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Abstract: A fractile is a location on a probability density function with the associated surface being a
proportion of such a density function. The present study introduces a novel methodological approach
to modeling data within the continuous unit interval using fractile or quantile regression. This
approach has a unique advantage as it allows for a direct interpretation of the response variable
in relation to the explanatory variables. The new approach provides robustness against outliers
and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse
characteristics. Importantly, our approach does not require assumptions about the distribution of
the response variable, offering increased flexibility and applicability across a variety of scenarios.
Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing
methodologies, thereby giving an improved framework for data modeling in the unit interval. We
validate the effectiveness of the introduced approach with two empirical applications, which highlight
its practical utility and superior performance in real-world data settings.

Keywords: bounded data; fractile regression; link functions; robustness; statistical modeling

1. Introduction

Modeling continuously distributed data within the unit interval, which includes rates
and percentages, is vital in many fields of knowledge [1–4]. This modeling is of particular
interest in research areas in which indices, percentages, and rates play a significant role.
Note that we often encounter data that originate from continuous random variables that
have constraints on their possible values. Such data have gained considerable importance
in the context of the COVID-19 pandemic, as they enable the exploration of various aspects
such as global infection and recovery rates, as well as mortality statistics [5–7].

When dealing with data that are bounded within a specific range, the regression
approach emerges as a widely used statistical method for estimating parameters and con-
ducting hypothesis tests [8]. Typically, such data are fitted using multiple linear regression
models [9,10], where their parameters are often estimated utilizing the ordinary least
squares (OLS) technique. This technique has several advantages which have contributed
to its widespread employment in various fields. Firstly, the OLS technique is relatively
simple and computationally efficient, making it accessible to a broad spectrum of users. The
underlying assumptions of the OLS technique, when met, ensure the best linear unbiased
estimators for the model parameters. Furthermore, the results obtained using the OLS tech-
nique are interpretable and straightforward, offering intuitive insights into relationships
between variables. The mentioned advantages have facilitated the application of OLS in
various research settings.
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Despite the advantages of the OLS technique, there may be disadvantages when
modeling data in a bounded range. For example, the variance may tend towards zero when
the mean is close to the extreme values of this range, which is an undesirable situation.
This situation can lead to inaccurate estimates and then to incorrect conclusions. Hence,
the modeling of continuous variables in the unit interval, that is, [0, 1], requires careful
consideration of its theoretical nuances. According to [11,12], the commonly used OLS
technique is inadequate for modeling a dependent (response) variable in [0, 1] because it
could generate predicted values that exceed the bounds of that range. The study presented
in [12] is among the first works to challenge the use of the OLS technique for modeling data
in [0, 1] with regression. Therefore, to address the mentioned disadvantages, researchers
have proposed an estimation technique alternative to OLS called quasi-likelihood.

Besides the OLS and quasi-likelihood techniques, another approach for modeling data
in the continuous [0, 1] range is using the logit transformation on the response variable in
regression. This approach maps data without exceeding the unit limit, but it has certain
practical drawbacks. Notably, the interpretability suffers as the estimated coefficients are
based on the transformed variable, and not on the original response variable. Additionally,
these kinds of data in the unit interval typically exhibit heteroscedasticity problems, which
the logit transformation does not always effectively address.

The beta regression model was proposed in [13] as an alternative parameterization
for the standard beta distribution. An extension of this model, outlined in [14], enables the
modeling of a precision parameter, offering improved robustness against heteroscedasticity.
However, the beta distribution supports the unit range but the associated response variable
cannot take the values zero and/or one in this case.

Recently, there have been more efforts to propose alternative models to the beta
regression. In [15], a new model was developed based on the Lindley distribution, which
aimed to describe data in the unit interval, from which a new regression was derived.
Similarly, in [16], a new distribution for bounded variables and a corresponding regression
model were developed. This model was compared with those proposed in [13,15].

Notably, both beta and Lindley regressions require the variable being modeled to
be within the unit interval. In relation to this, in [17], three structures for inflated beta
regression were derived to model data in intervals (0, 1], [0, 1), and [0, 1]; that is, with and
without considering the values of zero and one. The inflated beta regression models at
zero or one were constructed using mixtures of the beta distribution with a degenerate
distribution at either one or zero. Nevertheless, the inflated beta regression models at
zero and one were based on a distribution formed by the mixture of the beta and binomial
distributions. These regression models necessitate assumptions about the distribution of the
data. Various statistical distributions have been utilized to postulate multiple parametric
fractile regression structures; for example, see [6,15,16,18–23].

In [24], it was presented the estimation of parameters of a model with bounded data.
This approach is based on the use of a standard fractile (quantile) regression model, with
the application of a link logit function [25]. According to [24], such an approach can be
utilized to model data that belong to either the positive real interval or the unit interval.
Other recent studies related to bounded data have been presented in [20,21]. In addition,
other investigations associated with fractile regression were discussed in [22,23].

Despite the variety of methodologies presented in the literature, there is a noticeable
gap in the modeling of data bounded in [0, 1], without making assumptions about the
distribution of the response variable. Given this gap, the objective of the present study is
to introduce an alternative approach based on a fractile regression model. This approach
overcomes some limitations of the existing models, such as the need to make assumptions
regarding the distribution of the response variable and the susceptibility to heteroscedastic-
ity and outliers. The proposed fractile regression model also offers several advantages, such
as directly interpreting the estimates on the scale parameter of the response variable, in
contrast to the interpretation problem that arises when the logit transformation is applied.
These advantages are discussed and presented in detail throughout the text.



Fractal Fract. 2023, 7, 667 3 of 16

After this introduction, the article is structured as follows. Section 2 states the princi-
ples of fractile regression and introduces our approach to modeling data in the unit interval.
In Section 3, we demonstrate the utility of our approach through various applications.
Lastly, Section 4 concludes our article, summarizing our findings and their implications.

2. Fractile Regression for Data in the Unit Interval

This section focuses on fractile regression for the modeling of data in the unit interval.
We start by discussing the limitations that traditional approaches encounter when dealing
with this type of data. Then, we delve into the concept of fractile regression, outlining its
key properties and suitability for such modeling. Our approach, which exploits fractile
regression for data in the unit interval, is also introduced here.

2.1. Prelude to Fractile Regression

Consider the traditional regression structure represented by

Y = xβ + ε, (1)

where Y = (Yi) is an n× 1 vector representing the response to be modeled in relation to the
random variable Yi, for i ∈ {1, . . . , n}; whereas x = (xij) denotes an n× k matrix of known
values xij of covariate Xj for individual i, with i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, and k < n.
The term β is a k× 1 vector of regression parameters to be estimated; and ε constitutes an
n× 1 vector of independent and identically distributed errors with zero mean and constant
variance. The most common technique used to estimate β is OLS by means of

min
β∈Rk

n

∑
i=1

(yi − x>i β)2, (2)

where yi is the observed value of the random variable Yi, xi = (1, xi1, . . . , xip)
>, and

β = (β0, β1, . . . , βp)> defined as in (1), with k = p + 1. Note that x>i β = µ(xi) = E(Yi | xi)
expresses the conditional mean of Yi given xi in the structure of a linear model.

The idea of fractile regression, to model a quantile (or fractile) of order τ, Qτ say, with
0 < τ < 1, as suggested in [26], is based on absolute error minimization, considering
weights to curtail the error in estimating a fractile of interest related to β, which will
henceforth be denoted as β(τ), such as

min
β∈Rk

n

∑
i=1

ρτ(yi − x>i β(τ)), (3)

where ρτ(v) = v(τ − 1{v<0}) is the loss function and 1B the indicator function in the set B.
Observe that now x>i β(τ) = Qτ(Yi | xi) is the τ × 100-th conditional quantile of Yi given
xi also in a linear structure. The idea presented in (3) is similar to the OLS technique stated
in (2) that operates on the principle of squared error minimization. Notably, provided all
prerequisites of OLS are met and the median is modeled via fractile regression, that is,
τ = 0.5, the estimates generated by both approaches align.

In [27], it was possible to estimate β(τ) by transforming the problem stated in (3) into
one of linear programming. Thus, the minimization established in (3) can be substituted by

min
(β(τ),u,v)∈Rk×Rn

+×Rn
+

(
τ 1>n u + (1− τ)1>n v | xβ(τ) + u− v = y

)
, (4)

where 1n is an n × 1 vector of ones, whereas u and v are both n × 1 vectors composed
of elements given by ui = max{0, yi − ŷi} and vi = max{0, ŷi − yi}, respectively, for
i ∈ {1, . . . , n}, with ŷi = x>i β̂(τ). The formulation presented in (4) can be utilized to
scrutinize the response variable in the function of the explanatory variables at different
fractiles of the conditional distribution of this response.
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The estimators of fractile regression parameters prove to be more efficient than those
of OLS when the error term does not follow a Gaussian distribution. Moreover, these
estimators are less affected by outliers in the response variable [27].

One especially intriguing characteristic of fractile regression, which underpins the
methodology proposed in this work, is that the fractile function remains unaltered by
monotonic transformations, a property known as equivariance. Detailed information on
this and other fractile regression properties can be found in [27]. Thus, for any given
random variable Y, the following holds true: Qτ(Ψ(Y)) = Ψ(Qτ(Y)), where Ψ is a non-
decreasing function of R.

In the following subsection, we present the model formalization for variables sup-
ported in [0, 1] and the corresponding link function.

2.2. Conditions Necessary for the Link Function

Such as in the formulation stated in (3), let Y be an n× 1 response vector and x be
an n× k matrix containing the values of k covariates employed to model the response Yi,
with i ∈ {1, . . . , n}. Unlike the structure defined in (3), the response vector consists of n
observations, with each of them falling within the interval [0, 1].

Let G denote a function such that G: [0, 1]→ R, which is monotone non-decreasing;
its inverse function G−1 exists, and it is differentiable at least once. The idea of our proposal
is to use the link function G to map Y to R and then to estimate the model parameters via
fractile regression. Hence, the fractile regression model is formulated as

Qτ(G(Y) | x) = x β(τ),

where β(τ) is a k× 1 vector of fractile regression parameters to be estimated.
According to the equivariance property of the fractile function Qτ , we find that

Qτ(G(Y) | x) = x β(τ),

G−1(G(Qτ(Y) | x)) = G−1(x β(τ)),

Qτ(Y | x) = G−1(x β(τ)).

Note that we can directly interpret the effect of a change in the value xij on the response
Yi, for i ∈ {1, . . . , n} and j ∈ {1, . . . , k}.

2.3. Choice of the Link Function

In [24], a link based on the logistic function (logit link) was used to model data in the
unit interval, employing a fractile regression stated as

logit(w) = log
(

w + min(w) + δ

max(w)− w + δ

)
, (5)

where w ∈ [0, 1] and δ (considered as δ = 0.001 in [24]) is arbitrary and should be chosen
such that logit(w) is defined for all w ∈ [0, 1]. Inclusion of δ in the logit link function
presented in (5) ensures the absence of indeterminacies. With this link function, the fractile
regression model can be written as

Qτ(logit(Y) | x) = x β(τ).

However, the logit link function can be criticized for two reasons when modeling data with
support in the continuous unit interval. The first criticism relates to the lack of generality
of the link function because, depending on the data being modeled and the choice of δ, it
may not be feasible to map all the sample elements to R. The second criticism concerns the
weighting of the observations mapped to R when the sample does not contain the extreme
values zero and one of the interval. These issues are discussed further below.
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To address the two mentioned criticisms, an adaptation of the function stated in (5) is
proposed and stated as

logit2(w) = log
(

w + δ

1− w + δ

)
. (6)

However, the function logit2 is still subject to the first mentioned criticism.
An alternative form for G, which satisfies all the necessary conditions and is robust

against the criticisms of the link function stated in (5), is the function based on the fractile
function of the standard Cauchy distribution defined as

C(w) = tan(Π(w− 0.5)), (7)

where “tan” denotes the tangent function and Π is a parameter used as a calibration tool for
optimizing the model fit. It is important to state that 0 < Π < π = 3.1416 to preserve the
properties of the link function G. Thus, the function given in (7) is defined for all w ∈ [0, 1].

Various authors have employed the Cauchy distribution as a link function in regression
analyses [11,28–30]. Nonetheless, our approach introduces a new class of link functions
derived from the Cauchy distribution such as those stated in (7), which we refer to as
quasi-Cauchy. In this context, any distinct value of Π ∈ (0, π) generates a unique link
function. To gain a deeper understanding of the second point of criticism, we consider a set
of n = 61 simulated observations as our sample data y = (y1, . . . , y61)

>:

0.0000, 0.6769, 0.3237, 0.6234, 0.6272, 0.8670, 0.5054, 0.6402,
0.6135, 0.6127, 0.5403, 0.3504, 0.8114, 0.5414, 0.6121, 0.1680,
0.4816, 0.6798, 0.3311, 0.3955, 0.4573, 0.7247, 0.5794, 0.5909,
0.3767, 0.2421, 0.7279, 0.6117, 0.4016, 0.3635, 0.2852, 0.6792,
0.2861, 0.5252, 0.3356, 0.4976, 0.6770, 0.4073, 0.6791, 0.2948,
0.3047, 0.6307, 0.5235, 0.6969, 0.3100, 0.1652, 0.6549, 0.5368,
0.5510, 0.3004, 0.7550, 0.7385, 0.7101, 0.3432, 0.3477, 0.3451,
0.2677, 0.6015, 0.5053, 0.4613, 0.6766

In the data y, one extreme value from the interval [0, 1] is present, and its maximum is
0.8670. Table 1 presents descriptive statistics of the sample y and its transformation using
the link functions given in (5), (6), and (7). The value Π = 2.5 was selected after several ad
hoc evaluations to improve the model’s fit and ensure that extreme observations can be
mapped to relatively extreme points in R. Observing the maximum and minimum values
of the link functions, it becomes clear that the link stated in (5) assigns similar weights
to map values 0 and 0.8670 to R. This is undesirable, as zero is an extreme value of the
interval [0, 1], unlike the value 0.8670.

Figure 1 displays boxplots that provide a deeper insight into the disparities among the
transformed data using different link functions.

Table 1. Descriptive statistics of the data and their transformation using the indicated link function.

Link Minimum Quartile 1 Median Mean Quartile 3 Maximum

Identity 0.0000 0.3451 0.5252 0.5012 0.6402 0.8670

Logit −6.7660 −0.4128 0.4288 0.3713 1.0350 6.7660

Logit2 −6.9090 −0.6395 0.1008 −0.0740 0.5749 1.8680

Cauchy −3.0100 −0.4080 0.0632 −0.0242 0.3655 1.3060
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−4

0

4

Link 2 Link 3 Link 4
 

Figure 1. Boxplots of the transformed variable Y using the link functions stated in (5) –Link 2 colored
in light red–, (6) –Link 3 colored in green–, and (7) –Link 4 colored in light blue–, where the red points
represent the data mean, while the blue points indicate outliers.

Examining the median (indicated by the solid line in the center of the boxes) and the
mean (marked by the red point inside the boxes) of the data transformed, we can observe
the following: (i) when the link function stated in (5) is considered, both mean and median
are significantly distanced from zero, suggesting that the transformation mapping onto R
is strongly influenced by extreme values; and in contrast, (ii) for the other link functions
defined in (6) and (7), the mean and median are situated close to zero, indicating a more
balanced transformation.

2.4. Interpretation

An advantage of the introduced alternative approach is its ability to directly interpret
the estimated results on the response variable. For a fractile regression model defined as

Qτ(Y | x) = G−1(x β(τ)),

we can obtain

∂Qτ(Y | x)
∂xj

=
∂G−1(xβ(τ))

∂xβ(τ)
β j(τ), j ∈ {1, . . . , k}.

Thus, the impact of a change in one unit of a covariate on the response variable can be
interpreted through its marginal effect on the average, denoted as Em.

Let x̄> be a k × 1 vector composed of elements x̄j, with j ∈ {1, . . . , k}, and
x̄j = ∑n

i=1 xij/n. Also, as mentioned, β(τ) is a k× 1 vector of fractile regression parameters.
Then, Em is defined as

Em =
∂Qτ(Y | x)

∂xj
=

∂G−1(x̄β(τ))

∂x̄β(τ)
β j(τ), j ∈ {1, . . . , k}. (8)

Using the expression presented in (7) as an example, we can quantify the impact of a
change in xj directly on the mean of Y through

Em =
1

2.5(1 + (x̄ β(τ))2)
β j(τ). (9)
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The formula stated in (9) is derived from the inverse tangent function, rescaled by the
factor Π ≈ 2.5. This formula captures the rate of change in the mean of Y with respect
to xj. Thus, such a formula illustrates the impact of changing one unit in xj on the mean
transformed response variable Y. Based on the expression given in (8), we can measure the
impact of a change in any covariate on the response variable when using the link functions
defined in (5) or (6).

2.5. Simulation Study

We conduct a simulation study with M = 10, 000 Monte Carlo replicates to assess
the finite sample properties of the estimators for the fractile regression parameters under
various link functions. Additionally, it is worth noting that our study not only tests
the applicability of the estimators across different distributions but also, we verify their
robustness with different link functions. This verification is carried out even in simplified
scenarios, reaffirming the robustness of our results. In the simulations, the response variable
was generated based on the link function G and then modeled using this link function. Let
θτ = (β1(τ), β2(τ), β3(τ))

> be the vector of fractile regression parameters to be estimated.
The empirical mean of the parameter estimates, denoted by M(θ̂τ), was evaluated

using Monte Carlo simulations. Additionally, the bias and mean squared error (MSE) of the
estimators, denoted by B(θ̂τ) and MSE(θ̂τ), respectively, were also assessed via simulation.
The data were randomly generated from a normal distribution.

Our simulation study not only aimed to test the performance of the estimators under
different distributions but also verified their robustness when using different link functions.
This verification was carried out even in simplified scenarios, reaffirming the robustness
of our results. The model parameters β1(0.25) = 0.5, β2(0.25) = −0.5, and β3(0.25) = 0.9
were estimated for τ = 0.25 employing the link function defined in (6), while β1(0.5) = 1.5,
β2(0.5) = 2.5, and β3(0.5) = 1.9 were estimated for τ = 0.50 utilizing the link function
stated in (7), with Π = 2.5 also being considered. Estimates for both τ ∈ {0, 25, 0.50}
were obtained considering the sample sizes n ∈ {40, 60, 100, 200, 500}. The results of this
simulation study are shown in Table 2.

Table 2. Empirical mean (M), bias (B), and mean squared error (MSE) of the estimators of θτ based
on Monte Carlo simulations and the model Qτ(G(Y) | x) = β1(τ)x1 + β2(τ)x2 + β3(τ)x3, for the
indicated values of n, τ, β1, β2, and β3.

θ0.5 θ0.25

β1(0.5) β2(0.5) β3(0.5) β1(0.25) β2(0.25) β3(0.25)
1.5000 2.5000 1.9000 0.5000 −0.5000 0.9000

M(θ̂τ) 1.4988 2.5006 1.9020 0.5073 −0.5012 0.8993
n = 40 B(θ̂τ) −0.0012 0.0006 0.0020 0.0073 −0.0012 −0.0007

MSE(θ̂τ) 0.0518 0.0089 0.0135 0.0687 0.0158 0.0144
M(θ̂τ) 1.4993 2.5000 1.8991 0.5042 −0.4997 0.9001

n = 60 B(θ̂τ) −0.0007 0.0000 −0.0009 0.0042 0.0003 0.0001
MSE(θ̂τ) 0.0299 0.0067 0.0063 0.0406 0.0086 0.0077
M(θ̂τ) 1.5003 2.5008 1.8991 0.5029 −0.5004 0.8989

n = 100 B(θ̂τ) 0.0003 0.0008 −0.0009 0.0029 −0.0004 −0.0011
MSE(θ̂τ) 0.0226 0.0055 0.0047 0.0223 0.0048 0.0055
M(θ̂τ) 1.5010 2.5001 1.8998 0.4992 −0.5002 0.8999

n = 200 B(θ̂τ) 0.0010 0.0001 −0.0002 −0.0008 −0.0002 −0.0001
MSE(θ̂τ) 0.0102 0.0020 0.0019 0.0108 0.0027 0.0023
M(θ̂τ) 1.5006 2.5000 1.9005 0.4957 −0.4997 0.9005

n = 500 B(θ̂τ) 0.0006 0.0000 0.0005 −0.0043 0.0003 0.0005
MSE(θ̂τ) 0.0040 0.0008 0.0008 0.0049 0.0010 0.0009
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The link function stated in (5) was not included in the simulation study due to the lack
of its inverse function. As expected, we observe that the MSE of the estimators decreased
as the sample size n increased. The fractile regression estimation process used to model the
response variable contained in the interval [0, 1] can be divided into three main steps:

Step 1: Select an appropriate link function that satisfies the conditions mentioned in
Section 2.2.

Step 2: (a) Apply the link function to the response variable; (b) estimate the fractile regres-
sion parameters as proposed in [26,31]; and (c) test the fractile regression model.

Step 3: Use the expression for Em given in (8) to ascertain the impact of changing one unit
of the covariate on the response variable.

For technical details about statistical estimation, see [32]. Evaluation of the introduced
fractile regression model was performed, noting that it possesses the same properties as
the fractile regression models presented in [26,27]. Therefore, the same hypothesis testing,
confidence intervals, and measures of fitting quality that are used in conventional fractile
regression models can be employed in our case. The detailed estimation process of the
fractile regression parameters is illustrated in Figure 2.

Step 1: Select
the link function

Step 2(a): Apply
the link function

Step 2(b): Esti-
mate the model

parameters

Step 2(c): Test
the fractile

regression model

Step 3: Use Em

Interpret
the resultsEnd

Figure 2. Flowchart illustrating the detailed estimation process of the fractile regression parameters.

2.6. Choosing the Value for Π

When estimating the formulation stated in (7), we initially assume that Π = 2.5.
Although Π can be chosen within the support (0, π), a systematic approach would involve
selecting the value that yields the best model fit. This selection can be evaluated using
goodness-of-fit measures like the pseudo-R2 or the Akaike information criterion (AIC).

Contrary to the traditional R2 used in OLS regression, the pseudo-R2 does not provide
a proportion of variance explained by the model. Instead, it gives a measure of the deviation
of the predicted values from the observed values, with larger values indicating a better fit.
In contrast, the AIC is a measure that balances the fit of the model against its complexity.
Generally, a model with a smaller AIC is considered to provide a better fit, given the
number of parameters it utilizes.
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For illustrative purposes, we consider a simulated dataset. The data were randomly
generated from a normal distribution. Using β1(0.5) = 1, β2(0.5) = −2, β3(0.5) = 5 and
the inverse of the function stated in (7), we generate the data y. Then, we produced n = 100
observations considering the seed 1234. Hence, the simulated data were estimated for
τ = 0.5, testing 500 different values for Π, uniformly distributed in the interval (0, π).
Figure 3 displays the values of Π used and the corresponding pseudo-R2 values obtained.
We observe a peak in the pseudo-R2 at Π = 2.9972, indicating that this is the optimal value
for such a specific scenario.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

Π

p
s
e
u

d
o

 −
R

2

0.9185

Figure 3. Plot of the values of Π versus their corresponding pseudo-R2 values.

3. Applications

This section illustrates the new fractile regression model using two datasets. The first
dataset is presented in [33] and is related to household expenditure on food. These data are
well known and were used in [34]. The second dataset is associated with the socioeconomic
variables of 138 countries, and it was obtained from “The Quality of Government Basic
Dataset”, Jan15 version (University of Gothenburg: The Quality of Government Institute,
http://www.qog.pol.gu.se, accessed on 18 August 2023). With this dataset, we model the
democratization index.

3.1. Application 1

In this application, we utilize the dataset presented in [33] which pertains to household
expenditure on food. The response variable, denoted as Y, represents the proportion of
income that a family spends on food.

To explain Y, we use two explanatory variables: the family income (X1) and the
number of people in the family (X2). The dataset consists of n = 38 observations, and it
can be obtained from the betareg package of the R software [35,36], available on CRAN
(https://www.r-project.org/, accessed on 18 August 2023).

Consider the fractile regression model formulated as

Qτ(G(Yi)) = β0(τ) + β1(τ)xi1 + β2(τ)xi2, i ∈ {1, . . . , 38}.

http://www.qog.pol.gu.se
https://www.r-project.org/
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We estimate three models, denoted by M1, M2, and M3, utilizing different link func-
tions. Model M1 uses the link function stated in (5), model M2 employs the link function
defined in (6), and model M3 applies the link function established in (7). Using the
methodology described in Section 2.6, we employ Π = 2.1061 to estimate model M3. The
performance of this estimation, reflected by the pseudo-R2 values, is shown in Figure 4.
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Figure 4. Plot of the values of Π versus their corresponding pseudo-R2 values in model M3.

Observing Table 3, note that the estimated parameters are influenced by the choice of
the link function. For model M1, one of the estimated parameters is statistically significant
(β1). However, the estimates for β1 and β0 are statistically significant for model M2. All the
estimated parameters for model M3 are statistically significant. Evaluating the goodness of
fit using a pseudo-R2 as a measure, model M1 exhibits the poorest fit, while models M2
and M3 have similar fits, with model M3 having a slight advantage. It is also noticed that
the statistical significance of the parameters varies according to the chosen link function.
The performance of these estimators, in terms of pseudo-R2 values, is shown in Figure 4.
Table 3 reports the estimates of models M1, M2, and M3 for the 50th fractile. The variation
in the estimated parameters β0, β1, and β2 with respect to τ for model M3 is depicted in
Figure 5.

Table 3. Estimates for the parameters of models M1, M2, and M3 at 50th fractile, where * indicates
significance at the 10% level and standard errors are shown in parentheses below the estimates.

Parameter
M1 M2 M3

Estimate Em Estimate Em Estimate Em

β0 0.1349 0.0150 −0.6143 * −0.1293 −0.3250 * −0.1285
(0.5075) (0.2632) (0.1408)

β1 −0.0181 * −0.0020 −0.0094 * −0.0020 −0.0050 * −0.0020
(0.0077) (0.0039) (0.0021)

β2 0.1762 0.0197 0.0889 0.0187 0.0473 * 0.0187
(0.1108) (0.0557) (0.0296)

Pseudo-R2 0.1701 0.2353 0.2371
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Figure 5. Plots of the estimated parameters β0, β1, and β2 (in black lines and points) as functions of
the indicated fractile τ for model M3, where the gray zone corresponds to a 90% confidence band for
the listed parameter.

3.2. Application 2

In this application, we employ data from “The Quality of Government Basic Dataset”
of the University of Gothenburg. These data are from n = 138 countries in the year 2010,
where the response variable is a democratization index (Y), which can take values in [0, 1].
The covariates are real gross domestic product per capita in thousands of dollars (X1),
average schooling (in years) of people aged 25 years or more (X2), and press freedom
(X3). Note that X3 is an index that takes values between zero and one, with a lower value
indicating greater press freedom, while a higher value indicates limited press freedom.
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Consider the fractile regression model formulated as

Qτ(G(Yi)) = β0(τ) + β1(τ)xi1 + β2(τ)xi2 + β3(τ)xi3, i ∈ {1, . . . , 138}.

We use the expressions stated in (5), (6), and (7) as link functions. Then, we estimate
three models denoted by M4, M5, and M6. Once again, utilizing the methodology described
in Section 2.6, we use Π = 1.4722 to estimate model M6, as shown in Figure 6. The
estimation results of these models for the median (with their standard error in parentheses)
and their corresponding pseudo-R2 are reported in Table 4.

Table 4. Estimates for the parameters of models M4, M5, and M6 at 50th fractile, where * indicates
significance at the 10% level and standard errors are shown in parentheses below the estimates.

Parameter
M4 M5 M6

Estimate Em Estimate Em Estimate Em

β0 0.4948 0.0538 −0.6968 * −0.0924 −0.3370 * −0.1811

(0.3048) (0.2074) (0.0715)

β1 −0.0079 −0.0009 −0.0116 * −0.0015 −0.0019 −0.0010

(0.0119) (0.0061) (0.0015)

β2 0.1101 * 0.0120 0.0731 * 0.0097 0.0213 * 0.0115

(0.0359) (0.0237) (0.0067)

β3 −3.7126 * −0.4038 −2.9549 * −0.3918 −0.6733 * −0.3617

(0.4492) (0.3347) (0.0752)

Pseudo-R2 0.3091 0.3036 0.4396
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Figure 6. Plot of the values of Π versus their corresponding pseudo-R2 values in model M6.
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Note that the results of the estimates differ when different link functions are employed.
Estimates for the parameters of model M4 indicate that only the values associated with X2
and X3 are statistically significant at a 10% level. For models M5 and M6, all the estimates
were found to be statistically significant at 10%. Taking the pseudo-R2 as a measure of
the goodness of fit, it is observed that models M4 and M5 have a similar fit, while model
M6 shows a better fit than models M4 and M5. Furthermore, it is once again evident
that the statistical significance of the parameters varies depending on the chosen link
function. Figure 7 illustrates the parameter estimates of model M6 across different fractiles.
Observe that the estimated parameter associated with press freedom —β3(τ)— has a low
variation between the lower and upper fractiles, demonstrating a consistent influence
on democracies.
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Figure 7. Plots of the estimated parameters β0, β1, β2, and β3 (in black lines and points) as functions
of the indicated fractile τ for model M6, where the gray zone corresponds to a 90% confidence band
for the listed parameter.

4. Concluding Remarks

In conclusion, this article have introduced an alternative approach to data modeling
contained in the unit interval by extending the standard fractile regression model. We
have addressed two criticisms of the methodology proposed in [24], when applied to data
within the unit interval. We have also proposed alternative link functions to overcome
these criticisms.

Our new approach has offered several advantages. First, it has allowed for direct
interpretation of the model estimates in terms of the response variable, providing mean-
ingful insights into the relationship between the covariates and the response. Second, our
extensive simulation studies have shown that the approach demonstrated robustness when
using different link functions, ensuring the stability and reliability of the estimated fractile
regression coefficients even in simplified scenarios.
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Another strength of the introduced approach is its independence from assumptions
about the distribution of the response variable. This flexibility makes our approach ap-
plicable to a wide range of data scenarios, where the underlying distribution may be
unknown or may deviate from traditional parametrical assumptions. Furthermore, the
introduced approach addressed criticisms of the existing methods, offering a more robust
and interpretable framework for data modeling within the unit interval.

The applications of the introduced approach to two real datasets have demonstrated its
effectiveness and provided valuable insights into the modeling of household expenditure
on food and democratization. The estimated models have yielded statistically signifi-
cant coefficients and satisfactory goodness-of-fit measures, demonstrating the practical
applicability of our new approach.

While our approach offers advantages, it may vary in efficacy depending on data
characteristics. Its flexibility might not always be optimal for data with specific distributions,
and there could be scenarios in which alternative methods might be preferable.

This investigation has focused on the development and illustration of the introduced
approach. However, it is important to acknowledge that there are other existing approaches
and methodologies for modeling data supported within limited intervals. Future research
could involve comparative studies, where the introduced approach is compared with
alternative methods specifically designed for modeling data within the unit interval. Such
comparisons would provide a comprehensive evaluation of the performance and advan-
tages of our approach, helping researchers select the most suitable method for their specific
applications.

By recognizing the potential for comparisons and leveraging existing research in the
field, we hope to contribute to the ongoing exploration and refinement of modeling tech-
niques for bounded responses. The introduced approach, along with future comparative
studies, can further enhance our understanding and ability to model data within the unit
interval accurately.
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