ) +
2η

ξσ
D4σq(ξ) +

η(η − 1)
ξ2σ

D3σq(ξ) + ω(ξ, q(ξ)) = 0, (20)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
where q(σ), q(2σ), q(3σ), q(4σ) denotes the Caputo derivative of order σ, 2σ, 3σ, 4σ, respectively.

Case 4: When β = 1, γ = 4, the equation will be

ξ−η D1
(

ξη D4
)

q + ω(ξ, q(ξ)) = 0. (21)

After simplification, Equation (21) will be

D5q(ξ) +
η

ξ
D4q(ξ) + ω(ξ, q(ξ)) = 0. (22)

The Equation (22) in fractional order is taken as

D5σq(ξ) +
η

ξσ
D4σq(ξ) + ω(ξ, q(ξ)) = 0. (23)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
where q(σ), q(2σ), q(3σ), q(4σ) denotes the Caputo derivative of order σ, 2σ, 3σ, 4σ, respectively.

3.3. For Sixth-Order Equations

Case 1: When β = 5, γ = 1, the equation will be

ξ−η D5
(

ξη D1
)

q + ω(ξ, q(ξ)) = 0. (24)

After simplification, Equation (24) will be

D6q(ξ) + 4η
ξ D5q(ξ) + 10η(η−1)

ξ2 D4q(ξ) + 10η(η−1)(η−2)
ξ3 D3q(ξ)

+ 5η(η−1)(η−2)(η−3)
ξ4 D2q(ξ) + η(η−1)(η−2)(η−3)(η−4)

ξ5 Dq(ξ) + ω(ξ, q(ξ)) = 0.
(25)

The Equation (25) in fractional order is taken as

D6σq(ξ) + 4η
ξσ D5σq(ξ) + 10η(η−1)

ξ2σ D4σq(ξ) + 10η(η−1)(η−2)
ξ3σ D3σq(ξ)

+ 5η(η−1)(η−2)(η−3)
ξ4σ D2σq(ξ) + η(η−1)(η−2)(η−3)(η−4)

ξ5σ Dσq(ξ) + ω(ξ, q(ξ)) = 0,
(26)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
q(5σ)(0) = φ5, where q(σ), q(2σ), q(3σ), q(4σ), q(5σ) denotes the Caputo derivative of order σ,
2σ, 3σ, 4σ, 5σ, respectively.

Case 2: When β = 4, γ = 2, the equation will be

ξ−η D4
(

ξη D2
)

q + ω(ξ, q(ξ)) = 0. (27)

After simplification, Equation (27) will be

D6q(ξ) + 4η
ξ D5q(ξ) + 6η(η−1)

ξ2 D4q(ξ) + 4η(η−1)(η−2)
ξ3 D3q(ξ)

+ η(η−1)(η−2)(η−3)
ξ4 D2q(ξ) + ω(ξ, q(ξ)) = 0.

(28)
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The Equation (28) in fractional order is taken as

D6σq(ξ) + 4η
ξσ D5σq(ξ) + 6η(η−1)

ξ2σ D4σq(ξ) + 4η(η−1)(η−2)
ξ3σ D3σq(ξ)

+ η(η−1)(η−2)(η−3)
ξ4σ D2σq(ξ) + ω(ξ, q(ξ)) = 0.

(29)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
q(5σ)(0) = φ5, where q(σ), q(2σ), q(3σ), q(4σ), q(5σ) denotes the Caputo derivative of order σ,
2σ, 3σ, 4σ, 5σ, respectively.

Case 3: When β = 3, γ = 3, the equation will be

ξ−η D3
(

ξη D3
)

q + ω(ξ, q(ξ)) = 0. (30)

After simplification, Equation (30) will be

D6q(ξ) +
3η

ξ
D5q(ξ) +

3η(η − 1)
ξ2 D4q(ξ) +

η(η − 1)(η − 2)
ξ3 D3q(ξ) + ω(ξ, q(ξ)) = 0. (31)

The Equation (31) in fractional order is taken as

D6σq(ξ) + 3η
ξσ D5σq(ξ) + 3η(η−1)

ξ2σ D4σq(ξ) + η(η−1)(η−2)
ξ3σ D3σq(ξ) + ω(ξ, q(ξ)) = 0. (32)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
q(5σ)(0) = φ5, where q(σ), q(2σ), q(3σ), q(4σ), q(5σ) denotes the Caputo derivative of order σ,
2σ, 3σ, 4σ, 5σ, respectively.

Case 4: When β = 2, γ = 4, the equation will be

ξ−η D2
(

ξη D4
)

q + ω(ξ, q(ξ)) = 0. (33)

After simplification, Equation (33) will be

D6q(ξ) +
2η

ξ
D5q(ξ) +

η(η − 1)
ξ2 D4q(ξ) + ω(ξ, q(ξ)) = 0. (34)

The Equation (34) in fractional order is taken as

D6σq(ξ) +
2η

ξσ
D5σq(ξ) +

η(η − 1)
ξ2σ

D4σq(ξ) + ω(ξ, q(ξ)) = 0. (35)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
q(5σ)(0) = φ5, where q(σ), q(2σ), q(3σ), q(4σ), q(5σ) denotes the Caputo derivative of order σ,
2σ, 3σ, 4σ, 5σ, respectively.

Case 5: When β = 1, γ = 5, the equation will be

ξ−η D1
(

ξη D5
)

q + ω(ξ, q(ξ)) = 0. (36)

After simplification, Equation (36) will be

D6q(ξ) +
η

ξ
D5q(ξ) + ω(ξ, q(ξ)) = 0. (37)

The Equation (37) in fractional order is taken as

D6σq(ξ) +
η

ξσ
D5σq(ξ) + ω(ξ, q(ξ)) = 0. (38)
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with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, q(3σ)(0) = φ3, q(4σ)(0) = φ4,
q(5σ)(0) = φ5, where q(σ), q(2σ), q(3σ), q(4σ), q(5σ) denotes the Caputo derivative of order σ,
2σ, 3σ, 4σ, 5σ, respectively.

4. Method

Consider the general Equation (1)

ξ−η Dβ(ξη Dγ)q = ω(ξ, q(ξ)).

After simplifying and expanding this equation, we have

Dβ+γq(ξ)+βCβ−1

(
η
ξ

)
Dβ+γ−1q(ξ)+βCβ−2

(
η(η−1)

ξ2

)
Dβ+γ−2q(ξ) + . . .

βC0

(
η(η−1)(η−2)(η−3)...(η−β+1)

ξβ

)
Dγq(ξ) + ω(ξ, q(ξ)) = 0.

(39)

we generalize this Equation (39) into fractional form as

D(β+γ)σ
ξ q(ξ) + βCβ−1

(
η
ξσ

)
D(β+γ−1)σ

ξ q(ξ) + βCβ−2

(
η(η−1)

ξ2σ

)
D(β+γ−2)σ

ξ q(ξ) + . . .
βC0

(
η(η−1)(η−2)(η−3)...(η−β+1)

ξβσ

)
D(γ)σ

ξ q(ξ) + ω(ξ, q(ξ)) = 0,
(40)

with initial conditions q(0) = φ0, q(σ)(0) = φ1, q(2σ)(0) = φ2, . . . q((β+γ−1)σ)(0) = φβ+γ−1,
where q(σ), q(2σ) denotes the caputo derivative of order σ and 2σ . Dξ = d

dξ in (40) represents
Caputo fractional differential operator.

Clearly, when β = 1 , γ = 1 and η = 2, we have the Equation (63) in example 7. In a
similar fashion, we can extract all the examples by applying different values of β, γ, η.

Now, we discuss the method.

• Step 1: We approximate the highest-order derivative using Haar functions:

D(β+γ)σ
ξ q(ξ) =

2L

∑
τ=1

λτhτ . (41)

• Step 2: We integrate the Equation (41) again and again, and after applying the initial
conditions, we get

D(β+γ−1)σ
ξ q(ξ) = φβ+γ−1 +

2L

∑
τ=1

λτρτ,σ(ξ), (42)

D(β+γ−2)σ
ξ q(ξ) = φβ+γ−2 +

ξσ

Γ(σ + 1)
φβ+γ−1 +

2L

∑
τ=1

λτρτ,2σ(ξ).

and so on. The last term is

q(ξ) =
2L

∑
τ=1

λτρτ,(β+γ)σ(ξ) +
ξ(β+γ−1)σ

Γ((β + γ− 1)σ + 1)
φβ+γ−1 + . . . φ0. (43)

• Step 3: We collocate the points as

ξτ =
τ − 0.5

2L
, τ = 1, 2, . . . 2L.
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Now, we substitute all the values of derivatives into Equation (40) and collocate the
points, resulting in the system of differential equations as follows

2L
∑

τ=1
λτhτ(ξτ) + βCβ−1

(
η

ξτ
σ

)(
φβ+γ−1 +

2L
∑

τ=1
λτρτ,σ(ξτ)

)
+ . . .

ω(ξτ ,
2L
∑

τ=1
λτρτ,(β+γ)σ(ξτ) +

ξτ
(β+γ−1)σ

Γ((β+γ−1)σ+1)φβ+γ−1 + . . . φ0) = 0.
(44)

• Step 4: We solve the system of equations (44) using the Newton method and obtain
the values of the Haar coefficients λτ , τ = 1, 2, . . . 2L.

• Step 5: After substituting the values of Haar coefficients into Equation (43), we obtain
the numerical solution of Equation (40).

5. Convergence Analysis

Lemma 1 ([34]). Assume that q(ξ) ∈ L2(<) and has a bounded first derivative, that is, |q′(ξ)| ≤ G,

∀ξ ∈ (0, 1), P > 0 and q(ξ) =
∞
∑

τ=1
λτhτ(ξ). Then, |λj| ≤ G2−(3l−2)/2.

Theorem 1 ([34]). Suppose q(ξ) ∈ L2(<) is a continuous function with a bounded first derivative
in (0,1). Then, the error norm at the Jth level satisfies

||EJ || ≤
√

G
12

D2−(3/2)L

where |q′(ξ)| ≤ G, ∀ξ ∈ (0, 1), G > 0 and M = 2J , where J is maximum resolution.

Proof. The proof is straightforward. We can refer to [34].

5.1. Numerical Error

The maximum absolute error is given by

EC = Max.|qexact
τ − qapprox.

τ |,

where qexact
τ and qapprox.

τ are exact and approximate solutions at the τth collocation point.

5.2. Rate of Convergence

Rate of convergence is defined by

RC(L) =
log[EC(L/2)/EC(L)]

log 2
,

where EC(L) represents the maximum absolute error at L collocation points.

5.3. Stability

The condition number is significant to measure the stability of an algorithm[35]. For
stability, the condition number should be bounded. We consider the system of equations
formed in our algorithm as

HA = Υ,

where H denotes the Haar weights, A denotes the unknown Haar coefficients and Υ is a
known vector. The condition number bound for some examples is given in Table 1.

Definition 3 ([36]). Let us consider the system of equations to be of type HA = Υ, if the inverse of
H exists and is bounded, then the algorithm is stable; that is,

||H−1|| ≤ Z,
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where Z is a constant.

The Condition number is bounded [35]; that is,

Cond(H)2 ≤ ||H||2||H−1||2.

Table 1. Condition number bound for Examples 1 and 3.

Resolution Size Example 1 Example 3

3 16× 16 1.4133 × 102 1.8795 × 102

4 32× 32 2.8277 × 102 3.8086 × 102

5 64× 64 5.6547 × 102 7.6413 × 102

6. Applications

Example 1. Taking η = 2 in Equation (8) gives us this fourth-order fractional Lane-Emden-
Fowler equation:

D4σ
ξ q(ξ) +

4
ξσ

D3σ
ξ q(ξ) +

2
ξ2σ

D2σ
ξ q(ξ) = 3(12− 53ξ4 + 12ξ8)(q(ξ))−15, (45)

with initial conditions q(0) = 1, q(σ)(0) = 0, q(2σ)(0) = 0, q(3σ)(0) = 0.
Now, we apply the method, and using initial conditions, we can write

q(ξ) = 1 +
2L

∑
τ=1

λτρτ,4σ(ξ). (46)

After substituting all the values of q(ξ) and its derivatives into (45) and using collocation of
points, we obtain a system of nonlinear equations as follows:

2L
∑

τ=1
λτhτ(ξτ) +

4
ξσ

τ

2L
∑

τ=1
λτρτ,σ(ξτ) +

2
ξ2σ

τ

2L
∑

τ=1
λτρτ,2σ(ξτ)

−3(12− 53ξ4
τ + 12ξ8

τ)(1 +
2L
∑

τ=1
λτρτ,4σ(ξτ))−15 = 0.

(47)

We can easily solve this system (47) using the Newton method. After solving this system, we
have the values of the Haar coefficients λτ , τ = 1, 2, . . . 2L and substituting these values into (46)
gives the approximate solution.

The exact solution of (45) when σ = 1 is q(ξ) = (1 + ξ4)
1
4 . which is given in [37].

Example 2. When we substitute η = 2 in Equation (11), we get this fourth-order fractional
Lane-Emden-Fowler equation:

D4σ
ξ q(ξ) +

2
ξσ

D3σ
ξ q(ξ) + ξ(q(ξ))−2 = ω(ξ), (48)

with initial conditions q(0) = 0, q(σ)(0) = 0, q(2σ)(0) = 0, q(3σ)(0) = 0, where

ω(ξ) = Γ(1 + 4σ) + 8
Γ(4σ)

Γ(σ)
+ ξ
(

1 + ξ4σ
)−2

Now, we apply the method, and using the initial conditions, we can write

q(ξ) = 1 +
2L

∑
τ=1

λτρτ,4σ(ξ). (49)
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After substituting all the values of q(ξ) and its derivatives into (48) and using collocation of
points, we get a system of nonlinear equations as follows:

2L

∑
τ=1

λτhτ(ξτ) +
2
ξσ

τ

2L

∑
τ=1

λτρτ,σ(ξτ) + ξτ(1 +
2L

∑
τ=1

λτρτ,4σ(ξτ))
−2 −ω(ξτ) = 0. (50)

We can easily solve this system (50) using the Newton method. After solving this system,
we have the values of the Haar coefficients λτ , τ = 1, 2, . . . 2L, and these values in (49) give the
approximate solution.

The exact solution of (48) is q(ξ) = 1 + ξ4, when σ = 1.

Example 3. Taking η = 4 in Equation (14) gives the fifth-order fractional Lane-Emden-Fowler equation:

D5σ
ξ q(ξ) + 16

ξσ D4σ
ξ q(ξ) + 72

ξ2σ D3σ
ξ q(ξ)

+ 96
ξ3σ D2σ

ξ q(ξ) + 24
ξ4σ Dσ

ξ q(ξ) + (1− ξ5σ)(q(ξ)) + ξ10σ = ω(ξ),
(51)

with initial conditions q(0) = 0, q(σ)(0) = 0, q(2σ)(0) = 0, q(3σ)(0) = 0, q(4σ)(0) = 0, where

ω(ξ) = 1 + Γ(1 + 5σ) + 80
Γ(5σ)

Γ(σ)
+ 180

Γ(5σ)

Γ(2σ)
+ 160

Γ(5σ)

Γ(3σ)
+ 30

Γ(5σ)

Γ(4σ)

Now, we apply the method, and using initial conditions, we can write

q(ξ) = 1 +
2L

∑
τ=1

λτρτ,5σ(ξ). (52)

After putting all the values of q(ξ) and its derivatives into (51) we get a system of nonlinear
equations as:

2L
∑

τ=1
λτhτ(ξτ) +

16
ξσ

τ

2L
∑

τ=1
λτρτ,σ(ξτ) +

72
ξ2σ

τ

2L
∑

τ=1
λτρτ,2σ(ξτ) +

96
ξ3σ

τ

2L
∑

τ=1
λτρτ,3σ(ξτ)

+ 24
ξ4σ

τ

2L
∑

τ=1
λτρτ,4σ(ξτ) + (1− ξ5σ

τ )(1 +
2L
∑

τ=1
λτρτ,5σ(ξτ)) + ξ10σ

τ −ω(ξτ) = 0.
(53)

We can easily solve this system (53) using the Newton method. After solving this system, we
have the values of Haar coefficients λτ , τ = 1, 2, . . . 2L and putting these values in (52) gives the
approximate solution.

The exact solution of (51) is q(ξ) = 1 + ξ5σ.

Example 4. When we put η = 4 in Equation (32) we get this sixth-order fractional Lane-Emden-
Fowler equation:

D6σ
ξ q(ξ) + 12

ξσ D5σ
ξ q(ξ) + 36

ξ2σ D4σ
ξ q(ξ) + 24

ξ3σ D3σ
ξ q(ξ)

−45(−280 + 17056ξ6 − 79987ξ12 + 63332ξ18 − 7712ξ24 + 32ξ30)(q(ξ))13 = 0,
(54)

with initial conditions q(0) = 1, q(σ)(0) = 0, q(2σ)(0) = 0, q(3σ)(0) = 0, q(4σ)(0) = 0,
q(5σ)(0) = 0.

Now, we apply the method, and using the initial conditions, we can write

q(ξ) = 1 +
2L

∑
τ=1

λτρτ,6σ(ξ). (55)

After putting all the values of q(ξ) and its derivatives into (54), we get a system of nonlinear
equations as follows:
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2L
∑

τ=1
λτhτ(ξτ) +

12
ξσ

τ

2L
∑

τ=1
λτρτ,σ(ξτ) +

36
ξ2σ

τ

2L
∑

τ=1
λτρτ,2σ(ξτ) +

24
ξ3σ

τ

2L
∑

τ=1
λτρτ,3σ(ξτ)

−45(−280 + 17056ξ6
τ − 79987ξ12

τ + 63332ξ18
τ − 7712ξ24

τ + 32ξ30
τ )(1 +

2L
∑

τ=1
λτρτ,6σ(ξτ))13 = 0.

(56)

We can easily solve this system (53) using the Newton method. After solving this system, we
have the values of Haar coefficients λτ , τ = 1, 2, . . . 2L and substituting these values into (52) gives
the approximate solution.

The exact solution of (54) when σ = 1 is q(ξ) = 1√
1+ξ6

.

Example 5. Consider the fractional Lane-Emden Fowler equation, [38]:

D2σ
ξ q(ξ) +

1
ξσ

Dσ
ξ q(ξ) + (1 + ξσ)(q(ξ))5 = ω(ξ), (57)

with initial conditions q(0) = 3, q(σ)(0) = 0, where

ω(ξ) = Γ(1 + 2σ) +
Γ(1 + 2σ)

Γ(1 + σ)
+ (1 + ξσ)

(
3 + ξ2σ

)5
.

The exact solution of (57) is q(ξ) =
(
3 + ξ2σ

)
.

Now, we apply the method, and using the initial conditions, we can write

q(ξ) = 3 +
2L

∑
τ=1

λτρτ,2σ(ξ). (58)

After putting all the values of q(ξ) and its derivatives into (57), we get a system of nonlinear
equations as follows:

2L
∑

τ=1
λτhτ(ξτ) +

1
ξσ

τ

2L
∑

τ=1
λτρτ,σ(ξτ) + (1 + ξσ

τ)(3 +
2L
∑

τ=1
λτρτ,2σ(ξτ))5

−Γ(1 + 2σ)− Γ(1+2σ)
Γ(1+σ)

− (1 + ξσ
τ)
(
3 + ξ2σ

τ

)5
= 0.

(59)

We can easily solve this system (59) using the Newton method. After solving this system, we
have the values of Haar coefficients λτ , τ = 1, 2, . . . 2L and putting these values in (58) gives the
approximate solution.

Example 6. Consider this third-order fractional Lane-Emden-Fowler equation:

D3σ
ξ q(ξ) +

3
ξσ

D2σ
ξ q(ξ)− (q(ξ))3 = ω(ξ), (60)

with initial conditions q(0) = 0, q(σ)(0) = 0, q(2σ)(0) = 0, where

ω(ξ) = −ξ9σeξ + ξ3σeξ + 9σ2ξ3σ−1eξ + (3σ)2(3σ−1)2

2 ξ3σ−2eξ

+3ξ2σeξ + 18σ2ξ2σ−1eξ + 9σ2(3σ− 1)(2σ− 1)ξ2σ−2eξ

+ (3σ)2(3σ−1)2(3σ−2)2

6 eξ .

Clearly, when σ = 1, Equation (60) becomes

q′′′(ξ) +
3
ξ

q′′(ξ)− (q(ξ))3 = 24eξ + 36ξeξ + 12ξ2eξ + ξ3eξ − ξ9e3ξ ,

which is given in [39].
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Now, we apply the method, and using the initial conditions, we can write

q(ξ) =
2L

∑
τ=1

λτρτ,3σ(ξ). (61)

After putting all the values of q(ξ) and its derivatives into (60), we get a system of nonlinear
equations as follows:

2L

∑
τ=1

λτhτ(ξτ) +
3
ξσ

τ

2L

∑
τ=1

λτρτ,σ(ξτ)− (
2L

∑
τ=1

λτρτ,3σ(ξτ))
3 −ω(ξτ) = 0. (62)

We can easily solve this system (62) using the Newton method. After solving this system, we
have the values of Haar coefficients λτ , τ = 1, 2, . . . 2L and substituting these values into (61) gives
the approximate solution.

The exact solution of (60) is q(ξ) = ξ3σeξ .

Example 7. Consider the fractional Lane-Emden-Fowler equation, which is given in [40]

D2σ
ξ q(ξ) +

2
ξσ

Dσ
ξ q(ξ) + 8eq(ξ) + 4eq(ξ)/2 = 0, (63)

with initial conditions q(0) = 0, q(σ)(0) = 0. The exact solution of (63) when σ = 1 is
q(ξ) = −2 log(1 + ξ2).

Now, we apply the method

D2σ
ξ q(ξ) =

2L

∑
τ=1

λτhτ . (64)

Integrating (64) and applying the initial condition gives us

Dσ
ξ q(ξ) =

2L

∑
τ=1

λτρτ,σ(ξ).

In the same way, we can write

q(ξ) =
2L

∑
τ=1

λτρτ,2σ(ξ). (65)

After substituting all the values of q(ξ) and its derivatives into (63) and after collocation of
points, we get a system of nonlinear equations as follows:

2L

∑
τ=1

λτhτ(ξτ) +
2
ξσ

2L

∑
τ=1

λτρτ,σ(ξτ) + 8e

2L
∑

τ=1
λτρτ,2σ(ξτ)

+ 4e

(
2L
∑

τ=1
λτ ρτ,2σ(ξτ )

)
2 = 0. (66)

Using the Newton method, we can easily solve this system (66). After solving this system, we
have the values of the Haar coefficients λτ , τ = 1, 2, . . . 2L and putting these values in (65) gives
the approximate solution.

7. Numerical Simulation and Conclusions

This paper uses the Haar wavelet collocation method to find the numerical solution
to the general-order fractional Lane-Emden-Fowler equation. This numerical scheme is
presented in general order. We have documented many examples of second-, third-, fourth-,
fifth-, and sixth-order fractional differential equations. We have numerically simulated
those examples graphically and in tabular format. It is clear from the simulations that this
method works very nicely. Figures 1 and 2 show the comparison of exact and numerical
solutions and the absolute error of Example 1 for σ = 1 respectively. Figures 3 and 4
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show the HWCM solution for different values of σ and Haar coefficients of Example 1
respectively. Figures 5 and 6 show the comparison of exact and numerical solutions and
the absolute error of Example 2 for σ = 1 respectively. Figures 7 and 8 show the HWCM
solution for different values of σ and Haar coefficients respectively. Figures 9 and 10 show
the comparison of exact and numerical solutions and the absolute error of Example 3 for
σ = 1 respectively. Figures 11 and 12 show the HWCM solution for different values of σ
and Haar coefficients respectively. Similarly, Figures 13 and 14 show the comparison of
exact and numerical solutions and the absolute error of Example 4 for σ = 1 respectively.
Figures 15 and 16 show the HWCM solution for different values of σ and Haar coefficients
respectively. Figures 17 and 18 show the comparison of exact and numerical solutions and
the absolute error of Example 5 for σ = 1 respectively. Figures 19 and 20 show the HWCM
solution for different values of σ and Haar coefficients respectively. Figures 21 and 22 show
the comparison of exact and numerical solutions and the absolute error of Example 6 for
σ = 1 respectively. Figures 23 and 24 show the HWCM solution for different values of
σ and Haar coefficients respectively. Figures 25 and 26 show the comparison of exact
and numerical solutions and the absolute error of Example 7 for σ = 1 respectively.
Figures 27 and 28 show the HWCM solution for different values of σ and Haar coefficients
respectively. Tables 2–15 give us a comparison of the numerical values of Haar and the exact
solution and document the numerical values for different values of σ. From all the tables
and graphs, we conclude that the method is quite accurate and gives us good outcomes.

0 0.2 0.4 0.6 0.8 1

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18 Exact

HWCM

Figure 1. Comparison of Exact and HWCM solution of Example 1 when σ = 1.

Table 2. Comparison of HWCM and exact solution of Example 1 for J = 5.

ξ HWCM Exact ψ10 [37] QBSM [37] ψ8 [37] σ = 0.75 σ = 0.85 σ = 0.95

0.1 1.00002 1.00002 1.00003 1.00003 1.00003 1.00087 1.00021 1.00005
0.4 1.00633 1.00633 1.00634 1.00634 1.00634 1.04867 1.02305 1.00989
0.5 1.01527 1.01527 1.01527 1.01527 1.01527 1.08507 1.04683 1.02262
0.6 1.03093 1.03093 1.03093 1.03093 1.03093 1.12870 1.08112 1.04374
0.9 1.13442 1.13441 1.13440 1.13438 1.13438 1.27334 1.23519 1.16789
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Figure 2. Absolute error of HWCM of Example 1 when σ = 1.
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Figure 3. HWCM solution of Example 1 for different values of σ.
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Figure 4. Haar coefficients of Example 1 for different values of σ.
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Table 3. Error Comparison of Example 1.

ξ HWCM Error E8 [37] E10 [37]

0.1 0 6.6342 × 10−6 2.1208 × 10−6

0.4 3.1 × 10−8 4.0829 × 10−6 1.3122 × 10−6

0.5 2.01 × 10−7 6.8710 × 10−7 2.2781 × 10−7

0.6 4.19 × 10−7 4.7993 × 10−6 1.5386 × 10−6

0.9 5.85 × 10−6 3.4277 × 10−5 1.1079 × 10−5

0 0.2 0.4 0.6 0.8 1
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1.1

1.2
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1.7

1.8
Exact

HWCM

Figure 5. Comparison of Exact and HWCM solution of Example 2 when σ = 1.
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Figure 6. Absolute error of HWCM of Example 2 when σ = 1.
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Figure 7. HWCM solution of Example 2 for different values of σ.
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Figure 8. Haar coefficients of Example 2 for different values of σ.

Table 4. Comparison of HWCM and exact solution of Example 2 for J = 3.

ξ/32 Haar Solution Exact Solution σ = 0.55 σ = 0.75 σ = 0.95

1/32 1.00000095 1.00000095 1.00048828 1.00003052 1.00000191
3/32 1.00007725 1.00007725 1.0054744 1.00082397 1.00012402
5/32 1.00059605 1.00059605 1.0168424 1.0038147 1.000864
7/32 1.00228977 1.00228977 1.03530903 1.01046753 1.00310315
9/32 1.00625706 1.00625706 1.0613767 1.02224731 1.00806402

11/32 1.01396275 1.01396275 1.09544077 1.0406189 1.01728711
13/32 1.02723789 1.02723789 1.13783053 1.06704712 1.03261481
15/32 1.04827976 1.04827976 1.18882992 1.10299683 1.05617937
17/32 1.07965183 1.07965183 1.24868963 1.14993286 1.09039325
19/32 1.12428379 1.12428379 1.31763472 1.20932007 1.13794113
21/32 1.18547153 1.18547153 1.39586991 1.28262329 1.20177316
23/32 1.26687717 1.26687717 1.48358329 1.37130737 1.28509911
25/32 1.37252903 1.37252903 1.58094908 1.47683716 1.39138314
27/32 1.50682163 1.50682163 1.68812974 1.60067749 1.52433927
29/32 1.67451572 1.67451572 1.80527765 1.74429321 1.68792719
31/32 1.88073826 1.88073826 1.93253636 1.90914917 1.88634851
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Table 5. Absolute error of HWCM of Example 2 for σ = 1.

Resolution (J) 3 4 5 6 7 8

HWM error 2.2204 × 10−16 0 0 4.4409 × 10−16 0 0
CPU time (seconds) 1.132563 1.383034 1.861307 4.541592 18.758987 125.318744

Table 6. Absolute error of HWCM of Example 2 for different σ.

Resolution 3 4 5 6 7

σ = 0.55 3.4658 × 10−11 3.7683 × 10−11 3.9526 × 10−11 4.0468 × 10−11 4.0935 × 10−11

σ = 0.75 1.207 × 10−12 1.3634 × 10−16 1.4571 × 10−16 1.5068 × 10−16 1.533 × 10−16

σ = 0.95 2.2204 × 10−16 4.4409 × 10−16 4.4409 × 10−16 2.2204 × 10−16 2.2204 × 10−16
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Figure 9. Comparison of Exact and HWCM solution of Example 3 when σ = 1.
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Figure 10. Absolute error of HWCM of Example 3 when σ = 1.



Fractal Fract. 2023, 7, 628 19 of 28

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8 Exact

=1

=0.95

=0.55

=0.75

Figure 11. HWCM solution of Example 3 for different values of σ.
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Figure 12. Haar coefficients of Example 3 for different values of σ.

Table 7. Comparison of HWCM and exact solution of Example 3 for J = 3.

ξ/32 Haar Solution Exact Solution σ = 0.55 σ = 0.75 σ = 0.95

1/32 1.00000003 1.00000003 1.00007258 1.00000227 1.00000007
3/32 1.00000724 1.00000724 1.00148909 1.0001396 1.00001309
5/32 1.00009313 1.00009313 1.00606743 1.00094804 1.00014813
7/32 1.00050089 1.00050089 1.01530582 1.00334815 1.00073241
9/32 1.0017598 1.0017598 1.03054949 1.00859205 1.00241652

11/32 1.00479969 1.00479969 1.05304775 1.01823518 1.00626834
13/32 1.01106539 1.01106539 1.08398105 1.03411733 1.01386017
15/32 1.02263114 1.02263114 1.1244767 1.0583485 1.02735087
17/32 1.04231504 1.04231504 1.17561905 1.0932977 1.04956442
19/32 1.0737935 1.0737935 1.23845668 1.14158378 1.08406539
21/32 1.12171569 1.12171569 1.3140076 1.20606767 1.13523194
23/32 1.19181797 1.19181797 1.40326325 1.28984572 1.20832665
25/32 1.2910383 1.2910383 1.50719168 1.39624385 1.30956557
27/32 1.42763075 1.42763075 1.62674006 1.52881239 1.44618555
29/32 1.61127988 1.61127988 1.76283673 1.69132139 1.62651014
31/32 1.85321519 1.85321519 1.916393 1.88775649 1.86001428
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Table 8. Absolute error of HWCM of Example 3 for σ = 1.

Resolution (J) 3 4 5 6 7 8

HWCM error 2.2204 × 10−16 4.4409 × 10−16 2.2204 × 10−16 4.4409 × 10−16 4.4409 × 10−16 2.2204 × 10−16

CPU time (seconds) 0.947930 1.152302 1.580108 3.506233 14.581024 96.118520

Table 9. Absolute error of HWCM of Example 3 for different σ.

Resolution 3 4 5 6 7

σ = 0.55 9.6373 × 10−7 8.6165 × 10−7 8.8235 × 10−7 8.924 × 10−7 8.9734 × 10−7

σ = 0.75 1.5783 × 10−7 1.6771 × 10−7 1.7277 × 10−7 1.7534 × 10−7 1.7663 × 10−7

σ = 0.95 2.855 × 10−8 3.0805 × 10−8 3.1984 × 10−8 3.2587 × 10−8 3.2891 × 10−8
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Figure 13. Comparison of Exact and HWCM solution of Example 4 when σ = 1.
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Figure 14. Absolute error of HWCM of Example 4 when σ = 1.
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Figure 15. HWCM solution of Example 4 for different values of σ.
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Figure 16. Haar coefficients of Example 4 for different values of σ.
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Figure 17. Comparison of Exact and HWCM solution of Example 5 when σ = 1.
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Figure 18. Absolute error of HWCM of Example 5 when σ = 1.
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Figure 19. HWCM solution of Example 5 for different values of σ.
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Figure 20. Haar coefficients of Example 5 for different values of σ.
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Table 10. Comparison of HWCM and exact solution of Example 5 for J = 3.

ξ/32 Haar Solution Exact Solution σ = 0.55 σ = 0.75 σ = 0.95

1/32 3.000977 3.000977 3.022097 3.005524 3.001381
3/32 3.008789 3.008789 3.073989 3.028705 3.011136
5/32 3.024414 3.024414 3.129778 3.061763 3.029394
7/32 3.047852 3.047852 3.187907 3.102311 3.055706
9/32 3.079102 3.079102 3.247743 3.149155 3.089800

11/32 3.118164 3.118164 3.308935 3.201541 3.131480
13/32 3.165039 3.165039 3.371255 3.258935 3.180596
15/32 3.219727 3.219727 3.434546 3.320931 3.237022
17/32 3.282227 3.282227 3.498688 3.387212 3.300655
19/32 3.352539 3.352539 3.563591 3.457515 3.371404
21/32 3.430664 3.430664 3.629182 3.531623 3.449192
23/32 3.516602 3.516602 3.695402 3.609350 3.533947
25/32 3.610352 3.610352 3.762200 3.690534 3.625606
27/32 3.711914 3.711914 3.829536 3.775034 3.724113
29/32 3.821289 3.821289 3.897373 3.862724 3.829414
31/32 3.938477 3.938477 3.965679 3.953493 3.941461

Table 11. Absolute error of HWCM of Example 5.

Resolution (J) 3 4 5 6 7 8

HWM error 1.3323 × 10−15 1.3323 × 10−15 1.3323 × 10−15 8.8818 × 10−16 8.8818 × 10−16 8.881 × 10−16

CPU time (seconds) 0.984097 1.105506 1.766658 5.013335 23.477339 163.859775
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Figure 21. Comparison of Exact and HWCM solution of Example 6 when σ = 1.
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Figure 22. Absolute error of HWCM of Example 6 when σ = 1.
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Figure 23. HWCM solution of Example 6 for different values of σ.
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Figure 24. Haar coefficients of Example 6 for different values of σ.
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Table 12. Comparison of HWCM and exact solution of Example 6 for J = 5.

ξ Haar Solution Exact Solution Abs. Error QBSM [39] σ = 0.75 σ = 0.85 σ = 0.95

0.1 0.001103955 0.001105170 1.215 × 10−6 0.001086890 0.010800993 0.004553355 0.001757272
0.2 0.009765978 0.009771222 5.244 × 10−6 0.009734551 0.045949298 0.025702835 0.013439484
0.3 0.036433810 0.036446187 1.237 × 10−5 0.036392585 0.115449927 0.075115699 0.046307124
0.4 0.095453799 0.095476780 2.298 × 10−5 0.095408690 0.233442897 0.167418101 0.115047307
0.5 0.206052735 0.206090158 3.742 × 10−5 0.206011349 0.415714680 0.320710379 0.238809970
0.6 0.393521515 0.393577660 5.614 × 10−5 0.393493595 0.683319863 0.557181115 0.442071948
0.7 0.690637639 0.690717178 7.953 × 10−5 0.690635447 1.071858878 0.908280793 0.756777190
0.8 1.139368842 1.139476955 1.081 × 10−4 1.139407772 1.614156801 1.411098928 1.223361386
0.9 1.792908154 1.793050668 1.425 × 10−4 1.793007437 2.350158149 2.109231858 1.891889010

Table 13. Absolute error of HWCM of Example 6 for σ = 1.

Resolution (J) 3 4 5 6 7 8

HWCM error 2.70 × 10−3 7.0396 × 10−4 1.7755 × 10−4 4.2618 × 10−5 8.5528 × 10−6 1.5229 × 10−6

RC(L) — 1.939394 1.987268 2.058690 2.316994 2.489575
CPU time (seconds) 0.985559 1.175652 1.641920 4.269479 19.495244 136.006084
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Figure 25. Comparison of Exact and HWCM solution of Example 4 when σ = 1.
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Figure 26. Absolute error of HWCM of Example 7 when σ = 1.
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Figure 27. HWCM solution of Example 7 for different values of σ.
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Figure 28. Haar coefficients of Example 7 for different values of σ.

Table 14. Comparison of HWCM and exact solution of Example 7 for J = 3.

ξ Haar Solution Exact Solution Abs. Error VIM [41] σ = 0.55 σ = 0.75 σ = 0.95

0.1 −0.01990248 −0.01990066 8.95 × 10−5 −0.01990066 −0.24073779 −0.08666051 −0.02698493
0.2 −0.07847532 −0.07844142 3.4 × 10−5 −0.07844138 −0.44642869 −0.22954585 −0.09871719
0.3 −0.17240439 −0.17235539 4.9 × 10−5 −0.17235319 −0.61995038 −0.39098635 −0.20674133
0.4 −0.29695266 −0.29684001 1.12 × 10−4 −0.29680298 −0.76453325 −0.55548832 −0.34321737
0.5 −0.44645232 −0.44628710 1.65 × 10−4 −0.44596354 −0.89619911 −0.71772963 −0.50067339
0.6 −0.61519627 −0.61496939 2.26 × 10−4 −0.61310592 −1.01542342 −0.87501502 −0.67261708
0.7 −0.79786090 −0.79755223 3.08 × 10−4 −0.78950866 −1.11575420 −1.02264092 −0.85328881
0.8 −0.98975390 −0.98939248 3.61 × 10−4 −0.96127658 −1.20678787 −1.16109114 −1.03825098
0.9 −1.18708784 −1.18665369 4.34e-04 −1.10296039 −1.29291002 −1.29224026 −1.22443125
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Table 15. Abs. error of HWCM of Example 7 for σ = 1.

Resolution (J) 3 4 5 6 7 8

HWCM error 4.70 × 10−4 1.19 × 10−4 3.0098 × 10−5 7.5548 × 10−6 1.8926 × 10−6 4.7363 × 10−7

RC(L) 1.963964 1.978709 1.988404 1.992906 1.998703 1.998537
CPU time (seconds) 2.388590 1.868506 2.802558 7.324519 33.503430 196.555354
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